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13 Tracking

AS mentioned i the previous sectiqn, adaptive filters
and peamformers camn be se'en as devices for estimating
mknown parameters. In this case, however, the param-
eters are constants. If the unknown parameters are time
varying, the problem is one of tracking.

since the estimation of N parameters requires at
least N pieces of data, it is not possible to estimate
more than one arbitrary time-varying parameter from
a single time series. It is therefore conventional to
assume that the parameters evolve in a known man-
ner; for example, 6(n) = F(6(n — 1) | ), where & are
(known) parameters of the function F. Given this model
for the time evolution of the parameter, it is then pos-
sible to formulate a parameter-estimation algorithm.
As with adaptive filtering and beamforming, one can
take a deterministic (i.e., least-squares) approach or a
Bayesian approach. In the former case one ends up with
the well-known Kalman filter, which is optimum for lin-
ear systems and Gaussian noise. In the latter case one
ends up with a more powerful algorithm but with the
computational issues mentioned above.
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IV.36 Information Theory
Sergio Verdui

1 “A Mathematical Theory of Communication”

Rarely does a scientific discipline owe its existence to
a single paper. Authored in 1948 by Claude Shannon
(.1916—2001), “A mathematical theory of communica-
tion” is the Magna Carta of the information age and
information theory’s big bang. Using the tools of prob-
ability theory, it formulates the central optimization
problems in data compression and transmission, and
finds the best achievable performance in terms of the
statistical description of the information sources and
communication channels by way of information mea-
sures such as entropy and mutual information. After
a glimpse at the state of the art as it was in 1948, we
elaborate on the scope of Shannon’s masterpiece in the
rest of this section.

1.1 Communication Theory before the Big Bang

Motivated by the improvement in telegraphy trans-
mission rate that could be achieved by replacing the
Morse code by an optimum code, both Nyquist (1924)
and Hartley (1928) recognized the need for a measure
of information devoid of “psychological factors” and
put forward the logarithm of the number of choices
as a plausible alternative. Kiipfmiiller (1924), Nyquist
(1928), and Kotel'nikov (1933) studied the maximum
telegraph signaling speed sustainable by band-limited
linear systems at a time when Fourier analysis of sig-
nals was already a standard tool in communication
engineering. Inspired by the telegraph“smdlgs, Ha_rt-
ley put forward the notion that the Ca'ipamty of a
system to carry information” is proportional to the
time-bandwidth product, notion further' elaborated
by Gabor (1946). However, those authors fa'ﬂed to grap-
ple with the random nature of both noise and'the
information-carrying signals. At tl}e same time, the idea
of using mathematics to design linear filters for com-
batting additive noise optimglly had beefn put. t'o use
by Kolmogorov (1941) and Wiener (1942) (;11‘ r{lgl)zl;m;m
mean-square error estimal\tion and by North ( ) for
i ulses.
o demaiﬁ?a?fofiiitzms such as FM and PCM in the
(i read spectrum in the 1940s hafi opened
1930s and s'p ibility of using transmission band-
apibe pragtlc?é;’ ;Zi;meter that could be traded off for
i aaes : p
rzsrt:;;cﬂon fidelity and robustness against noise.
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1.2 The Medium

In the title of Shannon’s paper, “communication” refers
to

o communication across space, namely, informa-
tion-transmission systems like radio and televi-
sion broadcasting, telephone wires, coaxial cables,
optical fibers, microwave links, and wireless tele-
phony; and

e communication across time, namely, information-
storage systems, which typically employ magnetic
(tape and disks), optical (CD, DVD, and BD), and
semiconductor (volatile and flash) media.

Although, at some level, all transmission and storage
media involve physical continuously variable analog
quantities, it is useful to model certain media such
as optical disks, computer memory, or the Internet as
digital media that transmit or record digital signals
(zeros/ones or data packets) with a certain reliability
level.

1.3 The Message

The message to be stored or transmitted may be

o analog (such as sensor readings, audio, images,
video, or, in general, any message intended for the
human ear/eye) or

» digital (such as text, software, or data files).

An important difference between analog and digital
messages is that, since noise is unavoidable in both
sensing and transmission, it is impossible to recon-
struct exactly the original analog message from the
recorded or transmitted information. Lossy reproduc-
tion of analog messages is therefore inevitable, Even
when, as is increasingly the case, sensors of analog
signals output quantized information, it is often con-
ceptually advantageous to treat those signals as analog
messages.

1.4 The Coat of Arms

Shannon'’s theory is a paragon of e pluribus unum
Indeed, despite the myriad and diversity of commu:
Flication systems encompassed by information theory
its key ideas and principles are all embracing and are,
applicable to any of them.

Reproduced from Shannon’s paper, figure 1 encom-
passes most cases (see section 9) of communication
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Information y
source  Transmitter Receiver Destination
-] fiv]
: B s
Signal TReceived
signal
Message 8 Message
Noise
source

Figure 1 A schematic of a general communication system
(this is figure 1 in “A mathematical theory of communica-
tion”).

across time or space between one sender and one
destination.

The purpose of the encoder (or transmitter, in fig-
ure 1) is to translate the message into a signal suit
able for the transmission or storage medium. Con-
versely, the decoder (or receiver, in figure 1) convefts
the received signal into an exact or approximate replica
of the original message.

The communication medium that connects the trans-
mitter to the receiver is referred to as the channel.
Several notable examples, classified according t the
various combinations of the nature of message and
medium, are listed below.

Analog message, analog medium. Radio broadcastln.g
and long-distance telephony were the primary apP];
cations of the first analog modulation systems, suc’-
as AM, SSB, and FM, developed in the early twentyle
eth century. With messages intended for the ear(;:n
and the radio frequency spectrum as the m.edi 55;
all current systems for radio and television i fwr
broadcasting are also examples of this cas¢- HOW/e) the,
in most modern systems (such as DAB and HDT
transmitter and receiver perform an intern
mediate conversion to digital, for reasons !
discussed in section 4.

Analog message, digital medium. T
includes the audio compact disc, MP3, D ;ldioﬂ
Voice over Internet Protocol (VoIP). SO “dightd E; that
or “digital video” refers to the medium athe
the message.

Digital message, analog medium. The
ples of optical and electrical systems
mission of digital information were b he Diné
graph systems invented in the first b o
teenth century, while the second half
tury saw the advent of Marconi’s wireles

al inter”
hat ¢

s antjiold
. classifical!
his cla d

earliest ot
for the €
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Figure 2 A data-compression system.

other examples developed prior to 1948 include tele-
(ype, fax, and spread spectrum. The last four decades
of the twentieth century saw the development of
increasingly fast general-purpose modems to trans-
mit bit streams through analog media such as the
voice-band telephone channel and radio frequency
pands. Currently, modems that use optical, DSL, and
CATV media to access the Internet are ubiquitous.
Digital message, digital medium. This classification
includes data storage in an optical disk or flash

memory.

Whether one is dealing with messages, channel
inputs, or channel outputs, Shannon recognized that
itis mathematically advantageous to view continuous-
time analog signals as living in a finite-dimensional vec-
tor space. The simplest example is a real-valued signal
of bandwidth B and (approximate) duration T, which
can be viewed as a point in the Euclidean space of
dimension 2BT. To that end, Shannon gave a particu-
larly crisp version of the sampling theorem, precursors
of which had been described by E. Whittaker (1915),
J. Whittaker (1929), and Kotelnikov (1933), who discov-
ered how to interpolate losslessly the sampled values
of band-limited functions.

Three special cases of figure 1, dealt with in each of
the next three sections, merit particular attention.

2 Lossless Compression

Although communication across time or space is al-
‘Y&ys subject to errors or failures, it is useful to con-
Sider the idealized special case of figure 1 shown in
figure 2, in which there is no channel and the input to
e decoder s g digital sequence equal to the encoder
UPut. This setup, also known as source coding, mod-
o paradigm of compression in which the encoder
 aaithe compressor and the decoder acts as the
S:;Ompress()r' The task of the encoder is t0 remO\if
ﬁre:ndancy from the message, which can be reC;)he
Com &actly or approximately at the decoder from
Pressed data itself. |
LOSSIESS’ or reversible, conversion is possible only if
: message is digital. Morse, Huffman, TIFF, and PDF
amples of Jossless compression Systems where
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Figure 3 A data-transmission system.

Decoder— 001011

message redundancy (unequal likelihoods of the vari-
f)us choices) is exploited to compact the data by assign-
ing shorter binary strings to more likely messages. As
we discuss more precisely in section 6, the goal is to
obtain a compression/decompression algorithm that
generates, on average, the shortest encoded version of
the message.

If the source is stationary, universal data compres-
sors exploit its redundancy without prior knowledge
of its probabilistic law. Found in every computer oper-
ating system (e.g., ZIP), the most widely used universal
data compressors were developed by Lempel and Ziv
between 1976 and 1978.

3 Lossy Compression

Depending on the nature of the message, we can dis-
tinguish two types of lossy compression.

Analog-to-digital. Early examples of analog-to-digital
coding (such as the vocoder and pulse-code modula-
tion (PCM)) were developed in the 1930s. The vocoder
was the precursor to the speech encoders used in cel-
lular telephony and in VoIP, while PCM remains in
widespread use in telephony and in the audio com-
pact disc. The conceptually simplest analog-to-digital
compressor, used in PCM, is the scalar quantizer,
which partitions the real line in 2% segments, each of
which is assigned a unique k-bit label. JPEG [VIL7 §5]
and MPEG are contemporary examples of lossy com-
pressors for images and audio/video, respectively.
Even if the inputs to those algorithms are finite-
precision numbers, their signal processing treats
them as real numbers. S

Digital—to-digital. Even in the case of dx‘gltal mess.ages,
one may be willing to tolerate a certain loss of 'mf.or-
mation for the sake of economy of transmission

torage space (e.g., when emailing a digital

when transmitting the analog-to-digitally

d version of a sensor reading).

time OI S
image or
compresse

4 Data Transmission

e 3 depicts the paradigm, also known as chann.el
which the message input to the encoder is
onredundant, in the sense that it

Figur
coding,
incomprcssible or n
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is chosen equiprobably from a finite set of alternatives
(such as fair coin flips or “pure” bits, 1.e., mdependen;
binary digits equally likely to be 0 or 1). The task g
the encoder is to add redundancy to the mes.sage .ln
order to protect it from channel noise and facilitate its
recovery by the decoder from the noisy channel out-
put. In general, this is done by assigning codewords 10
each possible message, which are different enough'to
be distinguishable at the decoder as long as the noise
is not too severe. For example, in the case of a digi-
tal medium the encoder may use an error-correcting
code that appends redundant bits to the binary mes-
sage string. In the case of an analog medium such as a
telephone channel, the codewords are continuous-time
waveforms. Based on the statistical knowledge of the
channel and the codebook (assignment of messages to
codewords) used by the encoder, the decoder makes an
intelligent guess about the transmitted message.

Remarkably, Shannon predicted the performance of
the best possible codes at a time when very few error-
correcting codes were known. Hamming, a coworker
at Bell Laboratories, had just invented his namesake
code (see APPLIED COMBINATORICS AND GRAPH THEORY
[IV.37 §4]) that appends three parity-check bits to every
block of four information bits in a way that makes all
sixteen codewords differ from each other in at least
three positions. Therefore, the decoder can correct any
single error affecting every encoded block of seven
bits.

5 Compression/Transmission

Figure 4 illustrates another special case of figure 1 in
which the transmitter consists of the source encoder,
or compressor, followed by the channel encoder, and
the receiver consists of the channel decoder followed
by the source decoder, or decompressor. This archi-
tecture capitalizes on the solutions found in the spe-
cial cases in sections 2, 3, and 4. To that end, in
the scheme shown in figure 4 the interfaces between
source and channel encoders, and between channel
and source decoders, are digital regardless of the mes-
sage or medium. Inspired by the teachings of informa-
tion theory, in which the bit emerges as the univer-
sal currency, the modular design in figure 4 is preva-
lent in most modern systems for the transmission
of analog messages through either digital or analo

media. It allows the source encoding/decoding systenf:,
to be tailored particularly to the message, disregardin

the nature of the channel. Analogously, it allows thi
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Source encoder

Channel encoder

Channel

l

Channel decoder

l

Source decoder

Figure 4 A separate compression/transmission syster,

channel encoding/decoding system to be focused on
the reliable transmission of nonredundant bits by com
batting the channel noise disregarding the nature of
the original message. In this setup, the source encoder
removes redundancy from the message in a way that
is tuned to the information source, while the channel
encoder adds redundancy in a way that is tuned to the
channel. Under widely applicable sufficient conditions,
such modular design is asymptotically optimal (in the
sense of section 6) in the limit in which the length of
the message goes to infinity and when both source and
channel operate in the ergodic regime.

6 Performance Measures

The basic performance measures depend on the type
of system under consideration.

Lossless compression. The compression rate (in bits
per symbol) is the ratio of encoded bits to the number
of symbols in the digital message. :

Lossy compression. The quality of reproduction ®
measured by a distortion function of the original an
reproduced signals, e.g., in the case of analog sign&>
the mean-square error (energy of the differenc A
nal), and in the case of binary messages, the bit i
rate. The rate (in bits per second, or per symbol ¢
a lossy compression system is the ratio of €1 ;
bits to the duration of the message. ;

Data transmission. For a given channel and assum”®
that the message is incompressible, the Per
of a data-transmission system is determinec per
rate and the error probability. The rate (0 bl[fiuﬁ“
second, or per symbol) is the ratio of message
tion to the time it takes to send it thr Ough~th€1m’ of
nel. Depending on the application, the reliab’

formanc®
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the {ransmission i measured_by the bit error rate op
by he probability that the entire message is decoded
correctly- ik

pint compression/transmission. In the general cage,
therateis measured as in tl‘le data-transmissjon case,
with reliability measured either by a distortion mea-
sure or by the probability that the entire message is
decoded correctly, depending on the nature of the
message and the application.

7 Fundamental Limits

mstead of delving into the analysis and design of
specific transmission systems or codes, the essence
of Shannon’s mathematical theory is to explore the
pest performance that an optimum encoder/decoder
system (simply referred to as the code) can achieve.
Information theory obtains fundamental limits with-
out actually deriving the optimal codes, which are
often unknown. For the three problems formulated by
Shannon, the fundamental limits are as follows.

Lossless compression: the minimum achievable com-
pression rate.

Lossy compression: the rate-distortion function, which
is the minimum compression rate achievable as a
function of the allowed average level of distortion.

Data transmission: the channel capacity, defined as
the maximum transmission rate compatible with van-
ishing error probability. Capacity is often given in
terms of channel parameters such as transmitted
Power. Before Shannon’s paper, the common wisdom
Was that vanishing error probability would necessar-
ily entail vanishing rate of information transmission.

The fundamenta] limits are very useful to the engi-
| e they offer a comparison of the perfor-
s ofany given system with that ultimately achiev-
o Although, in Shannon’s formulation, the growth of
:? mPUtaﬁonal complexity as a function of the message
e MOt constrained in any way, decades of researf:h
Sion EconSt.r uctive side of compression and tranlslnilhs(;
Shy ave. Vielded algorithms that can appr(?ac o
tion tl?n limits with linear complexity. Often, 1nlforions
at €0ry leads to valuable engineering concius :
¢veal that simple (or modular) solutions may PEf
AL Or near optimum levels. For example, as We
oned, there js no loss in achievable performance
e f_01lows the principle of separate compres§102/
tap bmlssion depicted in figure 4. Fundamental 1:jmf10i
© ad often are, used to sidestep the nee

Hlemi
If ()n
tr

549

Cumbersome analysis in
claims made for a given
The fundamenta] limi

N the duration of the
baper, info
not exclus

order to debunk performance
system.
s turn out to depend crucially
: message. Since Shannon’s 1948
ormation theory has focused primarily, but
i asympti)\’tei?;ﬁ)nlthe fundamental lirnit.s in the regime
the fundamicas y lon‘g message's. By their very nature,
al limits for a given source or channel
are not technology dependent, and they do not become
obsolete with improvements in hardware/software. On
the contrary, technological advances pave the way
for the design of coding systems that approach the
ideal fundamental limits increasingly closely. Although
the optimum compression and transmission systems
are usually unknown, the methods of proof of the
fundamental limits often suggest features that near-
optimum practical communication systems ought to
have, thereby offering design guidelines to approach
the fundamental limits. Shannon’s original proof of his
channel coding theorem was one of the first nontrivial
instances of the probabilistic method, now widely used
in discrete mathematics; to show the existence of an
object that satisfies a certain property it is enough to
find a probability distribution on the set of all objects
such that those satisfying the property have nonzero
probability. In his proof, Shannon computed an upper
bound to the error probability averaged with respect
to an adequately chosen distribution on the set of all
codes; at least one code must have error probability not

exceeding the bound.

8 Information Measures

The fundamental performance limits turn out to be
given in terms of so-called information .measu:o.es,
which have units such as bits. In .this section we list
the three most important information measures.

Entropy: a measure of the randomness of a discrete
distribution Py defined on a finite or countably infi-

nite alphabet A, defined as :
HOXO) = S Pxla)log (.Px(_a))
aeA

g n — oo, a stationary ergodic random

In the limit a X,,) can be losslessly encoded at its

source (X1,
entropy raté
L1 Xa)
lim —H(X1y.-+-34&n)s

n—-on
is easy to com
he Sirnplest case,

pute in the case of Markov
a limit thet asymptotically, n flips

chains. In t
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any rate exceeding h(p) bits per coin
: )

1
h(p>=nlog;+<1—p>log(1_p ,

which is the entropy of the biased coin source. The
ubiquitous linear-time Lempel-Ziv unj‘versal data-
compression algorithms are able to achieve, aymp-
totically, the entropy rate of ergodic stano?ary
sources. Therefore, at least in the long run, univer-
sality incurs no penalty.

Relative entropy: a measure of the dissimilarity be-
tween two distributions P and Q defined on the same
measurable space (A, F), defined as

D(PlQ) = [10g (55 ) aP-

Relative entropy plays a central role not only in infor-
mation theory but also in the analysis of the ability to
discriminate between data models, and in particular
inlarge-deviation results, which explore the exponen-
tial decrease (in the number of observations) of the
probability of very unlikely events. Specifically, if n
independent data samples are generated with prob-
ability distribution Q, the probability that they will
appear to be generated from a distribution in some
class P behaves as

exp (—n}rég,D(PHQ)).

Relative entropy was introduced by Kullback and
Leibler in 1951 with the primary goal of extending
Shannon’s measure of information to nondiscrete
cases.

Mutual information: a measure of the dependence
between two (not necessarily discrete) random vari-
ables X and Y given by the relative entropy between
the joint measure and the product of the marginal
measures:

I(X;Y) = D(Pxy||Px x Py).

Note that I(X; X) = H(X) if X is discrete.

For stationary channels that behave ergodically, the
channel capacity is given by ,

C=limlm I
Aim - max (X1,...,Xn;Y1,...,Yn),

:;vfhe(r; the maximum is over all joint distributiong
1--+,Xy), and (VoY) e the channe]

responses to (X1, ..., Xy). If the ch i
ey Xp). annel is statj
memoryless, then the formula bojlg down toauonary

C=maxI(X;Y)_
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The capacity of a channel that erageg afr
the codeword symbols (drawn from ap ,

is

aCﬁ()n 5
of
Iphabey

C=(1-0d)log|A|,

as long as the location of the erageq Symbos -

known to the decoder and the noneraseq symg is
are received error free. In the case of abinary ch, m(:ls
that introduces errors independently with Probap;
ity 8, the capacity is given by g

C=1-h(d),

while in the case of a continuous-time additive Gauss-
ian noise channel with bandwidth B, transmissiop
power P, and noise strength N, the capacity is

P .
C = Blog (1 + m) bits per second,

a formula that dispels the pre-1948 notion that the
information-carrying capacity of a communication
channel is proportional to its bandwidth and that i
reminiscent of the fact that in a cellular phone the
stronger the received signal the faster the download,
In lossy data compression of a stationary ergodic
source (X, X>,...), the rate compatible with a given
per-sample distortion level d under a distortion mea-
sure d: A2 — [0, o] is given by

N ST
R(d) = IILI_I"I;IO ErmnI(Xl,...,Xn;Yl,...,Yn).

where the minimum is taken over the joint distribu-
tion of source X" and reproduction Y", with given
Pxn, and such that

d(Xiv Yl) g d.

M=

2
Ny
For stationary memoryless sources, just as for capac
ity we obtain a “single-letter” expression R(d) =
min/(X;Y).

It should be emphasized that the central concert
of information theory is not the definition of infor
mation measures but the theorems that use ther
describe the fundamental limits of compression 2
transmission. However, it is rewarding that entroP¥
mutual information, and relative informatiot (e
as other related measures, have found apphcaﬁons-
many fields beyond communication theory; incl 5,
Probability theory, statistical inference, ergodic t.heges:
computer science, physics, economics, life e
and linguistics,
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9 Beyond Figure 1

4 on the pasic paradigm in figure 1 continues tq
W-)rd . not only to tackle source and channel modelg
[ms.?d' py new applications and technologies but in
inSP:ermg the basic understanding of the capabilities
zoding systems, particularly in the nonasymptotic
of o However, in order to analyze models of interest
o practice many different serups. have been studied
D 48 that go beyqnd the original. We list a few of
e oS that have received the most attention.

reedback. A common feature of many communication
links is the availability of another communication
channel from receiver to transmitter. In what way
can knowledge of the channel output aid the trans-
mitter in a more efficient selection of codewords?
I 1956 Shannon showed that, in the absence of
channel memory, capacity does not increase even
if the encoder knows the channel output instanta-
neously and noiselessly. Nevertheless, feedback can
be quite useful to improve transmission rate in the
nonasymptotic regime and in the presence of channel
memory.

Separate compression of dependent sources of infor-
mation. Suppose that there is one decompressor that
receives the encoded versions of several sources pro-
duced by individual compressors. If, instead, a single
compressor had access to all the sources, it could
exploit the statistical dependence among them to
encode at a rate equal to the overall entropy. Sur-
prisingly, in 1973 Slepian and Wolf showed that even
in the completely decentralized setup the sum of
the encoded rates can be as low as in the central-
ized setting and still the decompressor is able to cor-
fectly decode with probability approaching 1. In the
lossy setting the corresponding problem is not yet
mpletely solved.

Mmﬁple-access channel. If, as in the case of a cellular

Wirelesg telephony system, a single receiver obtains

4 signal with mutually interfering encoded streams

Produced by several transmitters, there is a trade-off

AMong the achievable rates. The channel capacity is

l?rflongﬂ a scalar but a capacity region. _
h €rence channel. As in the case of a wired tele

: ;I;eisSYSterg subject to crosstglk, in ;hj:;ersr;gig

it recewa receiver for each transrm.tter, an .ton e

Miteq ;s not only contains the. mforrnatl_ e 3
! Signaﬁ the desired user but is contamu(:duCe -
Speciy] s of all other users. It does not T it

case of the multiple-access setup becat
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- Fene) .
ach receiver is required to decode reliably only the
message of its desired user.

Bro .
adcast channel, A single transmitter sends a code-

word, which is received by several geographically
Separated receivers. Each receiver is therefore con-
n.ected to the transmitter by a different communica-
Flon channel, but all those channels share the same
Input. If the broadcaster intends to send different
messages to the various destinations, there is again
a trade-off among the achievable rates.

Relay channel. The receiver obtains both a signal from

the transmitter and a signal from a relay, which
itself is allowed to process the signal it receives from
the transmitter in any way it wants. In particular,
the relay need not be able to fully understand the
message sent by the transmitter.

Inspired by various information technologies, a num-

ber of information-theoretic problems have arisen that
go beyond issues of eliminating redundancy (for com-
pression) or adding redundancy (for transmission in
the presence of noise). Some examples follow.

Secrecy. Simultaneously with communication theory,
Shannon established the basic mathematical theory
of cryptography and showed that iron-clad privacy
requires that the length of the encryption key be
as long as that of the message. Most modern cryp-
tographic algorithms do not provide that level of
security; they rely on the fact that certain compu-
tational problems, such as integer factorization, are
believed to be inherently hard. A provable level of
security is available using an information-theoretic
approach pioneered by Wyner (1975), which guar-
antees that the eavesdropper obtains a negligible
amount of information about the message.

Random number generation for system simulation.
Random processes with prescribed distributions can
be generated by a deterministic algorithm driven by a
source of random bits. A key quantity that quantifies
the “complexity” of the generated random process is
the minimal rate of the source of randong pits neces-
sary to accomplish the task. The resolvability of a .sys-
tem is defined as the minimal randomness reqqu.ed

desired input so that the output dis-

R e approximated with arbitrary accuracy.

;gﬂigggrlljaf ancIi) r\)/erdli showed that the Fesolvabi]jty
stem is equal to its channel capacity.

i . tion length. In the 1960s Kolmogo-

Minimum description fens i .
rov and others took a nonprobabilistic approach to

to generate any
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the compression of a message, which, like universal

lossless compression, uses no prior knowledge: the
algorithmic complexity of the message is the length
of the shortest program that will output the Bie sagc.
Although this notion is useful only asymptotically,
it has important links with information theory and
has had an impact in statistical inference, primarily
through the minimum description length statistical
modeling principle put forward by Rissanen in 1978:
the message is compressed according to a certain
distribution, which is chosen from a predetermined
model class and is also communicated to the decom-
pressor. The distribution is chosen so that the sum
of the lengths of its description and the compressed
version of the message are minimized.

Inequalities and convex analysis. A principle satis-
fied by information measures is that processing can-
not increase either the dependence between input
and output as measured by mutual information or
the relative entropy between any pair of distribu-
tions governing the input of the processor. Mathe-
matically, the nonnegativity of relative entropy and
those data processing principles are translated into
convex inequalities, which have been used success-
fully in the rederivation of various inequalities, such
as those of Hadamard and Brunn-Minkowski, and in
the discovery of new inequalities.

Portfolio theory. One possible approach to PORTFOLIO
SELECTION [V.10] (for a given number of stocks) is to
choose the log-optimal portfolio, which maximizes
the asymptotic appreciation growth rate. When their
distribution is known, a simplistic model of indepen-
fient identically distributed stock prices leads to lim-
iting results with a strong information-theoretic fla-
Vor. Ju§t as in data compression, under assumptions
of stationarity and ergodicity, it is possible to deal
leth more realistic scenarios in which the distribu-
tion is not known a priori and the stock prices are
interdependent.

it s i
e ssee to a multitude of possible
whetﬁer itis mdl;elfl tllrittee:isdtm only in finding out
as usual, a certain error 1:58?? 5 n9t. oo,
BT ot lpro ability, this setup can
Sredindie listtglg;ese;:;ept that the decoder is
to be simultaneously “true.” Ea(ﬁlle\jss:rg es (addresses)
whether its identity is in the list = simply checks

: not. How many
Smitted while guaranteeing van-

ishing probability of erroneous information? The
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surprising answer found by Ahlswede ang Dueck
1989 is that the number of addresses grows dmlln
bly exponentially with the number of chanpe] USes.
Moreover, the second-order exponent is equal t, ihé
channel capacity.

Finally, we mention the discipline of quantum infor-
mation theory, which deals with the counterpartg of
the fundamental limits discussed above for quantyy
mechanical models of sources and channels. Prohj.
ity measures, conditional probabilities, and bits trans.
late into density matrices, self-adjoint linear operators,
and qubits. The quantum channel coding theorem was
proved by Holevo in 1973, while the quantum source
coding theorem was proved by Schumacher in 1995
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IV.37 Applied Combinatorics and
Graph Theory
Peter Winkler

1 Introduction

Combinatorics and graph theory are the cornerstorlleS
of discrete mathematics, which has seen an explosiot
of activity since the middle of the twentieth centw’
The main reason for this explosion is the plethora 0
applications in a world where digital (as opposed 'tO
analog) computing has become the norm. Once eglss
ered more “recreational” than serious, Combmatorlcg
and graph theory now boast many fundamentdl &'
useful results, adding up to a cogent theory- Our Objece
tive here is to present the most elementary of @6:0
results in a format useful to those who may I mot
combinatorial problems in applications but have !
studied combinatorics or graph theory. ;
Accordingly, we will begin each section with a {r0-
necessarily serious, but representative) problett: 1fems
ducing the basic techniques, algorithms, and theo
of combinatorics and graph theory in T espons™ atics
We will assume basic familiarity with m2 etimes
but none with computer science. Proofs, Sonj short
informal, are included when they are usef

(not



