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1. Characterization of Shannon’s measure of entropy

Let ® = (p1, ps, + -+, ps) be a finite discrete probability distribution, that
is, suppose px = 0k =1,2,---,n) and X %-1p: = 1. The amount of un-
certainty of the distribution @, that is, the amount of uncertainty concerning
the outcome of an experiment, the possible results of which have the probabili-
ties p1, Ps, *** , Pu, is called the entropy of the distribution ® and is usually
measured by the quantity H[®] = H(py, pe, - - - , Pa), introduced by Shannon [1]
and defined by

n 1
(L.1) H(py, ps, -+, ) = 2 Diloge —
k=1 y

Different sets of postulates have been given, which characterize the quantity
(1.1). The simplest such set of postulates is that given by Fadeev [2] (see also
Feinstein [3]). Fadeev’s postulates are as follows.

(a) H(pyy P2y «** , Pn) 18 @ symmelric function of its variables forn = 2,3, -+ .

(b) H(p, 1 — p) s a continuous function of p for 0 < p < 1.

(¢) HQ1/2,1/2) = 1.

(d) H[tply (1 - t)ply P2y - 7p"] = H(ph P2 vy pn) + le(ta 1 - t)
for any distribution ® = (p1, ps, -+ , px) and for 0 =t < 1.

The proof that the postulates (a), (b), (¢), and (d) characterize the quantity
(1.1) uniquely is easy except for the following lemma, whose proofs up to now
are rather intricate.

LemMA. Let f(n) be an additive number-theoretical function, that is, let f(n) be
defined forn = 1,2, - - - and suppose

' (1.2) f(nm) = f(n) + f(m), nom=1,2 ---.
Let us suppose further that
(1.3) Tim_ [f(n + 1) — )] = 0.
Then we have
(1.4) f(n) = clogmn,

where ¢ is a constant.
547
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This lemma was first proved by Erdés [4]. In fact Erdos proved somewhat
more, namely he supposed, as is usual in number theory, the validity of (1.2) only
for n and m being relatively prime. Later the lemma was rediscovered by Fadeev.
The proofs of both Erdés and Fadeev are rather complicated. In this section we
give a new proof of the lemma, which is much simpler.

Proor. Let N > 1 be an arbitrary integer and let us put

(1.5) g(n) = f(n) —%, n=12:-
1t follows evidently from (1.2) and (1.3) that

(1.6) g(nm) = g(n) 4+ g(m), n,m=1,2 -
and that

(L.7) lim [g(n + 1) = ()] = 0.

We have further

(1.8) g(N) = 0.

Let us now put G(—1) = 0 and

(1.9) G(k) = nglaéxmﬂ lg(n)], k=0,1,---,
and further,

(1.10) o = nglaéxm“ lg(n + 1) — g(n)|, k=01, --

Clearly we have

(1.11) lim & = 0.
k—+

Now we shall prove that
(1.12) lim £ _ g

n—+4 o lOg n

Since for N* < n < N¥1 we have |g(n)|/logn < G(k)/klog N, in order to
prove (1.12) it is clearly sufficient to prove that
(1.13) lim Glk) _ 0.

k—+ k

Now let n be an arbitrary integer and let £ be defined by the inequalities
N £ n < N¥1, Let us put n’ = N[n/N] where [z] denotes the integral part
of z; thus n’ is the greatest multiple of N not exceeding n. Then we have evidently
0 =n —n' <N and thus

114 o) S lg)] + T, 19@+ 1) = O] = o) + Now

By (1.6) and (1.8) we have
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(1.15) o) = ([%])+ o = o ([%])

and hence the inequalities N*-! < [n/N] < N¥, together with (1.14), imply that

(1.16) Gk) = Gk — 1) + N&, : k=01, ---.
Adding the inequalities (1.16) for k = 0, 1, - - - , m, it follows that
i o) ¢y (bt t ),

m m

Taking (1.11) into account, we obtain (1.13) and so (1.12). But clearly (1.12)
implies

. fm) _ f(N)
(1.18) nBI-}I-lao logn ~ log N
As N was an arbitrary integer greater than 1 and the left side of (1.18) does not

depend on N, it follows that, denoting by ¢ the value of the limit on the left side
of (1.18), we have

(1.19) f(N) = clog N, N=23- -
By (1.2) we have evidently f(1) = 0. Thus the lemma, is proved.

With a slight modification the above proof applies also in the case when the
validity of (1.2) is supposed only for relatively prime m and n. A previous version
of the above proof has been given by the author in [5]. The version given above
is somewhat simpler than in [5].

Let us add some remarks on the set of postulates (a) to (d). Let us denote

® = (P, P2 "+, Pm) and Q = (g, @2, * * -, ¢») aS two probability distributions.
Let us denote by @ * @ the direct product of the distributions ® and @, that is,

the distribution consisting of the numbers p;qx with j = 1,2, -+, m; k = 1, 2,
-+ +, n. Then we have from (1.1)
(1.20) H[e * @] = H[®] + HI[g],

which expresses one of the most important properties of entropy, namely, its
additivity: the entropy of a combined experiment consisting of the performance
of two independent experiments is equal to the sum of the entropies of these
two experiments. It is easy to see that one cannot replace the postulate (d) by
(1.20) because (1.20) is much weaker. As a matter of fact there are many quan-
tities other than (1.1) which satisfy the postulates (a), (b), (¢), and (1.20). For
instance, all the quantities

(1.21) Ho(ps, P2 =+ 5 Pn) = T alogz(Z p‘i'c),

k=1
where o > 0 and a # 1 have these properties. The quantity Hu.(p1, P2, - , Pr)
defined by (1.21) can also be regarded as a measure of the entropy of the dis-
tribution ® = (py, - -+, P»). In what follows we shall call

Hu(pla D2y * - )pn) = Ha[(P]
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the entropy of order a of the distribution ®. We shall deal with these quantitics
in the next sections. Here we mention only that, as is easily seen,

. n 1
(1.22) lim Ha(py, po, - -+, Pa) = 2 Prloge—
a—1 k=1 Dk

Thus Shannon’s measure of entropy is the limiting case for @« — 1 of the measure
of entropy H,[®]. In view of (1.22) we shall denote in what follows Shannon’s
measure of entropy (1.1) by Hi(py, - - -, p») and call it the measure of entropy
of order 1 of the distribution. Thus we put

n 1
(1.23) H][(P] = Ill(p].) pﬂ; Tty pn) = kgl pk 10g2 E{l

There are besides the quantities (1.22) still others which satisfy the postulates
(a), (b), (c), and (1.20). For instance, applying a linear operation on H,[®] as a
function of a we get again such a quantity. In the next section we shall show
what additional postulate is needed besides (a), (b), (¢), and (1.20) to charac-
terize the entropy of order 1. We shall see that in order to get such a character-
ization of Shannon’s entropy, it is advantageous to extend the notion of a
probability distribution, and define entropy for these generalized distributions.

2. Characterization of Shannon’s measure of entropy of generalized
probability distributions

The characterization of measures of entropy (and information) becomes much
simpler if we consider these quantities as defined on the set of generalized prob-
ability distributions. Let [©2, B, P] be a probability space, that is, @ an arbitrary
nonempty set, called the set of elementary events; ® a s-algebra of subsets of Q,
containing © itself, the elements of ® being called events; and P a probability
measure, that is, a nonnegative and additive set function for which P(Q) = 1,
defined on ®. Let us call a function ¢ = £(w) which is defined for w & 2, where
2, € ® and P(2) > 0, and which is measurable with respect to ®, a generalized
random variable. If P(Q;) = 1 we call £ an ordinary (or complete) random variable,
while if 0 < P(®) < 1 we call ¢ an incomplete random variable. Clearly, an in-
complete random variable can be interpreted as a quantity describing the result
of an experiment depending on chance which is not always observable, only with
probability P(Q;) < 1. The distribution of a generalized random variable will
be called a generalized probability distribution. In particular, in the case
when ¢ takes on only a finite number of different values z;, s, - - - , Z, the dis-
tribution of £ consists of the set of numbers px = P{¢ = «} fork = 1,2, ---  n.
Thus a finite discrete generalized probability distribution is simply a sequence
P1, P2, -+ , P Of nonnegative numbers such that putting ® = (py, 2, - -+, Pn)
and

(2.1) W(e) = ké Dy
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we have
(2.2) 0< W@ =1

We shall call W(®) the weight of the distribution. Thus the weight of an ordinary
distribution is equal to 1. A distribution which has a weight less than 1 will be
called an incomplete distribution.

Let A denote the set of all finite discrete generalized probability distributions,

that is, A is the set of all sequences ® = (py, ps, -+ + , p») of nonnegative num-
bers such that 0 < > %-1pr < 1. We shall characterize the entropy H[®] (of
order 1) of a generalized probability distribution ® = (py, - -+, p,) by the fol-

lowing five postulates.

PosturLATE 1. H[®) 7s a symmetric function of the elements of @.

PosturATE 2. If {p} denotes the generalized probability distribution consist-
ing of the single probability p then H[{p}] is a continuous function of p in the
interval 0 < p < 1. Note that the continuity of H[{p}] is supposed only for
p > 0, but not for p = 0.

PosturaTe 3. H[{1/2}] = 1.

PosTuLATE 4. For ® € A and @ € A we have H[® x Q] = H[®] + H[Q].

Before stating our last postulate we introduce some notation. If we denote
® = (p,p2, -, Pm) and Q = (q1, g2, - -, ¢») a8 two generalized distributions
such that W(®) + W(Q) < 1, we put

(23) G)UQ = (ply P2y Pmy Q1y Qe 0 7qn)'
If W(®) + W(Q) > 1 then ® U @ is not defined. Now we can state our last
postulate.

PosTuLATE 5. If ® € A, Q € A, and W(®) + W(Q) = 1, we have

w(e)H[e] + W(QH[Q],
w(®) + W(Q

Postulate 5 may be called the mean-value property of entropy; the entropy of
the union of two incomplete distributions is the weighted mean value of the
entropies of the two distributions, where the entropy of each component is
weighted with its own weight. One of the advantages of defining the entropy for
generalized distributions, and not merely for ordinary (complete) distributions,
is that this mean-value property is much simpler in the general case.

We now prove

TaeorEM 1. If H[®] is defined for all ® € A and satisfies the postulates
1, 2, 3, 4, and 5, then H[®] = H,[®], where

(2.4) He U Q] =

Z 1
1 —
(25) Hl[(p] — ]El—pko_g?&

2, P
k=1
Proor. The proof is very simple. Let us put
(2.6) h(p) = H[{p}], 0<p=s1l,
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where {p} again denotes the generalized distribution consisting of the single
probability p. We have by postulate 4

(2.7) h(pg) = h(p) + h(q) for 0<p=1; 0<gsLl

By postulate 2, h(p) is continuous for 0 < p < 1 and by postulate 3 we have
h(1/2) = 1. Thus it follows that

2.8) | h(p) = H{{p}] = log, ;

Now it follows from postulate 5 by induction that if ®,, ®, - -+, @, are incom-
plete distributions such that > -, w(®:) = 1, then

2.9 H[EU®U - U e

_ w(@)H[®.] + w(@)H[®:] + - - + w(®n)H[®W],
w(®;) + w(®) + -+ + w(®n)

As any generalized distribution ® = (pi, ps, - - , P») can be written in the form

(210) ¢ = {pl} U {p2} U e U {pn}a

the assertion of theorem 1 follows from (2.9) and (2.10).

An advantage of the above introduction of the notion of entropy is that the
term log: (1/px) in Shannon’s formula is interpreted as the entropy of the gen-
eralized distribution consisting of the single probability p: and thus it becomes
evident that (1.1) is really a mean value. This point of view was emphasized
previously by some authors, especially by G. A. Barnard [6].

The question arises of what other quantity is obtained if we replace in postu-
late 5 the arithmetic mean by some other mean value. The general form of a
mean value of the numbers z;, s, - - - , z, taken with the weights wy, ws, < -+ , W,

where w, > 0 and Y -1 wr = 1, is usually written in the form (for example,
see [7])

(2.11) g! [éll wig(Tx) ],

where y = g(z) is an arbitrary strictly monotonic and continuous function and
z = g~'(y) denotes the inverse function of y = g(z). The function g(z) is called
the Kolmogorov-Nagumo function corresponding to the mean value (2.10). Thus
we are led to replace postulate 5 by '

PosTULATE 5'. There exists a sirictly monotonic and continuous function
y = g(x) such that if ® € A, @ € A, and w(®) + w(Q) = 1, we have

I o

It is an open question which choices of the function g(z) are admissible, that is,
are such that postulate 5’ is compatible with 4. Clearly, if g(x) = ax + b with
a # 0, then postulate 5’ reduces to 5. Another choice of g(z) which is admissible
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is to choose g(z) to be an exponential function. If g(x) = g.(x) where a > 0,
a # 1, and

(2.13) galx) = 202,

then postulates 1, 2, 3, 4, and 5’ characterize the entropy of order a. In other
words the following theorem is valid.

TueorEM 2. If H[®] s defined for all ® & A and satisfies postulates 1, 2, 3, 4,
and 5’ with g(x) = ga(x), where g.(x) is defined by (2.13), a > 0, and « #= 1, then
H[®] = H,[®], where, putting ® = (p1, P2, - ** , Pn), We have

=

O H[0] = 11a10g2 % j

The quantity (2.14) will be called the entropy of order a of the generalized dis-
tribution ®. Clearly if @ is an ordinary distribution, (2.14) reduces to (1.21). It
is also easily seen that

(2.15) lin} H,[®] = Hq[®],

where H,[®] is defined by (2.5).

The fact that H,[®] is characterized by the same properties as H;[®], with
only the difference that instead of the arithmetic mean value in postulate 5 we
have an exponential mean value in 5, and the fact that H,[®] is a limiting case
of H,[®] for a — 1, both indicate that it is appropriate to consider H,[®] also
as a measure of entropy of the distribution ®. In the next section we shall show
that if we formulate the problem in a more general form, the only admissible
choices of the function g(x) are those considered above. That is, that g(z) has
to be either a linear or an exponential function.

3. Characterization of the amount of information I(Q|®)

The entropy of a probability distribution can be interpreted not only as a
measure of uncertainty but also as a measure of information. As a matter of
fact, the amount of information which we get when we observe the result of an
experiment (depending on chance) can be taken numerically equal to the amount
of uncertainty concerning the outcome of the experiment before carrying it out.

There are however also other amounts of information which are often con-
sidered. For instance we may ask what is the amount of information concerning
a random variable £ obtained from observing an event E, which is in some way
connected with the random variable ¢. If ® denotes the original (unconditional)
distribution of the random variable ¢ and @ the conditional distribution of 3
under the condition that the event E has taken place, we shall denote a measure
of the amount of information concerning the random variable £ contained in the
observation of the event E by I(§|®). Clearly @ is always absolutely continuous
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with respect to @; thus the quantity I(Q|®) will be defined only if § is absolutely
continuous with respect to ®. Denoting by h = dQ/d® the Radon-Nikodym
derivative of @ with respect to @, a possible measure of the amount of informa-
tion in question is

(3.1) L(g|®) = fn log: h dg = L h log: h d®.
In the case when the random variable ¢ takes on only a finite number of dif-
ferent values z,, 23, -+ - , , and we put P{{ = z:} = px and P{ = 2|E} = &

fork =1,2, -, n, then (3.1) reduces to
(3.2) L©Q|®) = X gxlog. 2,
k=1 DPi

It should however be added that other interpretations of the quantity (3.1) or
of (3.2) have also been given (see Kullback [8], where further literature is also
indicated). Notice that the quantity (3.2) is defined for two finite discrete prob-
ability distributions ® = (py, -+, p,) and @ = (qu, * - -, ¢») only if px > 0 for
k=12 ---,n (among the ¢, there may be zeros) and if there is given a one-
to-one correspondence between the elements of the distribution @ and €, which
must therefore consist of an equal number of terms. It follows easily from
Jensen’s inequality (see, for example, [7]) that the quantities (3.1) or (3.2) are
always nonnegative, and they are equal to 0 if and only if the distributions ®
and @ are identical.

While many systems of postulates have been given to characterize the entropy,
it seems that a similar characterization of the quantity (3.2) has not been at-
tempted. In this section we shall characterize the quantity (3.2) by certain
intuitively evident postulates. At the same time we shall consider also other
possible measures of the amount of information in question. It turns out that
the only alternative quantities are the quantities

1 2 Q%
1 log, <k§1 pi”l),

o —

3.3) L(Qe) =

where a 7 1. Evidently we have
(3.4) lim L(Qle) = 1(Q]®).

We shall call the quantity (3.3) the information of order « contained in the
observation of the event E with respect to the random variable ¢ or, for the
sake of brevity, the information of order a obtained if the distribution ® is replaced
by the distribution §. We shall give a system of postulates, analogous to the
postulates for entropy considered in section 2, which characterize the quantities
I.(9|®), including the case a = 1.

As in the case of entropy, it is advantageous to consider the quantity I(Q|®)
for generalized probability distributions, not only for complete distributions.
We suppose that, associated with any generalized probability distribution
® = (p1, P2, *** , Pn) such that p > O0fork = 1,2, --- | n, and any generalized
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probability distribution @ = (qi, o, - - - , ¢») Whose terms are given in a one-to-
one correspondence with those of ® (as determined by their indices), there cor-
responds a real number I(Q|®) which satisfies the following postulates.
PosTULATE 6. I(Q|®) s unchanged if the elements of ® and Q are rearranged
in the same way so that the one-to-one correspondence between them is not changed.

PosTULATE 7. If ® = (P, P2, -+ , Pn) and Q = (¢1, G2, *** , Gn), aNd Pr < G
fork =1,2,--- n then I(Q®) = 0; while if pr = qx for k = 1,2, --- , n then
I(gl®) = 0.

PosturaTe 8. I({1}|{1/2}) = 1.

PosTuLATE 9. If I(©1|®)) and I(Q.|®:) are defined, and if ® = ®, * ®; and
Q = Q. *x Q: and the correspondence between the elements of ® and Q is that induced
by the correspondence between the elements of ®, and Q1, and those of ®, and Q;, then

(3.5) I(QI(P) = I(Ql!(Pl) + I(Q2|@2)-

PostuLaTE 10. There exists a continuous and strictly increasing function
y = g(x) defined for all real x, such that denoting by x = g~'(y) its inverse function,
if I(Q|®1) and I(Qz|®2) are defined, and 0 < w(®) + w(®;) £ 1and 0 < w(Q) +
w(Qz) < 1, and the correspondence between the elements of @1 U @2 and @ U Q; s
that induced by the correspondence between the elements of @, and Q, and those of
®: and Q,, then we have

_ w(Q0I[T(Q|®)] + w(Q)g(1(QI®)]) |
B6) IQUQeUe) =gt w(Q) + w(Q2) }

Let us mention that if §(z) = ag(xz) + b where a 5 0, then the right side of
(3.6) remains unchanged if we replace g(x) by §(x). Thus if postulate 10 holds
with g(z) it holds also for §(x) instead of g(x). We now prove

THEOREM 3. Suppose that the quantity I(Q|®) satisfies the postulates 6, 7, 8, 9,
and 10. Then the function g(x) in 10 is necessarily either a linear or an exponential
Junction. In the first case I(Q|®) = I,(Q|®), where

Z Qx logz L

(3.7) Lgle) = &=—B,
) 2 o
k=1
while in the second case I1(Q|®) = I,(Q|®) with some o 5 1, where
(3.8) L(@Ql®) = log: = — .
a—1 n
kgl qk

ReMark. If @ and @ are complete distributions then clearly the formulas
(3.7) and (3.8) reduce respectively to the formulas (3.2) and (3.3).
Proor. Let us put

(3.9) fa, ») = I({a}l{p}), 0<p=1l 0<g¢g=s1l
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1t follows from postulate 9 that

(3.10) (0, 1p2) = f(@r, Pr) + (g2 2o).
Putting ¢; = ¢» = 1 in (3.10), we get

(3.11) JF(1, pip2) = f(1, p1) + f(1, p2),
while for ¢; = p2. = 1, p1 = p, ¢2 = ¢ we get from (3.10)
(3.12) fa,p) =171, p) +flg, 1.

On the other hand, it follows from postulate 7 that I(®|®) = 0 for any @, and
thus

(3.13) f4,p) +7(p, 1) =0.
Hence we obtain from (3.12)
(3.14) flg,p) =14, p) - 11, 9.

Now, according to postulate 7, it follows from (3.14) that f(1, p) is a decreasing
function of p, and by taking postulate 8 into account it follows from (3.11) that

(3.15) f(1,p) = logs
Thus from (3.14) we obtain
(3.16)  f(g, p) = I({g}[{p}) = log: %’ 0<p=s1l O0<g¢g=1l

Using now postulate 10, considering the decompositions ® = {p1} U {p2} U - --
U {p.} and @ = {¢:} U {2} U -+ U {g=} and applying induction we obtain

2 Qg (logz ﬂ‘)
k=1 Dx .

n
2 Gk
k=1

(3.17) IQe) =g

Now let us consider what possible choices of the function g(x) are compatible
with postulate 9. It follows from postulate 9 that for any A =2 0 and u» = 0
we have

(3.18) 1@+ (Mo * {e)) = 1Ql®) + u — \.

Thus, putting 4 — N = y, we see that for an arbitrary real y we have

Y g (logz g y) Y qig (logz ﬁ)
(3.19) g1l D =gl Py,
2 G 2
k=1 k=1
Now if wy, wy, - - - , w, is any sequence of positive numbers such that 3 -1 w; = 1
and zy, s, - - , T, i any sequence of real numbers, we may choose the gen-

eralized distributions ® and @ in such a way that
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(3.20) —n(lk—- = w, and long = Iy, k=12 .- , M.
k
2 G
k=1
As a matter of fact, we can choose ¢ = pwrand px = pwi2~*fork =1,2, --- , n,

where p > 0 is so small that > 2-1p: <1 and X i-1¢x < 1. Thus we obtain
from (3.19) the result that for any such sequences wi and x; and for any real y
we have

(3:21) g [k; weg(ze + y)] =g [El wkg(xk)] +y.
Now (3.21) can be expressed in the following form. If

(3.22) 9,(2) = g9(z +v),

then we have (

(323 o | £ waa) | =0t [ £ wgan |

That is, the functions g(z) and g,(z) generate the same mean value. According
to a theorem of the theory of mean values (see theorem 83 in [7]) this is possible
only if g,(x) is a linear function of g(z), that is, if there exist constants a(y) == 0
and b(y) such that

(3.24) 9.(x) = g(z + y) = a(y)g(z) + b(y).

Without restricting the generality we may suppose ¢g(0) = 0. Thus we obtain
b(y) = g(y), that is,

(3.25) gz + y) = a(y)g() + 9(y)-

But (3.25) is true for any z and y. Thus we may interchange the roles of  and y
and we get

(3.26) 9(z +y) = a(@)g@y) + 9(2).
Thus if z > 0 and y ¢ 0 we obtain, comparing (3.25) and (3.26),
a(y) =1 a(x) — 1

3.27 =

(3:27) 9(y) g(x)
It follows from (3.27) that there exists a constant k such that
(3.28) a(z) — 1 = kg(x)

for all real . Now we have to distinguish two cases. If £ = 0 then a(z) = 1 and
thus by (3.25) we obtain for g(x) the functional equation

(3.29) gz +y) = g) + 9

for any real z and y. As g(x) is by supposition monotonic it follows that g(z) = cz
where ¢ # 0 is a constant. In this case we see from (3.17) that I(Q|®) = 1,(Q|®),
where I,(Q|®) is defined by (3.7). In the second case, when k = 0, the substi-
tution of (3.28) into (3.25) yields
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(3.30) a(x + ) = a(x)a(y)

for any real x and y. Now (3.28) shows that a(x) is monotonic and hence it
follows that a(r) is an exponential function, and so it can be written in the form

(3.31) a(r) = ¢2 Vs

where a # 1 and ¢ # 0 are constants. It follows from (3.28) that
(a—1)z

(3.32) g(x) = 6—2—}?——1

Substituting (3.32) into (3.17) we obtain the result that I(Q|®) = I,(9|®), where
I.(g|®) is defined by (3.8). Thus theorem 3 is proved. (The last vt of the proof
is essentially identical with the proof of theorem 84 of [7].)

Notice that our postulates do not demand that I(g|®) shoula ve a continuous
function of the variables pi, ¢x for k = 1,2, - -, n. Instead of continuity we
have postulated a certain sort of monotony by means of postulate 7. This is
the reason why the quantities I.(Q|®) with « < 0 are not excluded by the postu-
lates. However 1,(Q|®) can be considered to be a reasonable measure of informa-
tion only if @ > 0. Thus to exclude the quantities I,(Q|®) with a < 0 we have
to add a postulate of continuity. For instance, we may add

PosturLaTE 11.  lim.40 [(D, €)|(p, p)] = O for some p with 0 < p < 1/2.

Clearly postulates 6 through 11 characterize the quantities I,(Q|®) with a > 0.

It remains to characterize I;(Q|®) instead of all I.(Q|®). Of course this can be
done by replacing postulate 10 by another postulate which demands that
I(@ U @|® U @) be the weighted arithmetic mean of I(Q|®1) and I(Q:|®),
that is, by

PosturaTte 10'.  If I(Q|®1) and 1(Q.|®z) are defined, and w(®;) + w(®:) < 1
and w(Q1) + w(Q:) = 1, and +f the correspondence between the elements of ®, \U @,
and @ U Q. ts that induced by the correspondence between the elements of ®i[P.]
and ©:[Q-], then we have

639 1@ Ueln U e - 000+ 0@I0/0).
The proof of theorem 3 contains the proof of
THEOREM 4. If I(Q|®) satisfies postulates 6, 7, 8, 9, and 10’, then I(Q|®) =
L,(Q|®), where I,(Q|®) s defined by (3.7).
Another way of characterizing I,(Q|®) is to retain postulate 10 but add
PosturaTE 12. If @ = (P, P2, -+, Pw); Q= (g1, ¢ ", qx), and R =

(ry, re, + -+, ) are generalized distributions such that
(334) %:z—:y ]\;=1,2,...’n’

then we have
(3.35) 1(g|®) + I(Q|R) = 0.

It is easy to see that only I(Q|®) = I,(Q|®) satisfies postulates 6, 7, 8, 9, 10,
and 12.
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4. Information-theoretical proof of a limit theorem on Markov chains

The idea of using measures of information to prove limit theorems of prob-
ability theory is due to Linnik [9]. In this section we shall show how this method
works in a very simple case.

Let us consider a stationary Markov chain with a finite number of states.
Let pyrforj, b = 1,2, --. | N denote the transition probability in one step and
p® the transition probability in n steps from state j to state k. We restrict
ourselves to the simplest case when all transition probalilities pj are positive.
In this case, as is well known, we have
(4.1) lim pf = pi, k=12 --- N,

n—-+ o

where the limits p, are all positive and satisfy the equations

AVY
(42> Zl PiPjx = Pk, k= 17 2; R N;
j=
and
N
(4.3) 2 pe = 1.
k=1

Our aim is to give a new proof of (4.1) by the use of the measure of information
1,(9]®). The fact that the system of equations (4.2) and (4.3) has a solution
(p1, po, - -+, Px) consisting of positive numbers can be deduced by a well-known
theorem of matrix theory. In proving (4.1) we shall take it for granted that such
numbers p; exist. Let us put ® = (py, p2, -+, pw) and ®@° = (pi, p¥, -+, pi¥

and consider the amounts of information

N (n)
(4.4) 1(0f|0) = % pif’ logs B2=-
k=1 Pk

According to the definition of transition probabilities, we have

]\T
(4.5) ity = ; PP

!
Now let us introduce the notation

(4.6) Ripu,

T =
Pk

The probabilistic meaning of the numbers ny is clear: =y is the conditional
probability for the chain’s being in state [, under the condition that at the next
step it will be in state &, provided that the initial distribution is the stationary
distribution given by the numbers p;, p2, - - -, py. The conditional probabilities
mue are often called the “backward’” transition probabilities of the Markov
chain. Now we have clearly >Z; 7y =1 for k =1,2,---, N and by (4.5)

N N (m) N (n)
(4.7) I(G"*P|®) = X pw I: > T (&)] 1og2[Z Tok (10_11_)]
k=1 l=1 Y4 =1 D1
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Applying Jensen’s inequality {7] to the convex function x log, z, for each value
of k, we obtain from (4.7)

(n) (n)
(4.8) L(e"+Y]e) < z Dr Z mk%’:—log ”;)‘ -
=1 l 4

Taking into account the fact that

N
(4.9) 2 Dimu = Py,

it follows from (4.8) that

(4.10) L(e"*]®) £ L(e|®).

Thus the sequence I;(®”|®) is decreasing, and as I;(®{”|®) = 0, the limit
(4.11) L = lim I,(®"|®)

n—+w

exists. We shall show now that L = 0 and simultaneously that (4.1) holds. As
the number of states is finite, we can find a sequencen; < n, < -+ <n, < -
of positive integers, such that the limits

(4.12) lim pf = qu, k=12 ---,N,

8—+4»

exist. As Y -1 p® = 1, we have evidently
N
(413) Z qjx = 1.
k=1
Let us put further
N
(414) qj,k = l‘_zi q;1P ik, k= L2, N:

and put for the sake of brevity Q; = (¢, ¢, - , ¢;v) and Q5 = (911, @2, - - - , @in)-
Clearly we have

(4.15) hm L(ef™|@) = I,(9;]|®) =
and
(4.16) lim 7,(6f*"|6) = Li(@)l0) =

Again using Jensen’s inequality, exactly as in proving (4.10), we have

with equality holding in (4.17) only if ¢;)/pi = ¢ forl =1,2, .-, N, where c
is a constant. But by (4.16) it follows that there is equality in (4.17), and thus
we have

(418) q1 = CPy, l = 1, 2, ceey, N.
Notice that here we have made essential use of the supposition that all p;; and
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thus all 7y are positive. In view of (4.3) and (4.13) the constant ¢ in (4.18) is
equal to 1, and therefore @; = @. It follows from (4.15) that

(4.19) L =1L,(®®) = 0.

We have incidentally proved that (4.1) holds, as we have shown that if
for an arbitrary subsequence n, we have (4.12) then necessarily ¢,; = p; for
l=1,2,---,N. But if (4.1) were false, we could find a subsequence n, of
integers such that (4.12) holds with ¢;; # p..

It is clear from the above proof that instead of the quantities (4.4) we could
have used the analogous sums

()
(4.20) = o (B
Pk
where f(x) is any function such that af(x) is strictly convex. Thus for instance
we could have taken f(z) = 2! with @« > 1 or f(z) = —a* ! with 0 < o < 1.

This means that instead of the measure of information of the first order, we
could have used the measure of information of any order @ > 0, and deduce (4.1)
from the fact that lim,— 4. I(®{”|®) = 0.

In proving limit theorems of probability theory by considering measures of
information, it is usually an advantage that one can choose between different
measures. In the above simple case each measure 7,(Q|®) was equally suitable,
but in other cases the quantity I.(Q|®), for example, is more easily dealt with
than the quantity 1,(@/®). The author intends to return to this question, by
giving a simplified version of Linnik’s information-theoretical proof of the cen-
tral limit theorem, in another paper.
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