
CS-119(a) – ICC-C Examen Pb Ouvert

2024-06-24

On veut construire une liste chaînée qui contient la suite des mots d’un texte
dans l’ordre de leur apparition. Vous pouvez utiliser la fonction strlen () pour
obtenir la longueur d’une chaîne de caractères, mais vous ne pouvez pas utiliser
d’autres fonctions prédéfinies, comme strcpy, memcpy, ou strtok par exemple.

a) (2 points)
Écrivez une fonction qui reçoit en paramètre une chaîne de caractères string

et qui retourne le nombre de caractères qui correspondent au plus long mot qui
commence à string [0]. Un mot est une suite contiguë de caractères alphanumé-
riques. Vous pouvez utiliser la fonction isalnum(c) qui retourne 1 si le caractère
c est alphanumérique et 0 sinon.

Par exemple, longueur_mot("le langage C") ainsi que
longueur_mot("le?!lele") doivent retourner 2 = la longueur du mot “le”.
Par contre l’appel longueur_mot("... sofferte onde serene ...") doit
retourner 0, car le premier caractère n’est pas alphanumérique. Pour la chaîne
vide la valeur de retour doit également être 0.

Solution de l’exercice a)
Solution proposée :

1 int longueur_mot(const char *string)
2 {
3 int delta;
4 for (delta = 0; isalnum(string[delta]); delta ++)
5 ;
6 return delta;
7 }

Il faut incrémenter un compteur du début de la chaîne tant que isalnum est vrai.

1



b) (2 points)
Écrivez une fonction qui reçoit en paramètre une chaîne de caractères string

et un entier n positif et qui retourne un pointeur vers une nouvelle chaîne de
caractères contenant une copie des n premiers caractères de string. Si string

contient moins que n caractères, alors on copie tout le contenu de string.
Par exemple copier("supercalifragilisticexpialidocious", 5) re-

tourne la chaîne "super".
Solution de l’exercice b)

Solution proposée :

1 char *copier(const char *string , int n)
2 {
3 int len = strlen(string);
4 n = len < n ? len : n;
5 char *result = malloc(n + 1);
6 for (int i = 0; i < n; i++)
7 {
8 result[i] = string[i];
9 }
10 result[n] = ’\0’;
11

12 return result;
13 }

Points importants :
— Il faut trouver la taille de la nouvelle chaîne en comparant la taille de

string et n. Attention au ’\0’ (donc n+1 à la ligne 5).
— Utiliser malloc ().
— Pas oublier le caractère fin-de-chaîne ’\0’.

2



On définit les deux struct suivantes :

1 typedef struct _cell
2 {
3 char *mot;
4 struct _cell *next;
5 } cell_t;
6 typedef struct _liste
7 {
8 cell_t *premier;
9 cell_t *dernier;
10 } liste_t;

c) (3 points)
Écrivez une fonction qui reçoit une liste et un pointeur vers une chaîne de

caractères contenant un seul mot. Cette fonction rajoute une nouvelle cellule ayant
pour contenu le pointeur un_mot à la fin de la liste chaînée liste. Cette fonction
doit mettre à jour les champs premier et dernier. Pour une liste vide ces champs
auront la valeur NULL.

Solution de l’exercice c)

1 void enfiler_mot(liste_t *plist ,
2 char *mot)
3 {
4 cell_t *wc = malloc(sizeof(cell_t));
5 wc->mot = mot;
6 wc->next = NULL;
7

8 if (plist ->premier == NULL)
9 {
10 plist ->premier = wc;
11 }
12 else
13 {
14 plist ->dernier ->next = wc;
15 }
16 plist ->dernier = wc;
17 }

Points importants :
— Allouer la nouvelle cellule et l’initialiser.
— Mettre à jour le dernier élément.
— Cas de base : la liste est vide – aussi mettre à jour le premier élément.

3



d) (3 points)
Utilisez les trois fonctions ci-dessus pour implémenter une fonction qui prend

en paramètre une chaîne de caractères texte et retourne la liste de mots qui s’y
trouvent dans l’ordre de leur apparition.

Solution de l’exercice d)

1 liste_t *créer_liste(const char *texte)
2 {
3 liste_t *pliste = malloc(sizeof(liste_t));
4 pliste ->premier = pliste ->dernier = NULL;
5 const char *s = texte;
6 while (*s)
7 {
8 int longueur = longueur_mot(s);
9 if (longueur)
10 {
11 char *mot = copier(s, longueur);
12 enfiler_mot(pliste , mot);
13 s += longueur;
14 }
15 else
16 {
17 s++;
18 }
19 }
20 return pliste;
21 }

Points importants :
— Utiliser longueur_mot et copier pour créer une nouvelle chaîne qui contient

le prochain mot.
— Utiliser enfiler_mot pour populer la liste.
— Attention à la condition de fin de boucle.
Une solution récursive est aussi envisageable.

4



e) (2 points)
Implémentez une fonction qui libère la mémoire d’une liste.

Solution de l’exercice e)

1 void libérer(liste_t *pliste)
2 {
3 while (pliste ->premier != NULL)
4 {
5 cell_t *p = pliste ->premier;
6 pliste ->premier = pliste ->premier ->next;
7 free(p->mot);
8 free(p);
9 }
10 free(pliste);
11 }

Points importants :
— Itérer sur tous les éléments de la liste – attention à la condition d’arrêt.
— Libérer la chaîne mot qui est stockée dans chaque cellule.
— Ne pas effacer une cellule avant d’avoir récupéré le pointeur vers l’élément

suivant !
— Libérer la liste elle-même.

5


