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How do we model information?



How dOo we measure
iInformation?



How much information is there?

“To be or not
to be?”
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How much information is there?




How much relevant information is there in a related observation?
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How much relevant information is there in a related observation?
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How much relevant information is there in a related observation?
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What works well...

Use tools from probability theory and statistics

* A ‘source of information’ is a random variable

e e.9.XY,Z, ...
* ‘Information measures’ quantify the amount of information

e e.g. mutual information, Shannon entropy, relative entropy,...
» Justifications for information measures:

* POPS Up as an answer to an engineering problem

e satisfies some nice properties (axioms, operational notions, etc.)



Communications

Example: Data Compression Example: Data Transmission
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Privacy and Security

Example: Side-Channel Leakage
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Reprinted with corrections from The Bell System Technical Journal,
Vol. 27, pp. 379423, 623-656, July, October, 1948.

A Mathematical Theory of
Co m m u n I catl O n a n d Beyo n d A Mathematical Theory of Communication
(Information Theory) By . AN

INTRODUCTION

HE recent development of various methods of modulation such as PCM and PPM which exchange
u bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A
® H aS b ee n eXt re m e | y S u C C eS Sfu I I n basis for such a theory is contained in the important papers of Nyquist' and Hartley? on this subject. In the
present paper we will extend the theory to include a number of new factors, in particular the effect of noise
" . in the channel, and the savings possible due to the statistical structure of the original message and due to the
ad d reSS I n g p rO b | e m S | I ke nature of the final destination of the information.
The fundamental problem of communication is that of reproducing at one point either exactly or ap-
proximately a message selected at another point. Frequently the messages have meaning; that is they refer

. .
C O m m u n I C at I O n a n d d at a to or are correlated according to some system with certain physical or conceptual entities. These semantic

aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual

- message is one selected from a set of possible messages. The system must be designed to operate for each

C O m p reS S I O n possible selection, not just the one which will actually be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any monotonic function of this number

can be regarded as a measure of the information produced when one message is chosen from the set, all

choices being equally likely. As was pointed out by Hartley the most natural choice is the logarithmic

" " function. Although this definition must be generalized considerably when we consider the influence of the

® C O n Ce r n ed W It h m eaS u reS I I ke statistics of the message and when we have a continuous range of messages, we will in all cases use an

essentially logarithmic measure.
The logarithmic measure is more convenient for various reasons:

S h a n n O n e nt ro py a n d m Ut u a- I 1. Itis practically more useful. Parameters of engineering importance such as time, bandwidth, number

of relays, etc., tend to vary linearly with the logarithm of the number of possibilities. For example,

| | |
I n fO r m at I O n adding one relay to a group doubles the number of possible states of the relays. It adds 1 to the base 2

logarithm of this number. Doubling the time roughly squares the number of possible messages, or
doubles the logarithm, etc.

2. It is nearer to our intuitive feeling as to the proper measure. This is closely related to (1) since we in-
tuitively measures entities by linear comparison with common standards. One feels, for example, that

o t h eS e m e aS u reS a ri S e aS a n Swe rS two punched cards should have twice the capacity of one for information storage, and two identical

channels twice the capacity of one for transmitting information.

to S p eC ifi C e n g i n ee ri n g p ro b I e m S 3. It is mathematically more suitable. Many of the limiting operations are simple in terms of the loga-

rithm but would require clumsy restatement in terms of the number of possibilities.

The choice of a logarithmic base corresponds to the choice of a unit for measuring information. If the
base 2 is used the resulting units may be called binary digits, or more briefly bits, a word suggested by
J. W. Tukey. A device with two stable positions, such as a relay or a flip-flop circuit, can store one bit of

® T h eS e m e aS u reS h ave b e e n u S e d i n information. N such devices can store N bits, since the total number of possible states is 2V and log, 2V = N.

If the base 10 is used the units may be called decimal digits. Since

other applications with much more o2 = oMoy

== 33210g10M

]
I I l I Xe d reS u I tS INyquist, H., “Certain Factors Affecting Telegraph Speed,” Bell System Technical Journal, April 1924, p. 324; “Certain Topics in

Telegraph Transmission Theory,” AJ.E.E. Trans., v. 47, April 1928, p. 617.
2Hartley, R. V. L., “Transmission of Information,” Bell System Technical Journal, July 1928, p. 535.



On Measures of Entropy
and Information

 Extends Shannon entropy and
relative entropy to a family of
Reéenyi entropies and Rényi
divergences

e Takes an axiomatic view of
entropy

* Rényi entropy is additive across
Independent observations

* does not satisty the chain rule

ON MEASURES OF ENTROPY AND
INFORMATION

ALFRED RENYI
MATHEMATICAL INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES

1. Characterization of Shannon’s measure of entropy

Let ® = (p1, P2, -+, p.) be a finite discrete probability distribution, that
is, suppose pr =0k =1,2,---,n) and > %-1p:x = 1. The amount of un-
certainty of the distribution ®, that is, the amount of uncertainty concerning
the outcome of an experiment, the possible results of which have the probabili-

ties p1, P2, *** , P, 18 called the entropy of the distribution @ and is usually
measured by the quantity H[®] = H(p,, pe, - - - , P»), introduced by Shannon [1]
and defined by
2 1
(L1) H(py, 2, - -+, Pa) = 20 Pilogs —
k=1 Px

Different sets of postulates have been given, which characterize the quantity
(1.1). The simplest such set of postulates is that given by Fadeev [2] (see also
Feinstein [3]). Fadeev’s postulates are as follows.

(a) H(py, P2, + -+, Dn) 28 @ symmelric function of its variables forn = 2,3, -+ .

(b) H(p,1 — p) 18 a continuous function of p for 0 < p < 1.

(e) H(1/2,1/2) = 1.

(d) H[tply (1 - t)ply P2y - ;pn] = H(ph P2 -, pn) + le(t’ 1 — t)
for any distribution ® = (p1, Pe, -+ - , Pn) and for 0 £ t £ 1.

The proof that the postulates (a), (b), (¢), and (d) characterize the quantity
(1.1) uniquely is easy except for the following lemma, whose proofs up to now
are rather intricate.

LeMMA. Let f(n) be an additive number-theoretical function, that s, let f(n) be
defined for n = 1,2, - - - and suppose

(12 fnm) = f(n) + f(m), nym =12,
Let us suppose further that
(1.3) lim_[f(n+1) - f@m)] = 0.

Then we have

(1.4) f(n) = clogn,
where ¢ 1s a constant.
547



Paper Highlights

Rényi Entropy Rényi Divergence

THEOREM 2. If H[®] is defined for all ® € A and satisfies postulates 1,2, 3, 4, THEOREM 3. Suppose that the quantity I1(Q|®) satisfies the postulates 6, 7, 8, 9,
and 5" with g(x) = g.(x), where go(x) s defined by (2.13), « > 0, and a % 1, then and 10. Then the function g(x) in 10 is necessarily either a linear or an exponential
H[®] = H,[®)], where, putting ® = (py, D2, *** , Pn), We have function. In the first case I(Q|®) = I,(Q|®), where

| i pe kgl qx loge Ig’f
(2.14) HJ[®] = log, | =1— | (3.7) I,(Qle) = - ,
1l — «a n -
' 2. D 2 Q
k=1 . k=1

The quantity (2.14) will be called the entropy of order a of the generalized dis- while in the second case I(Q|®) = I.(Q|®) with some o 5 1, where
tribution @®. Clearly if ® is an ordinary distribution, (2.14) reduces to (1.21). It n g%
is also easily seen that kZ  pEL

, (3.8) LQ®) = log: =
(2.15) hn} H,[®] = H\[®], a—1 i o

where H,[®] is defined by (2.5).



An Operational Approach
to Information Leakage

* An information leakage measure
motivated by ‘side channels’

» Measures adversary’s
iImprovement in ability to
estimate a function of data

 Has many nice properties like
composition, data processing,
and various robustness
properties

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 3, MARCH 2020
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An Operational Approach to Information Leakage

Ibrahim Issa™, Aaron B. Wagner ', and Sudeep Kamath

Abstract—Given two random variables X and Y, an oper-
ational approach is undertaken to quantify the ‘“leakage” of
information from X to Y. The resulting measure £ (X—Y')
is called maximal leakage, and is defined as the multiplicative
increase, upon observing Y, of the probability of correctly
guessing a randomized function of X, maximized over all such
randomized functions. A closed-form expression for £ (X—Y')
is given for discrete X and Y, and it is subsequently generalized
to handle a large class of random variables. The resulting
properties are shown to be consistent with an axiomatic view
of a leakage measure, and the definition is shown to be robust
to variations in the setup. Moreover, a variant of the Shannon
cipher system is studied, in which performance of an encryption
scheme is measured using maximal leakage. A single-letter char-
acterization of the optimal limit of (normalized) maximal leakage
is derived and asymptotically-optimal encryption schemes are
demonstrated. Furthermore, the sample complexity of estimating
maximal leakage from data is characterized up to subpolynomial
factors. Finally, the guessing framework used to define maximal
leakage is used to give operational interpretations of commonly
used leakage measures, such as Shannon capacity, maximal
correlation, and local differential privacy.

Index Terms— Guessing, information leakage, security, Sibson
mutual information.

I. INTRODUCTION

OW much information does an observation “leak™ about

a quantity on which it depends? This basic question
arises in many secrecy and privacy problems in which the
quantity of interest is considered sensitive and an observation
is available to an adversary. The observation could be inten-
tionally provided to the adversary, as occurs when a curator
publishes statistical information about a given population.
Or the observation could be an inevitable, if undesirable,
consequence of a design. In the latter case, which is the focus

Manuscript received July 20, 2018; revised August 2, 2019; accepted
December 10, 2019. Date of publication December 27, 2019; date of current
version February 14, 2020. This work was supported in part by the U.S.
National Science Foundation under Grant CCF-1704443 and in part by the
U.S. Army Research Office under Grant W91INF-18-1-0426. This article was
presented in part at the 2016 Annual Conference on Information Sciences and
Systems and in part at the 2016 and 2017 IEEE International Symposium on
Information Theory.

Ibrahim Issa was with the School of Electrical and Computer Engineering,
Cornell University, Ithaca, NY 14853 USA, and also with the School of
Computer and Communication Sciences, Ecole Polytechnique Fédérale de
Lausanne, 1015 Lausanne, Switzerland. He is now with the Department of
Electrical and Computer Engineering, American University of Beirut, Beirut
1107 2020, Lebanon (e-mail: ii19@aub.edu.lb).

Aaron B. Wagner is with the School of Electrical and Computer Engineer-
ing, Cornell University, Ithaca, NY 14853 USA (e-mail: wagner@cornell.edu).

Sudeep Kamath was with the Electrical Engineering Department, Prince-
ton University, Princeton, NJ 08542 USA. He is now with PDT Partners,
New York, NY 10019 USA (e-mail: sudeep.kamath@ gmail.com).

Communicated by S. Watanabe, Associate Editor for Shannon Theory.

Digital Object Identifier 10.1109/TIT.2019.2962804
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Fig. 1. The Secure Shell: each keystroke is sent immediately to the remote
machine.
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Fig. 2. The Shannon cipher system.

of this paper, we call the observation the output of a side
channel. Some examples of side channels include:

o When using the Secure Shell (SSH), after the initial hand-
shake, each keystroke is sent immediately to the remote
machine, as shown in Figure 1. When communicating
over a wireless network, an eavesdropper can observe the
timing of the packets which are correlated with the timing
of the keystrokes, and hence with the input of the user
(e.g., the inter-keystroke delay in 'ka’ is significantly
smaller than that in "9k’ [1]).

o Consider an on-chip network that has several processes
running simultaneously, one of which is malicious.
Because resources such as memory and buses are shared
on the chip, the timing characteristics (e.g., memory
access delays) observed by the malicious application
are affected by the behavior of the other applications
(e.g., memory access patterns) and can leak sensitive
information such as keys. Similar phenomena occur
when users share links or buffers in a communication
network [2].

o Consider the Shannon cipher system (shown in Figure 2)
in which a transmitter and a receiver are connected
through a public noiseless channel and share a secret
key. Unless the key rate is very high, the public message
depends on the message [3].

e An adversary could “wiretap” a communication chan-
nel to intercept transmissions. The wiretap channel is
typically noisier than the main channel, but its output
nevertheless depends on the transmitted message [4], [5].

« Suppose one would like to anonymously transmit a mes-
sage through a given network (say, a call for protest on
a social network). A powerful adversary (say, a govern-
ment) could learn the spread of the message (i.e., who

0018-9448 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Definition 1 (Maximal Leakage): Given a joint distribution Theorem 1: For any joint distribution Pxy on finite alpha-
Pxy on alphabets & and Y, the maximal leakage from X to Y’ bets X’ and ), the maximal leakage from X to Y is given by
is defined as the Sibson mutual information of order infinity, Ioo(X;Y).

Pr(U _ [A]) That 1s,
L(X-=Y) = 1 1 _ _ :

yeY Px (LE)>O

where the supremum 1is over all U and U taking values in the
same finite, but arbitrary, alphabet.



Tunable Measures for
Information Leakage

* A Reényi-like extension of
Maximal leakage

* |Interpolates between mutual
information and maximal leakage

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 12, DECEMBER 2019 8043

Tunable Measures for Information Leakage and

Applications to Privacy-Utility Tradeoffs

Jiachun Liao ", Student Member, IEEE, Oliver Kosut~, Member, IEEE, Lalitha Sankar, Senior Member, IEEE,
and Flavio du Pin Calmon ', Member, IEEE

Abstract—We introduce a tunable measure for information
leakage called maximal «-leakage. This measure quantifies the
maximal gain of an adversary in inferring any (potentially
random) function of a dataset from a release of the data. The
inferential capability of the adversary is, in turn, quantified by a
class of adversarial loss functions that we introduce as «-loss, « €
[1, oo) U{oc}. The choice of « determines the specific adversarial
action and ranges from refining a belief (about any function of the
data) for o = 1 to guessing the most likely value for « = oo while
refining the o™ moment of the belief for « in between. Maximal
«-leakage then quantifies the adversarial gain under «-loss over
all possible functions of the data. In particular, for the extremal
values of ¢« = 1 and ¢« = oo, maximal «-leakage simplifies
to mutual information and maximal leakage, respectively. For
o € (1, 00) this measure is shown to be the Arimoto channel
capacity of order «. We show that maximal «-leakage satisfies
data processing inequalities and a sub-additivity property thereby
allowing for a weak composition result. Building upon these
properties, we use maximal «-leakage as the privacy measure and
study the problem of data publishing with privacy guarantees,
wherein the utility of the released data is ensured via a hard
distortion constraint. Unlike average distortion, hard distortion
provides a deterministic guarantee of fidelity. We show that under
a hard distortion constraint, for « > 1 the optimal mechanism is
independent of «, and therefore, the resulting optimal tradeoff
is the same for all values of « > 1. Finally, the tunability
of maximal «-leakage as a privacy measure is also illustrated
for binary data with average Hamming distortion as the utility
measure.

Index Terms— Mutual information, maximal leakage, maximal
«-leakage, Sibson mutual information, Arimoto mutual informa-
tion, f-divergence, privacy-utility tradeoff, hard distortion.

[. INTRODUCTION AND OVERVIEW

HE measure and control of private information leakage

is a recognized objective in communications, information
theory, and computer science. Modern cryptography [1]-[3],
for example, aims at designing and analyzing security systems
that are believed to be impervious to computationally bounded
adversaries. Alternatively, information-theoretic security stud-
ies settings where an asymmetry of information between

Manuscript received September 24, 2018; revised April 29, 2019; accepted
August 1, 2019. Date of publication August 16, 2019; date of current version
November 20, 2019. This work was supported in part by the National Science
Foundation under Grants CCF-1422358, CCF-1350914, CIF-1815361, and
CIF-1901243. This article was presented in part at the 2018 IEEE International
Symposium on Information Theory and Information Theory Workshop.

J. Liao, O. Kosut, and L. Sankar are with Arizona State University, Tempe,
AZ 85281 USA (e-mail: jiachun.liao@asu.edu).

F. du Pin Calmon is with Harvard University, Cambridge, MA USA.

Communicated by S. Watanabe, Associate Editor for Shannon Theory.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2019.2935768

an adversary and the legitimate parties (e.g., the wiretap
channel [4]-[6]) can be exploited to guarantee that no private
information is leaked regardless of computational assumptions.
An adversary that only observes the output of a (computa-
tionally) secure cipher or cannot overcome the information
asymmetry in a wiretap-like setting does not, for all practical
purposes, pose a privacy risk.

However, modern applications such as online data sharing,
social networks, cloud-based services, and mobile computing
have significantly increased the number of ways in which
private information can leak. Services that require a user to
disclose data in order to receive utility inevitably incur a pri-
vacy risk through unwanted inferences. For example, sensitive
information such as political preference, medical conditions,
and identity can be reliably estimated from movie ratings [7],
online shopping patterns, [8], and via deanonymization and
tracking of interactions in social network data [9], [10],
respectively. Moreover, practical implementations of crypto-
graphic schemes are susceptible to so-called “side-channel
attacks,” where sensitive information leaks through unexpected
channels. For example, a malicious application may get tim-
ing characteristics [11], [12]. In these examples, an adver-
sary that observes information leaked through a side-channel
can more reliably infer private data, such as a key or a
plaintext.

Several (often overlapping) definitions of privacy/
information leakage have been proposed over the past decade.
The most widely adopted measure is differential privacy
(DP) [13], [14], which was introduced within the context of
querying databases. DP seeks to ensure that changes in the
database entries do not significantly influence the value of a
query. A variety of information-theoretic measures have also
been proposed as leakage measures. Foremost among them
is mutual information (MI): its use as a privacy measure in
[15]-[24] is inspired by the common appearance of MI as an
operationally-meaningful quantity throughout the literature on
communication systems. In a similar vein, divergence-based
quantities such as total variation distance between the prior
and posterior distributions [25] have also been proposed as
leakage measures. Information-theoretic measures have been
studied in the DP community via Rényi differential privacy
which is based on Rényi divergence [26] that allow relaxing
the original definition of DP in order to enable better utility
guarantees. However, the gamut of information-theoretic
leakage measures proposed to address the privacy problem do
not yet have clear operational meanings or adversarial models
in their definitions.

0018-9448 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



Paper Highlights

Definition 3 (a-loss). Let rqndom varg'\ables X, Y and X form
a Markov chain X — Y — X, where X is an estimator of X.

The o-loss of the strategy Pf(| y Jor estimating X from Y is

la(x,y, Pgy) = —= (1= Py, GIN'T),  (19)

where a. € (1, 00). It is defined by its continuous extension for
o =1 and a = 00, respectively, and is given by
1

Pgy(1y)’

boolx, y, Pyiy)= Hm £a(x,y, Pgy)=1—Pgy(xly). (21)

(20)

51(x, Y PX|y) = lim fa(xa Y P)A(|Y)= log

a—1

Definition S (a-Leakage). Given a joint distribution Px y and
an estimator X with the same support as X, the a-leakage
from X to Y is defined as

a—1
maxE | Py, (X|Y) % |

P)“qY

L (X—>Y)& log —,  (27)
a—1 max]E[PX(X)T]
Py

for a € (1,00) and by the continuous extension of (27) for
o =1 and oo.

Definition 6 (Maximal a-Leakage). Given a joint distribution

Px y on finite alphabets X x ), the maximal a-leakage from
X to Y is defined as

LM(X - Y)2 sup L,(U;Y), (28)
U-X-Y
where 1 < a < 00, and U represents any function of X and
takes values from an arbitrary finite alphabet.

Note that for o > 1,
a—1
max E [P0|Y(U|Y) ; ]

Uy

o— 1
=1 —

in £ Y, Py : 2
o BnE (U, Y, Py (29)

Theorem 2. For 1 < a < o0, the maximal a-leakage defined
in (28) simplifies to

LINY(X —Y)
( suplg()z; Y) =suplf()2; Y), l <a <oo (3la)
L I(X;Y), a=1 (31b)

where P is a probability distribution over the support
Of P X-



Calibrating Noise to Sensitivity in
Private Data Analysis (Differential
Privacy)

* An information leakage measure
motivated by statistical databases

 Measures the perturbation in the
output due to small changes In
iInput

 Has many nice properties and Is
extremely well studied

PlY
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Calibrating Noise to Sensitivity in Private Data
Analysis

Cynthia Dwork!, Frank McSherry!, Kobbi Nissim?, and Adam Smith3*

! Microsoft Research, Silicon Valley. {dwork,mcsherry}@microsoft.com
? Ben-Gurion University. kobbi@cs.bgu.ac.il
® Weizmann Institute of Science. adam.smith@weizmann.ac.il

Abstract. We continue a line of research initiated in [10, 11] on privacy-
preserving statistical databases. Consider a trusted server that holds a
database of sensitive information. Given a query function f mapping
databases to reals, the so-called true answer is the result of applying
f to the database. To protect privacy, the true answer is perturbed by
the addition of random noise generated according to a carefully chosen
distribution, and this response, the true answer plus noise, is returned
to the user.

Previous work focused on the case of noisy sums, in which f =
>, 9(zi), where z; denotes the ith row of the database and g maps
database rows to [0,1]. We extend the study to general functions f,
proving that privacy can be preserved by calibrating the standard devi-
ation of the noise according to the sensitivity of the function f. Roughly
speaking, this is the amount that any single argument to f can change its
output. The new analysis shows that for several particular applications
substantially less noise is needed than was previously understood to be
the case.

The first step is a very clean characterization of privacy in terms of
indistinguishability of transcripts. Additionally, we obtain separation re-
sults showing the increased value of interactive sanitization mechanisms
over non-interactive.

1 Introduction

We continue a line of research initiated in [10, 11] on privacy in statistical
databases. A statistic is a quantity computed from a sample. Intuitively, if the
database is a representative sample of an underlying population, the goal of
a privacy-preserving statistical database is to enable the user to learn proper-
ties of the population as a whole while protecting the privacy of the individual
contributors.

We assume the database is held by a trusted server. On input a query function
f mapping databases to reals, the so-called true answeris the result of applying f
to the database. To protect privacy, the true answer is perturbed by the addition

* Supported by the Louis L. and Anita M. Perlman Postdoctoral Fellowship.



The Composition Theorem
for Differential Privacy

e A recent work on Differential
Privacy

* Connects Differential Privacy to
Hypothesis Testing

 Proves a new composition
theorem for differential private
mechanisms
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The Composition Theorem for Differential Privacy

Peter Kairouz, Member, IEEE, Sewoong Oh, Member, IEEE, and Pramod Viswanath, Fellow, IEEE

Abstract— Sequential querying of differentially private mecha-
nisms degrades the overall privacy level. In this paper, we answer
the fundamental question of characterizing the level of overall
privacy degradation as a function of the number of queries and
the privacy levels maintained by each privatization mechanism.
Our solution is complete: we prove an upper bound on the
overall privacy level and construct a sequence of privatization
mechanisms that achieves this bound. The key innovation is
the introduction of an operational interpretation of differential
privacy (involving hypothesis testing) and the use of a data
processing inequality along with its converse. Our result improves
over the state of the art, and has immediate connections to several
problems studied in the literature.

Index Terms— Differential privacy, hypothesis testing.

I. INTRODUCTION

IFFERENTIAL privacy is a formal framework to quan-

tify to what extent individual privacy in a statistical data-
base is preserved while releasing useful aggregate information
about the database. It provides strong privacy guarantees
by requiring the indistinguishability of whether or not an
individual is in a database based on the released informa-
tion, regardless of the side information on the other aspects
of the database the adversary may possess. Denoting the
database when the individual is present as D) and as Dy
when the individual is not, a differentially private mechanism
provides indistinguishability guarantees with respect to the
pair (Do, D1). The databases Do and D; are referred to as
“neighboring” databases.

Definition 1 (Differential Privacy [10], [12]): A random-
ized mechanism M over a set of databases is (g,0)-
differentially private if for all pairs of neighboring databases
Dy and D, and for all sets S in the output space of the
mechanism X,

P(M(Dy) € S) < e*P(M(Dy) € S) + 6.

Manuscript received January 20, 2014; revised December 3, 2015,
May 27, 2016, and January 12, 2017; accepted March 15, 2017. Date of
publication March 21, 2017; date of current version May 18, 2017. This
work was supported in part by NSF CISE under Award CCF-1422278,
Award CCF-1553452, NSF SaTC Award CNS-1527754, NSF CMMI Award
MES-1450848, NSF ENG Award ECCS-1232257, and in part by the Google
Faculty Research Award. This paper was presented at the 2015 International
Conference on Machine Learning in [KOV15].

P. Kairouz is with the Department of Electrical Engineering, Stanford
University, Stanford, CA 94305 USA (e-mail: kairouz2 @illinois.edu).

S. Oh is with the Department of Industrial and Enterprise Systems
Engineering, University of Illinois at Urbana—Champaign, Champaign,
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A basic problem in differential privacy is how privacy of a
fixed pair of neighbors (Dg, D) degrades under composition
of interactive queries when each query, individually, meets
certain differential privacy guarantees. A routine argument
shows that the composition of k queries, each of which is
(e, d)-differentially private, is at least (ke, kd)-differentially
private [10]-[12], [16]. A tighter bound of (&5, kd + 9)-
differential privacy under k-fold adaptive composition is pro-
vided, using more sophisticated arguments, in [16] for the

case when each of the individual queries is (¢, d)-differentially
private. Here €5 = O ket 4-e,/k log(l/é)). On the other hand,
it was not known if this bound could be improved until this
work.

Our main result is the exact characterization of the pri-
vacy guarantee under k-fold composition. Any k-fold adap-
tive composition of (&, d)-differentially private mechanisms
satisfies the privacy guarantee stated in Theorem 9. Further,
we demonstrate a specific sequence of (nonadaptive) privacy
mechanisms which when composed, degrade the privacy to
the level guaranteed in Theorem 9. Our result entails a strict
improvement over the state-of-the-art result in [16]. This can

be seen immediately in the following approximation — using
the same notation as above, the value of £; is now reduced

to &5 = O(ke2 + 8\/klog(e+ (8«/’2/3))). Since a typical

choice of J is & = ®(kJ), in the regime where ¢ = @(\/125),
this improves the existing guarantee by a logarithmic factor.
The gain is especially significant when both & and J are small.

We view differential privacy as a guarantee on the two types
of error (false alarm and missed detection) in a binary hypoth-
esis testing problem involving two neighboring databases. This
approach is similar to the previous work of Wasserman and
Zhou [33]. Our work leverages two benefits of this operational
interpretation of differential privacy.

o The first is conceptual. The operational setting directs
the logic of the steps of the proof, makes the arguments
straightforward, and readily allows for generalizations
such as heterogeneous compositions.

« The second is technical. The operational interpretation of
hypothesis testing brings both the natural data processing
inequality and the strong converse to the data processing
inequality. These inequalities, while simple by them-
selves, lead to surprisingly strong technical results. As an
aside, we mention that there is a strong tradition of
such derivations in the information theory literature:
the Fisher information inequality [5], [34], the entropy
power inequality [S], [31], [32], an extremal inequality
involving mutual informations [28], matrix determinant

0018-9448 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Given a random output Y of a database access mecha-
nism M, consider the following hypothesis testing experiment.
We choose a null hypothesis as database Dy and alternative

hypothesis as Dj:

HO : Y came from a database Dy,
H1:Y came from a database D;.

Theorem 2: For any ¢ > 0 and o0 € [0,1], a database
mechanism M is (g, 0)-differentially private if and only if the
following conditions are satisfied for all pairs of neighboring
databases Dy and D1, and all rejection region S C X:

Pea(Do, D1, M, S) + e Pmp(Do, D1, M, S) > 1 -6, and
e® Pea(Do, D1, M, S) + Pup(Do, D1, M, S) > 1—-9d. (1)
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Rény1 Differential Privacy

Ilya Mironov
Google Brain

Abstract—We propose a natural relaxation of differential
privacy based on the Rényi divergence. Closely related notions
have appeared in several recent papers that analyzed composition
of differentially private mechanisms. We argue that the useful
analytical tool can be used as a privacy definition, compactly and
accurately representing guarantees on the tails of the privacy loss.

We demonstrate that the new definition shares many important
properties with the standard definition of differential privacy,
while additionally allowing tighter analysis of composite hetero-
geneous mechanisms.

I. INTRODUCTION

Differential privacy, introduced by Dwork et al. [1], has
been embraced by multiple research communities as a com-
monly accepted notion of privacy for algorithms on statistical
databases. As applications of differential privacy begin to
emerge, practical concerns of tracking and communicating
privacy guarantees are coming to the fore.

Informally, differential privacy bounds a shift in the output
distribution of a randomized algorithm that can be induced
by a small change in its input. The standard definition of e-
differential privacy puts a multiplicative upper bound on the
worst-case change in the distribution’s density.

Several relaxations of differential privacy explored other
measures of closeness between two distributions. The most
common such relaxation, the (e,d) definition, has been a
method of choice for expressing privacy guarantees of a
variety of differentially private algorithms, especially those
that rely on the Gaussian additive noise mechanism or whose
analysis follows from composition theorems. The additive o
parameter allows suppressing the long tails of the mechanism’s
distribution where pure e-differential privacy guarantees may
not hold.

Compared to the standard definition, (e, §)-differential pri-
vacy offers asymptotically smaller cumulative loss under
composition and allows greater flexibility in the selection of
privacy-preserving mechanisms.

Despite its notable advantages and numerous applications,
the definition of (e, §)-differential privacy is an imperfect fit for
its two most common use cases: the Gaussian mechanism and
a composition rule. We briefly sketch them here and elaborate
on these points in the next section.

The first application of (e, d)-differential privacy was the
analysis of the Gaussian noise mechanism [2]. In contrast
with the Laplace mechanism, whose privacy guarantee is
characterized tightly and accurately by e-differential privacy,
a single Gaussian mechanism satisfies a curve of (e(d),9)-
differential privacy definitions. Picking any one point on this
curve leaves out important information about the mechanism’s
actual behavior.

The second common use of (e, §)-differential privacy is
due to applications of advanced composition theorems. The
central feature of e-differential privacy is that it is closed
under composition; moreover, the € parameters of composed
mechanisms simply add up, which motivates the concept of a
privacy budget. By relaxing the guarantee to (e, §)-differential
privacy, advanced composition allows tighter analyses for
compositions of (pure) differentially private mechanisms. Iter-
ating this process, however, quickly leads to a combinatorial
explosion of parameters, as each application of an advanced
composition theorem leads to a wide selection of possibilities
for (e(4),d)-differentially private guarantees.

In part to address the shortcomings of (e, d)-differential
privacy, several recent works, surveyed in the next section,
explored the use of higher-order moments as a way of bound-
ing the tails of the privacy loss variable.

Inspired by these theoretical results and their applications,
we propose Rényi differential privacy as a natural relaxation
of differential privacy that is well-suited for expressing guar-
antees of privacy-preserving algorithms and for composition
of heterogeneous mechanisms. Compared to (e, §)-differential
privacy, Rényi differential privacy is a strictly stronger privacy
definition. It offers an operationally convenient and quan-
titatively accurate way of tracking cumulative privacy loss
throughout execution of a standalone differentially private
mechanism and across many such mechanisms. Most sig-
nificantly, Rényi differential privacy allows combining the
intuitive and appealing concept of a privacy budget with
application of advanced composition theorems.

The paper presents a self-contained exposition of the new
definition, unifying current literature and demonstrating its
applications. The organization of the paper is as follows. Sec-
tion [IT reviews the standard definition of differential privacy,
its (¢, ) relaxation and its most common uses. Section|III in-
troduces the definition of Rényi differential privacy and proves
its basic properties that parallel those of e-differential privacy,
summarizing the results in Table[Il Section|IV|demonstrates a
reduction from Rényi differential privacy to (e, §)-differential
privacy, followed by a proof of an advanced composition
theorem in Section [V. Section [VI| applies Rényi differential
privacy to analysis of several basic mechanisms: randomized
response for predicates, Laplace and Gaussian (see Table/II for
a brief summary). Section VII discusses assessment of risk due
to application of a Rényi differentially private mechanism and
use of Rényi differential privacy as a privacy loss tracking
tool. Section |[VIII concludes with open questions.
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Technical Privacy Metrics: A Systematic Survey

ISABEL WAGNER, De Montfort University
DAVID ECKHOFF, TUMCREATE Ltd.

The goal of privacy metrics is to measure the degree of privacy enjoyed by users in a system and the amount of
protection offered by privacy-enhancing technologies. In this way, privacy metrics contribute to improving
user privacy in the digital world. The diversity and complexity of privacy metrics in the literature make
an informed choice of metrics challenging. As a result, instead of using existing metrics, new metrics are
proposed frequently, and privacy studies are often incomparable. In this survey, we alleviate these problems
by structuring the landscape of privacy metrics. To this end, we explain and discuss a selection of over 80
privacy metrics and introduce categorizations based on the aspect of privacy they measure, their required
inputs, and the type of data that needs protection. In addition, we present a method on how to choose privacy
metrics based on nine questions that help identify the right privacy metrics for a given scenario, and highlight
topics where additional work on privacy metrics is needed. Our survey spans multiple privacy domains and
can be understood as a general framework for privacy measurement.

CCS Concepts: » General and reference — Metrics; « Security and privacy — Pseudonymity,
anonymity and untraceability; Privacy protections; Privacy-preserving protocols; Social network secu-
rity and privacy; Usability in security and privacy; « Networks — Network privacy and anonymity; « Theory
of computation — Theory of database privacy and security;

Additional Key Words and Phrases: Privacy metrics, measuring privacy
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Isabel Wagner and David Eckhoff. 2018. Technical Privacy Metrics: A Systematic Survey. ACM Comput. Surv.
51, 3, Article 57 (June 2018), 38 pages.

https://doi.org/10.1145/3168389

1 INTRODUCTION

Privacy is a fundamental human right codified in the United Nations Universal Declaration of
Human Rights, which states that “no one shall be subjected to arbitrary interference with his
privacy, family, home or correspondence” [126, Art. 12]. However, it is difficult to define what
exactly privacy is. As early as 1967, Westin [134] defined privacy as “the ability of an individual to
control the terms under which personal information is acquired and used.” Personal information,
according to the EU General Data Protection Regulation (and the OECD privacy framework [101]),
is “any information relating to an [...] identifiable natural person” [45].
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An Overview of Information-Theoretic Security and
Privacy: Metrics, Limits and Applications

Matthieu Bloch ', Senior Member, IEEE, Onur Giinlii ~, Member, IEEE, Aylin Yener , Fellow, IEEE,

Frédérique Oggier , H. Vincent Poor , Life Fellow, IEEE, Lalitha Sankar ~, Senior Member, IEEE, and
Rafael F. Schaefer ', Senior Member, IEEE

Abstract—This tutorial reviews fundamental contributions to
information security. An integrative viewpoint is taken that
explains the security metrics, including secrecy, privacy, and oth-
ers, the methodology of information-theoretic approaches, along
with the arising system design principles, as well as techniques
that enable the information-theoretic designs to be applied in
real communication and computing systems. The tutorial, while
summarizing these contributions, argues for the simultaneous
pivotal role of fundamental limits and coding techniques for
secure communication system design.

Index Terms—Information-theoretic security, privacy, wiretap
channel, secret key agreement, coding, physical-layer security,
security and privacy metrics, adversarial models.

I. INTRODUCTION

NFORMATION security, a broad umbrella term that
I includes attributes including secrecy, privacy, and trust, has
arguably become as important as information reliability in
system design, especially so, as society at large conducts most
operations virtually and as future generations of applications
and devices emerge that amalgamates communication, sens-
ing, computing, and control. In current systems, information

Manuscript received February 12, 2021; revised February 23, 2021;
accepted February 24, 2021. Date of current version March 16, 2021. This
work was supported in part by the U.S. National Science Foundation under
Grant CCF-1749665, Grant CCF-2105872, Grant CCF-1955401, Grant CIF-
1901243, Grant CIF-1815361, Grant CCF-1908308, and Grant CIF-2007688;
and in part by the German Federal Ministry of Education and Research
(BMBF) under Grant 16KIS1004 and Grant 16KIS1242. (Corresponding
author: H. Vincent Poor.)

Matthieu Bloch is with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail:
matthieu.bloch@ece.gatech.edu).

Onur Giinli is with the Information Theory and Applications Chair,
Technische Universitit Berlin, 10623 Berlin, Germany (e-mail: guenlue@tu-
berlin.de).

Aylin Yener is with the Department of Electrical and Computer
Engineering, The Ohio State University, Columbus, OH 43210 USA, also
with the Department of Integrated Systems Engineering, The Ohio State
University, Columbus, OH 43210 USA, and also with the Department of
Computer Science and Engineering, The Ohio State University, Columbus,
OH 43210 USA (e-mail: yener@ece.osu.edu).

Frédérique Oggier is with the School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore (e-mail: fred-
erique @ntu.edu.sg).

H. Vincent Poor is with the Department of Electrical and Computer
Engineering, Princeton University, Princeton, NJ 08544 USA (e-mail:
poor @ princeton.edu).

Lalitha Sankar is with the School of Electrical, Computer, and Energy
Engineering, Arizona State University, Tempe, AZ 85281 USA (e-mail:
lalithasankar @asu.edu).

Rafael E Schaefer is with the Lehrstuhl fiir
Nachrichtentechnik/Kryptographie und Sicherheit, Universitit Siegen,
57076 Siegen, Germany (e-mail: rafael.schaefer@uni-siegen.de).

Digital Object Identifier 10.1109/JSAIT.2021.3062755

security is largely treated as an addition to the network opera-
tions rather than a foundational design constraint at the outset.
Consequently, securing information that flows over networked
systems is largely guaranteed by higher network layer protocols.
While this layered approach has had undeniable success,
future and emerging systems exhibit unique characteristics
that challenge this prevalent view of security. The deployment
of 5G, the advent of the IoT, the current and upcoming cyber-
physical autonomous systems, and the envisioned all connected
6G world have all exacerbated the concerns for security and
privacy in communication networks. In the next decade and
beyond, tens of billions of devices are expected to be collect-
ing and transmitting data over networks. The heterogeneity
of these devices in terms of resources and capabilities, e.g.,
battery power, computational power, communication and stor-
age capabilities, renders the approach to date of relying solely
on computational approaches for security, e.g., cryptographic
solutions, difficult. For example, networks with energy and
computational power-limited IoT devices would benefit from
lightweight security mechanisms that do not incur the over-
head of traditional public-key infrastructures. Similarly, the
stringent performance constraints of cyber-physical systems
make increasingly apparent that security cannot be handled
independently of other parameters, such as power consump-
tion and latency, leading to unavoidable application dependent
trade-offs. Cyber-physical systems would then benefit from
bringing security closer to control in order to reduce overhead
and latency in operation. Finally, all future massively con-
nected systems would benefit from security mechanisms built
into their foundation, e.g., to avoid the costly software updates
required when new more powerful attacks emerge as a result of
increasing computing power. Noting information security and
privacy has a much larger domain of interest and impact, this
tutorial focuses on communications as an exemplar to highlight
recent advances in information-theoretic security.
Information-theoretic security [1], [2] aims at providing solu-
tions to the aforementioned challenges, by offering a framework
in which the security of information flows can be measured with
quantitative information-theoretic metrics and enforced using a
combination of signaling and coding mechanisms at the lower
layers of the communication protocols. At its core, information-
theoretic security embraces the observation structures inherent
to communication systems. Specifically, acknowledging that
legitimate users and adversaries obtain distinct signals through
noisy and lossy channels, the asymmetry is harnessed through
signal processing and coding mechanisms to control information

2641-8770 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 02,2021 at 15:10:18 UTC from IEEE Xplore. Restrictions apply.



57:8

Anonymity set size

Asymmetric entropy

Conditional entropy

Conditional privacy

Cross-entropy

Cumulative entropy

Degree of unlinkability

Entropy
Uncertainty

Genomic privacy

Inherent privacy

max-Entropy (Hartley)

min-Entropy

Normalized entropy

Protection level

Quantiles on entropy

Renyi entropy

User-centric privacy

(a,k)-anonymity

(c,t)-isolation

Cluster similarity

Coefficient of determination

(g,m)-anonymity

Historical k-anonymity

k-anonymity

(k,e)-anonymity

Data Similarity

2-diversity

m-invariance

Multirelational k-anonymity

Normalized variance

Stochastic t-closeness

t-closeness

(X,Y)-privacy

Maximum tracking time
Mean time to confusion \ Time
Time until adversary's success J

Adversary's expected estimation error

Expectation of distance error

Health privacy (based on expected estimation error)

Mean squared error

Percentage incorrectly classified

I. Wagner and D. Eckhoff

Amount of leaked information

Conditional mutual information

Conditional privacy loss

Full/partial disclosure

Increase in adversary's belief

Information surprisal

Maximum information leakage

Information Mutual information

Gain/Loss

Normalized mutual information

Pearson's correlation coefficient

Positive information disclosure

Privacy score

Reduction in observable features

Relative entropy

(Relative) Loss of anonymity

System anonymity level

Approximate differential privacy

Computational differential privacy

Cryptographic game/semantic security

BDRR

Privacy Metrics d-x-privacy

by /  Differential privacy
Output Measure / Indistinguishability /" Distributed differential privacy

\_ Distributional privacy

\_ Geo-indistinguishability

\ Information privacy

\ Joint differential privacy

Observational equivalence

Adversary's success rate

(d,y)-privac

Adversary's Degrees of anonymity
Success s
ol -presence
Probability 2
Hiding property
‘k Privacy breach level
Accuracy of obfuscated region
Confidence interval width
. Coverage of sensitive region
Accuracy/Precision

Size of uncertainty region

Statistically strong event unobservability

(t,8) privacy violation

Fig. 1. Taxonomy of privacy metrics, classified by output.



Many More Security
and Privacy Settings

e | ocation Data (correlation In
space

 [emporal Data (correlation in
time

2011 IEEE Symposium on Security and Privacy

Quantifying Location Privacy
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Abstract—It is a well-known fact that the progress of
personal communication devices leads to serious concerns
about privacy in general, and location privacy in particular.
As a response to these issues, a number of Location-Privacy
Protection Mechanisms (LPPMs) have been proposed during
the last decade. However, their assessment and comparison
remains problematic because of the absence of a systematic
method to quantify them. In particular, the assumptions about
the attacker’s model tend to be incomplete, with the risk of a
possibly wrong estimation of the users’ location privacy.

In this paper, we address these issues by providing a
formal framework for the analysis of LPPMs; it captures,
in particular, the prior information that might be available
to the attacker, and various attacks that he can perform.
The privacy of users and the success of the adversary in his
location-inference attacks are two sides of the same coin. We
revise location privacy by giving a simple, yet comprehensive,
model to formulate all types of location-information disclosure
attacks. Thus, by formalizing the adversary’s performance,
we propose and justify the right metric to quantify location
privacy. We clarify the difference between three aspects of the
adversary’s inference attacks, namely their accuracy, certainty,
and correctness. We show that correctness determines the
privacy of users. In other words, the expected estimation error
of the adversary is the metric of users’ location privacy. We
rely on well-established statistical methods to formalize and
implement the attacks in a tool: the Location-Privacy Meter that
measures the location privacy of mobile users, given various
LPPMs. In addition to evaluating some example LPPMs, by
using our tool, we assess the appropriateness of some popular
metrics for location privacy: entropy and k-anonymity. The
results show a lack of satisfactory correlation between these
two metrics and the success of the adversary in inferring the
users’ actual locations.

Keywords-Location Privacy; Evaluation Framework; Loca-
tion Traces; Quantifying Metric; Location-Privacy Meter

I. INTRODUCTION

Most people are now equipped with smart phones with
many sophisticated sensors and actuators closely related to
their activities. Each of these devices is usually equipped
with high-precision localization capabilities, based for ex-
ample on a GPS receiver or on triangulation with nearby
base stations or access points. In addition, the environment
is more and more populated by sensors and smart devices,
with which smart phones interact.

The usage of these personal communication devices,
although providing convenience to their owners, leaves an
almost indelible digital trace of their whereabouts. A trace
is not only a set of positions on a map. The contextual

1081-6011/11 $26.00 © 2011 IEEE
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information attached to a trace tells much about the in-
dividuals’ habits, interests, activities, and relationships. It
can also reveal their personal or corporate secrets. It can
expose the users to unwanted advertisement and location-
based spams/scams, cause social reputation or economic
damage, and make them victims of blackmail or even physi-
cal violence. Additionally, information disclosure breaks the
balance of power between the informed entity and the entity
about which this information is disclosed.

In the meantime, the tools required to analyze such
traces have made tremendous progress: sophisticated data
mining algorithms can leverage on fast growing storage and
processing power, facilitating, for example, the analysis of
multiple databases in parallel. This means that the negative
side-effects of insufficient location privacy are becoming
more and more threatening.

Users should have the right to control the amount of
information (about themselves) that is disclosed and shared
with others. This can be achieved in several ways. Users
can share a minimum amount of information, or share it only
with few trusted entities. Privacy policies can be put in place
to force organizations to protect their users’ privacy. Finally,
systems can be designed in a privacy-conscious manner, so
they do not leak information to untrusted entities.

This paper refers to the last ambition. However, our goal
here is not to design yet another location privacy protection
mechanism (LPPM), but rather to try to make progress on
the quantification of the performance of an LPPM. This is
an important topic, because (1) human beings are notoriously
bad estimators of risks (including privacy risks), (ii) it is the
only way to make meaningful comparisons between different
LPPMs and (iii) the research literature is not yet mature
enough on the topic.

Let us develop this last reason. In specific areas, sev-
eral contributions have been made to quantify privacy,
be it for databases [8], for anonymity protocols [3], for
anonymization networks [24], or for RFID privacy [25].
Yet, in the field of location privacy, notwithstanding many
contributions from different disciplines (such as databases,
mobile networks, and ubiquitous computing) for protecting
location privacy, the lack of a unified and generic formal
framework for specifying protection mechanisms and also
for evaluating location privacy is evident. This has led to the
divergence of (nevertheless interesting) contributions and,
hence, has caused confusion about which mechanisms are
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