Support MOOC

Concepts
centraux

©EPFL 2021-22
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet (C++) :
Collections hétérogénes

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté 1&C

Programmation Orientée Objet — Cours 21 : Collections hétérogénes — 1/6



Support MOOC Vidé055 quiz et transparents

https ://www.coursera.org/learn/programmation-orientee-objet-
cpp/home/week/5

i Semaine 5 (partie avec les collections hétérogénes)

©EPFL 2021-22
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 21 : Collections hétérogénes — 2/6



Collections hétérogenes en pratique

Concepts
centraux

Il'y a en fait de nombreuses conceptions possibles pour les
collections hétérogénes, principalement suivant deux axes :

@ Le contenu de la collection est-il personnel (a la collection) ou
partagé ?
= QUI a la propriété des objets dans la collection : la
collection elle-méme ou un responsable externe ?

Il est conseillé ici :

> Tant que faire se peut de donner la propriété a la
collection

» et dans ce cas d'utiliser des unique_ptr en cq*ﬂ ou
des pointeurs a la C, mais gérés en interne de la
collection

> sinon (si vous ne pouvez pas donner la propriété a la
collection), d’utiliser des pointeurs a la C et transférer
des adresses d’objets existants plus longtemps que la
collection elle-méme

GEPFL 2021.22 (il faudra donc le garantir!)

Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 21 : Collections hétérogénes — 3/6



Collections hétérogenes en pratique (2)

Concepts
centraux

Il'y a en fait de nombreuses conceptions possibles pour les
collections hétérogénes, principalement suivant deux axes :
@ quelle interface pour les utilisateurs de la classe ?
2.a) Gérer les pointeurs en interne (aprés tout ce n'est qu’un
détail d’implémentation lié au langage) :
void Collection::ajoute (un_type consté);
voire

void Collection::ajoute (un_typeé&);

2.b) ou alors « afficher » les pointeurs et laisser leur gestion
en externe :

void Collection::ajoute (un_typex);

La premiere (2.a) est plus « propre » (cache les détails
d’implémentation), la seconde (2.b) plus directe (et plus simple
pour le programmeur de la classe).

@ Dans le premier cas, il pourrait peut étre s’avérer utile
rativonta d’avoir une copie polymorphigue des éléments contenus :
§ Joan Gécrio Chappeter virtual un_type* un_type::copie() const;
EPFL Programmation Orientée Objet — Cours 21 : Collections hétérogénes — 4/6



Collections hétérogenes en pratique (3)

Concepts
centraux

Dans le second cas (2.b, gestion externe des pointeurs) :
void Collection::ajoute (un_typex);

on peut, en tant qu’utilisateur de la collection, opter pour une
version statique :

un_type_possible un_element (...);

collection.ajoute (&un_element) ;

(mais attention a la portée des variables : ne pas avoir une collection de
plus grande portée que ses éléments !

ou alors dynamique :

collection.ajoute (new un_type_possible(...));

Dans tous les cas (gestion interne ou externe dynamique), il ne
eEPFL 202122 faut pas oublier de gérer correctement la libération de la mémoire.

Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 21 : Collections hétérogénes — 5/6



Pour préparer le prochain cours

Concepts
centraux

> Vidéos et quiz du MOOC semaine 6 :
> Héritage multiple : concept et constructeurs [11 :14]
> Héritage multiple : masquage [7 :06]
> Classes virtuelles [15 :02]

» Le prochain cours :
» de 14h15 a 15h (compléments)

©EPFL 2021-22
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 21 : Collections hétérogénes — 6/6



	Support MOOC
	Concepts centraux

