CS-119(a) — ICC-C Examen Pb Ouvert

2024-06-24

On veut construire une liste chainée qui contient la suite des mots d'un texte
dans 'ordre de leur apparition. Vous pouvez utiliser la fonction strlen () pour
obtenir la longueur d’une chaine de caractéres, mais vous ne pouvez pas utiliser
d’autres fonctions prédéfinies, comme strcpy, memcpy, ou strtok par exemple.

a) (2 points)

Ecrivez une fonction qui recoit en paramétre une chaine de caractéres string
et qui retourne le nombre de caractéres qui correspondent au plus long mot qui
commence & string[0]. Un mot est une suite contigué de caractéres alphanumé-
riques. Vous pouvez utiliser la fonction isalnum(c) qui retourne 1 si le caractére
c est alphanumérique et @ sinon.

Par exemple, longueur_mot (”"le langage C") ainsi que
longueur_mot("le?!lele”) doivent retourner 2 = la longueur du mot “le”.
Par contre l'appel longueur_mot(”... sofferte onde serene ...") doit
retourner @, car le premier caractére n’est pas alphanumérique. Pour la chaine
vide la valeur de retour doit également étre @.

Solution de ’exercice a)

Solution proposée :

int longueur_mot(const char *string)

{
int delta;
for (delta = 0; isalnum(stringl[delta]); delta++)
return delta;

3

Il faut incrémenter un compteur du début de la chaine tant que isalnum est vrai.



b) (2 points)

Ecrivez une fonction qui recoit en paramétre une chaine de caractéres string
et un entier n positif et qui retourne un pointeur vers une nouvelle chaine de
caractéres contenant une copie des n premiers caractéres de string. Si string
contient moins que n caractéres, alors on copie tout le contenu de string.
Par exemple copier (”supercalifragilisticexpialidocious”, 5) re-
tourne la chaine " super”.
Solution de ’exercice b)

Solution proposée :

1 char xcopier(const char *string, int n)

2 {

3 int len = strlen(string);

4 n = len < n ? len : n;

5 char *result = malloc(n + 1);
6 for (int 1 = @; 1 < n; 1i++)
7 {

8 result[i] = stringl[il;
9 3

10 result[n] = ’\0’;

11

12 return result;

13 3}

Points importants :

— 11 faut trouver la taille de la nouvelle chaine en comparant la taille de
string et n. Attention au *\@’ (donc n+1 a la ligne 5).

— Utiliser malloc ().

— Pas oublier le caractére fin-de-chaine "\o’.



On définit les deux struct suivantes :

1 typedef struct _cell

2 {

3 char =*mot;

4 struct _cell #*next;
5 F cell_t;

6 typedef struct _liste

7 {

8 cell_t *premier;

9 cell_t *dernier;
10} liste_t;

c) (3 points)

Ecrivez une fonction qui recoit une liste et un pointeur vers une chaine de
caractéres contenant un seul mot. Cette fonction rajoute une nouvelle cellule ayant
pour contenu le pointeur un_mot a la fin de la liste chainée 1iste. Cette fonction
doit mettre a jour les champs premier et dernier. Pour une liste vide ces champs

auront la valeur NULL.

Solution de ’exercice c)

1 void enfiler_mot(liste_t #*plist,

2 char *mot)

3 {

4 cell_t *wc = malloc(sizeof(cell_t));
5 wc->mot = mot;

6 wc->next = NULL,;

7

8 if (plist->premier == NULL)

9 {

10 plist->premier = wc;

11 }

12 else

13 {

14 plist->dernier->next = wc;
15 }

[e2]

plist->dernier = wc;
17 3}
Points importants :

— Allouer la nouvelle cellule et l'initialiser.
— Mettre a jour le dernier élément.

— Cas de base : la liste est vide — aussi mettre a jour le premier élément.



d) (3 points)

Utilisez les trois fonctions ci-dessus pour implémenter une fonction qui prend
en parameétre une chaine de caractéres texte et retourne la liste de mots qui s’y
trouvent dans l'ordre de leur apparition.

Solution de ’exercice d)

1 liste_t xcréer_liste(const char *texte)

2 {

3 liste_t *pliste = malloc(sizeof(liste_t));
4 pliste->premier = pliste->dernier = NULL;
5 const char *s = texte;

6 while (*s)

7 {

8 int longueur = longueur_mot(s);

9 if (longueur)

10 {

11 char *mot = copier(s, longueur);
12 enfiler_mot(pliste, mot);

13 s += longueur;

14 }

15 else

16 {

17 S++;

18 }

19 }

20 return pliste;

21 }

Points importants :

— Utiliser longueur_mot et copier pour créer une nouvelle chaine qui contient
le prochain mot.

— Utiliser enfiler_mot pour populer la liste.

— Attention a la condition de fin de boucle.

Une solution récursive est aussi envisageable.



e) (2 points)
Implémentez une fonction qui libére la mémoire d’une liste.

Solution de ’exercice e)

void libérer(liste_t xpliste)

1
2 {

3 while (pliste->premier != NULL)

4 {

5 cell_t *p = pliste->premier;

6 pliste->premier = pliste->premier->next;
7 free(p->mot);

8 free(p);

9 }

10 free(pliste);

1}

Points importants :
— Itérer sur tous les éléments de la liste — attention a la condition d’arrét.
— Libérer la chaine mot qui est stockée dans chaque cellule
— Ne pas effacer une cellule avant d’avoir récupéré le pointeur vers 1’élément
suivant !
— Libérer la liste elle-méme.



