TP_s4.2: Fonction (2)
Récursivité, surcharge, valeur par défaut, cout calcul

Lien avec le MOOC Initiation a la Programmation (en C++)
Lien avec ICC-Théorie en complément du MOOC

Les éléments du MOOC sur les fonctions sont répartis sur deux semaines. Cette seconde partie se concentre
sur la conception de fonctions récursives.

Le premier exercice complémentaire porte sur la mesure du colt calcul effectif pour une exécution donnée

d’un exécutable. Le second exercice complémentaire sert a illustrer la redirection des entrées-sorties
détaillée a la fin du document dans le complément-projet-2.

Exercices partiels semaine4 du MOOC

e Document Tutoriel 2°™ partie seulement « Somme récursive »
o Ecriture d’une fonction récursive : ne pas oublier le critére d’arrét

e Document Exercices semaine 4 du MOOC : sélection pour la semaine 4.2

o Exercice 14 : nombres de Fibonacci (niveau 1)
= Permet de comparer les performances de I'approche récursive avec une solution
itérative. Cet exercice est ré-utilisé pour I'exercice complémentaire ExC 1 sur la
mesure du temps de calcul en p 2.

e Document Exercices additionnels semaine 4 du MOOC : sélection pour la semaine 4.2

o Exercice 11 : Recherche dichotomique (niveau 2)
= Essayez les deux variantes suivantes de structure de controle pour le test du
caractere alphanumérique :
e |'approche avecune cascadede if- else if -
e Utilisation d’un switch sur le caractére lu au clavier car le type char est
automatiquement converti en int dans I'évaluation d’une expression en C++.

https://www.coursera.org/learn/initiation-programmation-cpp
https://moodle.epfl.ch/mod/resource/view.php?id=1002078
https://moodle.epfl.ch/mod/resource/view.php?id=1002078
https://moodle.epfl.ch/mod/resource/view.php?id=1002079
https://moodle.epfl.ch/mod/resource/view.php?id=1002080

Exercices Complémentaires (ExC)

ExC 1 : Obtenir le temps d’exécution d’un programme avec la commande time

Le rendu du projet vous demandera éventuellement de fournir des temps d’exécution dans le rapport. Pour
cela il faut utiliser la commande time en mode ligne de commande. Par exemple avec I'exécutable prog
écrivez la commande suivante dans le terminal (il faut étre dans le répertoire ol se trouve I'exécutable) :

time ./prog

La commande vous affiche 3 durées ; c’est la durée user qui nous intéresse car c’est le temps utilisé par le
CPU pour exécuter votre code. La durée sys est celle des fonctions du systeme (ex : entrées-sorties) tandis
que la durée real est la durée totale d’exécution (d’autres programmes peuvent se partager le CPU pendant
cette durée, c’est pourquoi elle est généralement supérieure a la somme des deux autres durées).

Action : comparer les temps d’exécutions des exercices précédents en faisant varier la taille N du probleme
traité. En déduire I'ordre de complexité de votre solution quand N devient grand.

ExC 2 : Codage de César / manipulation du code des caractéres alphanumériques

Jules César codait ses messages secrets en décalant les lettres dans I'alphabet d'un nombre fixe de lettres.
Nous allons faire une version de ce codage en décalant le code ASCII des caractéres d'un texte de n caractéeres
dans I'alphabet. Le méme programme peut servir pour coder et décoder un message. Pour le décodage il
suffit de recoder le message déja codé mais cette fois en indiquant un décalage de -n.

On va se restreindre a des messages contenant des lettres MAJUSCULES, des espaces, le point séparant des
phrases et le passage a la ligne. il ne faudra pas coder I'espace ' ', le point '.' et le passage a la ligne '\n'; ces

caracteres doivent étre récrits en sortie sans transformation.

Travail a effectuer : le programme doit d'abord lire la valeur du décalage = un entier entre -13 et + 13.

Ensuite le programme lit le texte fourni en entrée caractere par caractere avec cin et affiche aussitot avec
cout chaque caractére codé avec le décalage (ou pas). La détection de tout autre caractére que ceux qui sont
prévus agit comme un signal de fin de message et termine le programme.

Remarque sur la lecture des caracteres sans filtrage des séparateurs :

Si ¢ est une variable de type char, alors I'instruction cin >> c; filtre les séparateurs, ce qui ne permet pas de
résoudre le probléme correctement. Pour pouvoir lire TOUS les caracteres, y compris les séparateurs, il faut
utiliser I'instruction suivante : cin.get(c) ;

Codage : pour le codage, le programme doit veiller a reboucler le code a I'autre bout de I'alphabet en cas de
dépassement du début ou de la fin de l'alphabet. Il est demandé de ne pas utiliser les valeurs numériques
brutes du code ASCII dans les tests effectués. Travaillez seulement avec les constantes littérales de type char,

par exemple 'Z".

Exemple d’exécution : on donne d’abord 1 comme valeur de décalage puis on entre le texte HAL suivi par
Enter ce qui va lancer le codage de la premiere ligne et afficher IBM. Ensuite on peut quitter le programme
en tapant une lettre minuscule puis Enter.

Mise en ceuvre du principe d’abstraction : mettez en ceuvre une fonction responsable du codage en plus de
main. Elle renvoie VRAI si le caractere passé par référence a pu étre codé et FAUX s’il faut terminer le
programme.

Question subsidiaire : trouver un codage de César intéressant pour GOOGLE

Complément en prévision du Projet (2)
Redirection de I’entrée (clavier) et de la sortie (terminal) par défaut.

Dans les exercices précédents, les données en entrée du ENTREES
programme étaient toujours lues au clavier, et les sorties /"“\
toujours écrites a I'écran. C’est bien mais on peut faire
beaucoup mieux sans changer une seule ligne de notre
code source...

Proy

En particulier la phase de mise au point d’un projet
demande de faire beaucoup de tests différents pour
s’assurer que le programme fait ce qu’il doit faire. Entrer
manuellement toutes ces données au clavier prend L /—\\

énormément de temps. i proyg i

E £

REDIRECTION

La redirection de I’entrée permet de prendre le contenu o L

, ickier fichier
d’un fichier texte comme si cela venait du clavier. La onress re=nltats
méthode de travail est donc d’écrire une fois pour toutes
vos fichiers de tests avec geany puis de rediriger le fichier de test qui vous intéresse sur I'entrée par défaut
de votre programme exécutable. Supposons qu’il s’appelle prog et que les données a rediriger vers I'entrée
sont dans le fichier donnees.txt ; il suffit de taper la commande suivante dans une fenétre Terminal :

./prog < donnees.txt

Inversement, la sortie affichée dans le terminal est parfois trés longue ; il est plus pratique de la rediriger
vers un fichier puis d’ouvrir ce fichier avec geany pour I'examiner en détail. Si vous voulez rediriger la sortie
du programme prog vers un fichier resultats.txt, il suffit de taper :

./prog > resultats.txt

Vous pouvez aussi combiner ces deux redirections: ./prog < donnees.txt > resultats.txt

Remarque: en utilisant le symbole >>au lieu de >, vous ajoutez les résultats a la fin d'un fichier déja existant.
Travail a effectuer : écrivez un petit fichier texte de test avec geany destiné a votre programme de codage

de César (ExC 2). Ce fichier doit commencer par I'entier indiquant le décalage, puis respecter les regles
indiquées pour le message et enfin finir avec un caractere qui produit la fin du programme.

Ensuite, depuis une fenétre terminal, redirigez ce fichier texte vers le programme du codage secret et
redirigez la sortie vers un autre fichier texte.

Editez-le pour indiquer 'opposé du décalage précédent en début de fichier. Recommencez le codage et
vérifiez si vous obtenez bien le message original.

	TP_s4.2: Fonction (2)
	Récursivité, surcharge, valeur par défaut, coût calcul
	Lien avec le MOOC Initiation à la Programmation (en C++)
	Lien avec ICC-Théorie en complément du MOOC

