Support MOOC VidéOS, quiz et transparents

Programmation Orientée Objet (C++) :
Collections hétérogénes

https ://www.coursera.org/learn/programmation-orientee-objet-

cpp/home/week/5
Jamila Sam

Laboratoire dIntelligence Articielle == Semaine 5 (partie avec les collections hétérogénes)

Faculté 1&C
©EPFL 2021-22 ©EPFL 2021-22
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
':P':L ':P':L
=iy Programmation Orientée Objet — Cours 21 : Collections hétérogénes — 1/6 =iy Programmation Orientée Objet — Cours 21 : Collections hétérogénes — 2/6
) Collections hétérogenes en pratique ) Collections hétérogenes en pratique (2)
n t n t
iy iy . _ |
Il'y a en fait de nombreuses conceptions possibles pour les Il'y a en fait de nombreuses conceptions possibles pour les
yael NP > concep e P ) collections hétérogénes, principalement suivant deux axes :
collections hétérogénes, principalement suivant deux axes : ) R
. . R . @ quelle interface pour les utilisateurs de la classe ?
@ Le contenu de la collection est-il personnel (a la collection) ou . ; . X , ,
artagé ? 2.a) Gérer les pointeurs en interne (aprés tout ce n’est qu’un
P 9e o . . détail d’'implémentation lié au langage) :
== QUI a la propriété des objets dans la collection : la , , ,
. n n void Collection::ajoute (un_type consté&);
collection elle-méme ou un responsable externe “ _
rz s voire
Il est conseillé ici :
. TN void Collection::ajoute (un_types&);
> Tant que faire se peut de donner la propriété a la J (un_types)
collection . 2.b) ou alors « afficher » les pointeurs et laisser leur gestion
» et dans ce cas d’utiliser des unique_ptr en cﬁﬂ ou en externe :
des po_lnteurs ala C, mais gérés en interne de la void Collection::ajoute (un_type+);
collection
» sinon (si vous ne pouvez pas donner la propriété a la La premiére (2.a) est plus « propre » (cache les détails
collection), d'utiliser des pointeurs a la C et transférer d’implémentation), la seconde (2.b) plus directe (et plus simple
des adresses d’objets existants plus longtemps que la pour le programmeur de la classe).
Qollectlon elle-méme . @ Dans le premier cas, il pourrait peut étre s’avérer utile
o % (il faudra donc le garantir!) S 2oar 22 d’avoir une copie polymorphique des éléments contenus :
& Jean-Cédric Chappelier & Jean-Cédric Chappelier . .
virtual un_typex un_type::copie() const;
c=PFL fon Orientée Obi fons hétéroge c=PFL fon Orientée Obi fons hétéroge
(=1 Programmation Orientée Objet — Cours 21 : Collections hétérogenes — 3/6 Programmation Orientée Objet — Cours 21 : Collections hétérogenes — 4/6



Collections hétérogenes en pratique (3) Pour préparer le prochain cours

Concepts Concepts
centraux centraux

Dans le second cas (2.b, gestion externe des pointeurs) :
void Collection::ajoute (un_typex);

on peut, en tant qu’utilisateur de la collection, opter pour une

version statique : > Vidéos et quiz du MOOC semaine 6 :

> Héritage multiple : concept et constructeurs [11 :14]
> Héritage multiple : masquage [7 :06]

> Classes virtuelles [15 :02]

un_type_possible un_element (...);

collection.ajoute (&un_element) ;

(mais attention a la portée des variables : ne pas avoir une collection de » Le prochain cours :
plus grande portée que ses éléments ! > de 14h15 a 15h (compléments)

ou alors dynamique :

collection.ajoute (new un_type_possible(...));

Dans tous les cas (gestion interne ou externe dynamique), il ne
OEPFL 202122 faut pas oublier de gérer correctement la libération de la mémaoire. GEPFL 202122

Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier

EPFL EPFL
=iy Programmation Orientée Objet — Cours 21 : Collections hétérogénes — 5/6 (=l g Programmation Orientée Objet — Cours 21 : Collections hétérogénes — 6/6



	Support MOOC
	Concepts centraux

