Information, calcul et communication (MT-EL) EPFL

M3.L1: Série d’exercices sur I'architecture de I'ordinateur

Pour les exercices de cette série, nous serons amenés a manipuler des variables logiques prenant seulement deux
niveaux de tension notés 0 et 1. De telles variables sont équivalentes aux booléens que nous avons déja rencontrés
et les opérateurs logiques mentionnés dans cette série sont les opérateurs logiques bien connus auxquels s’ajoutent
qguelques autres. Nous utilisons les noms francgais ou anglais de ces opérateurs.

Notation : Soit x une variable logique, la notation X signifie la négation de x : si x=0 alors X =1 et vice versa.

1. Introductions aux portes logiques

Voici les symboles a connaitre pour les portes logiques qui réalisent les fonctions logiques familiéres (négation, et, ou,
ou-exclusif) ainsi que la négation de ces fonctions logiques (non-et, non-ou, non-ou-exclusif). Ces derniéres portent la
lettre N en préfixe: NAND veut dire non-et, NOR veut dire non-ou etc... De méme le symbole des portes logiques
comportant une composant de “négation” a un petit cercle au niveau de la sortie :

NOT Input | Output
porte et expression logique I F
| > 0 1
AND 1 5

A :
5 — AAND B AND Inputs Output NAND Inputs Output
3

A B F A B

] 0 0 0 ] 0 0 1
— 1 0 0 — 1 0 1
0 1 0 0 1 1
1 1 1 1 1 0

OR Inputs Output NOR Inputs Output
A B 3 A B F
0 0 0 0 0 1
0 1 1 0 1 0
1 1 1 1 1 0

XOR Inputs Output XNOR Inputs Qutput
A B F A B -
> | D
0 1 1 0 1 0
1 0 1 1 0 0
1 1 0 1 1 1

Symbole et table de vérité des portes logiques standards:
les entrées A et B sont a gauche, peu importe laquelle, et la sortie F est a droite du symbole.
La table de vérité indique la sortie de la porte logique pour toutes les combinaisons possibles des entrées A et B.

1.1) 'opérateur XOR produit un 1 en sortie pour seulement deux combinaisons des entrées AetB :

e (Casl:siAvautOetBvautl

e (Cas2:siAvautletBvautO
1.1.1) construire un circuit avec une porte AND et un inverseur qui produit le casl, c’est-a-dire 1 en sortie pour cette
combinaison de A et de B et 0 pour toutes les autres combinaisons de A et B.
1.1.2) construire un circuit avec une porte AND et un inverseur qui produit le cas2, c’est-a-dire 1 en sortie pour cette
combinaison de A et de B et 0 pour toutes les autres combinaisons de A et B.



1.1.3) Comment faites-vous ensuite avec une porte OR pour assembler ces deux circuits en un circuit dont la sortie
est celle de XOR ?

1.2) On aurait pu aussi bien commencer par exprimer XOR sous forme d’une expression logique en fonction de AND,
OR et NOT. Quelle est cette expression logique ?

2. Tables de vérité d’une expression logique quelconque

1.1. Un circuit logique a 5 entrées A, B, C, D, et E.
La table de vérité de ce circuit devra montrer la sortie du circuit pour toutes les combinaisons distinctes des entrées.
Combien d’états distincts ce circuit peut-il avoir en entrée ?

1.2. cas général pour la construction d’une table de vérité. Il suffit d’étendre le modéle vu en page précédente avec
une colonne par variable logique en entrée et une colonne par expression logique intermédiaire. Si on a N variables
en entrées on aura 2" lignes correspondants aux 2" combinaisons distinctes des entrées. Pour écrire ces 2" lignes il
suffit d’énumérer les 2N premiéres valeurs binaires sur N bits.

1.2.1) Donnez la table de vérité et dessinez le circuit logique correspondant a I'expression booléenne :
Y= (AetB)et (Bet()

1.2.2) Aurait-on pu le déduire le résultat de ce circuit simplement en analysant I'expression logique ?

1.3) Ecrivez I'équation logique booléenne pour le circuit suivant: A —

Pour ce circuit, on a rajouté des points gris pour supprimer

d’éventuelle ambiguité de connection.

1.4) Dessinez le circuit qui implémente I'expression logique suivante:

F = not (A or B) and (C or not B)

3. Compréhension des programmes en assembleur

On considere le programme assembleur suivant (voir cours M3.L1 pour les instructions):

1: charge rd, rl

2: charge r3, 0

3: somme rd, rd, -1
4: cont neg rd, 7

5: somme r3, r2, r3
6: continue 3

7: stop

Sirl=3 et r2 =38, quelle est la sortie de ce programme dans le registre r3 ?

En général, que fait ce programme?



4. Programme de multiplication de nombres complexes
Ecrivez un programme assembleur pour calculer le produit de deux nombres complexes y et z.

Utilisez les instructions similaires a celles vues au cours (p.ex. multiplie r1, r2, r3 pour déposer dans rl le résultat de
la multiplication de r2 et r3).

Vous pouvez utiliser les registres de r0 a r9. Initialement, le registre rO contient Réel(y), r1 contient Imag(y), r2
contient Réel(z), r3 contient Im(z). A la fin de I'exécution du programme, la partie réelle du résultat doit se trouver

dans r4 et la partie imaginaire dans r5.

{ Pour rappel: (a + bi)(c + di) = (ac - bd) + (ad + bc)i }

5. Programme de comparaison de valeurs horaires

Ecrivez un programme assembleur qui détermine laquelle de deux heures, A et B, exprimées en heures et en
minutes est la plus petite (c.a.d. arrive le plus t6t dans la journée).

Toutes les heures données sont entre 00:00 et 24:00 heures (donc p.ex. 13:45 et pas 1:45).

Vous pouvez utiliser les registres de r0 a r9. Les registres r0 a r3 contiennent les informations suivantes:

ro rl r2 r3

A heure A minutes B heure B minutes

A la fin de I'exécution du programme, r9 doit contenir 1 si A est une heure strictement plus petite que B et 0 sinon.

Exemple: Si on doit comparer 8h10 et 21h45, on vous donner0=8,r1 =10,r2=21etr3 =45 et alafinde
|'exécution, r9 devra contenir 1.

notation: L'instruction continue_pp a, b, ¢ fait continuer I'exécution a la ligne c si a est un nombre strictement plus
petit que b.




6. Circuit mystere

Considérez le circuit suivant.

I1I

IOI
Les entrées logiques sont a et b. S’il y a une barre horizontale au-dessus du nom de I’entrée, cela veut dire qu’on
prend la négation logique de cette entrée. Exemple : @ est la négation logique de a. Si a vaut 0 alors @ vaut 1. Et
réciproquement.

La sortie est définie par la valeur logique 0 ou 1 produite au niveau du trait sortant au milieu du circuit a droite.

Tout d’abord construisez la table de vérité qui identifie la sortie logique pour les 4 combinaisons possibles des
entrées a et b.

Quelle fonction logique réalise-t-il ?



	1. Introductions aux portes logiques
	2. Tables de vérité d’une expression logique quelconque
	3. Compréhension des programmes en assembleur
	4. Programme de multiplication de nombres complexes
	5. Programme de comparaison de valeurs horaires
	6. Circuit mystère

