
DECO: Liberating Web Data Using
Decentralized Oracles for TLS

Cornell Tech & Cornell University
The 2020 ACM SIGSAC Conference on Computer and

Communications Security (CCS ’20)

Presentation by: Mina Petrovic, Bogdana Kolic & Iman Attia

1

Roadmap
1. Introduction

2. DECO protocol
● Three-party handshake
● Query execution
● Proof generation

2

4. Implementation and Evaluation

3. Applications
● Confidential financial instruments
● Anonymous credentials: Age proof
● Price discrimination

5. Conclusion

Roadmap
1. Introduction

2. DECO protocol
● Three-party handshake
● Query execution
● Proof generation

3

4. Implementation and Evaluation

3. Applications
● Confidential financial instruments
● Anonymous credentials: Age proof
● Price discrimination

5. Conclusion

Why DECO?

4

Alice (client-prover) Charlie (verifier)

I want to sell you
my homework
solutions. But I

need to know you
have money to

buy it.

I want to buy
them. Let me

check my
bank

account.

Why DECO?

5

Alice (client-prover)
Bob (server -bank)

TLS

Charlie (verifier)

Why DECO?

6

Alice (client-prover)
Bob (server -bank)

TLS

Charlie (verifier)

Do you
promise you

have the
money?

Pinky
promise

Solutions before DECO

● Screenshots
○ Not anymore - banks have protections
○ Photo editing applications are powerful tool

● Sending Charlie her bank credentials - she would lose the money
● Forwarding TLS data to Charlie ⇔ screenshot
● Implement changes into TLS
● Use trusted hardware

○ Proven that it is not that trusted lately

PROBLEM: Leaking too much data, Alice only needs to prove that she has enough money,
not show how much does she have

7

What is DECO?

● GOAL: Prove facts in zero knowledge with NO server modification

● HOW: Using three-party handshake → splitting the key between prover and verifier
○ Alice and Charlie generate SHARED key for TLS session with Bob
○ For Bob, the whole process is transparent

● OUTCOME:
○ Alice cannot forge the data from server
○ Alice can prove zero knowledge about data to Charlie

8

Roadmap
1. Introduction

2. DECO protocol
● Three-party handshake
● Query execution
● Proof generation

9

4. Implementation and Evaluation

3. Applications
● Confidential financial instruments
● Anonymous credentials: Age proof
● Price discrimination

5. Conclusion

Towards the DECO protocol

● Symmetric keys
● One key for encryption, one for the MAC tag

1. The prover sends all exchanged (encrypted) messages with the server to the verifier
2. Proves statements about server’s responses

● The prover holds session keys before sending messages to the verifier
○ It can forge arbitrary data (the commitment is not secure)

TLS 1.2 with CBC-HMAC

Strawman protocol

Problem

10

DECO protocol

● The prover holds session keys before sending messages to the verifier
○ It can forge arbitrary data (the commitment is not secure)

● The prover and the verifier act as one client
● The prover learns the MAC key only after she commits

● Three-party handshake
● Query execution

Problem

Key idea

Shared MAC key algorithms

11

Three-party handshake

Elliptic curve Diffie-Hellman key exchange with
ephemeral secrets (ECDHE) :

● Computation of a shared secret Z ∈
EC(𝔽p)

● Evaluation of the TLS-PRF function with Z
to derive the session key k

Classic TLS 1

2

Key exchange
P and V compute their share
of the secret Z:

Z = ZP + ZV

Key derivation
P an V evaluate the TLS-PRF
function on ZP and ZV to
derive their share of the
session key:

k = kP+ kV12

13

Three-party handshake - key exchange

SERVERPROVERVERIFIER

1. ClientHello

2. Certificate, YS = sS.G3. Certificate, YS = sS.G

4. YV = sV.G 5. YP = sP.G + YV

Z = sS.YPZP = sP.YS
ZV = sV.YS

Reminder: we are working with EC(𝔽P), the generator is G

Three-party handshake - key derivation

… but, addition of EC(𝔽p) points in a boolean circuit is costly - approximately, we need over
900,000 AND gates

Now, addition of two 𝔽p points has AND complexity of about 3|p|

For computation of the additive shares of the x-coordinate of Z.
Takes ZP and ZV as inputs, each party learns its additive share (in 𝔽p)

P and V evaluate the TLS-PRF on their share of Z

Optimization - compute additive shares of one coordinate

ECtF function

14

Query execution

A 2PC protocol between P and V is used to compute the MAC tag τ without
revealing kMAC to P, then P uses kENC to encrypt (Q||τ) and sends it to the server

We need to optimize the MAC tag computations

1

2

3

After the 3P-HS, the prover holds the encryption key
kENC, and the prover and the receiver hold their secret
shares kP

MAC and kV
MAC of the MAC key kMAC

The prover sends the query Q to the server as a
standard TLS client

2PC is expensive for large queries

15

Query execution
Recall the formula for computing HMAC of message M with key K:

HMACH(K, M) =H((K⊕opad) || H((K⊕ipad) || M)) (H stands for SHA-256)

16

K ⊕ipad M

K ⊕opad

H

H

HMAC

Query execution
Recall the formula for computing HMAC of message M with key K:

HMACH(K, M) =H((K⊕opad) || H((K⊕ipad) || M)) (H stands for SHA-256)

17

K ⊕ipad M

K ⊕opad

H

H

HMAC

Inner hash

Outer hash
Notice the (potential)

difference in the
input size!

Query execution
Recall the formula for computing HMAC of message M with key K:

HMACH(K, M) =H((K⊕opad) || H((K⊕ipad) || M)) (H stands for SHA-256, CF is the

Recall: The motivation for using
2PC is hiding the secret key K from

the prover

one-way compression function)

18
https://www.researchgate.net/figure/The-HMAC-SHA-256-construction_fig1_307694142

19

Three-party handshake

Query execution

Proof generation

Session keys k

Server S Prover P Verifier V

kP kV

Send Q = Query(ΘS)

Receive response R

Commit to (Q, R)

kV

kP

ΘS

Verify R using kP and kV

Proof generation

● Reveal mode - reveal only a certain chunk of the plaintext to the verifier
● Redact mode - reveal the plaintext without a certain chunk to the verifier

● Context integrity - prove that the revealed substring is produced in a certain
way expected by the verifier

● Two-stage parsing - Reduce the cost of proving context integrity by
preprocessing the server’s response (P and V both agree on the
transformation that is to be used)

1

2

Selective opening

Context integrity by two-stage parsing

20

Roadmap
1. Introduction

2. DECO protocol
● Three-party handshake
● Query execution
● Proof generation

21

4. Implementation and Evaluation

3. Applications
● Confidential financial instruments
● Anonymous credentials: Age proof
● Price discrimination

5. Conclusion

1. Confidential financial instruments

● Financial derivatives are commonly cited in smart contract applications,
emphasizing the need for authenticated data feeds (e.g., stock prices).

● Reminder: A smart contract is a self-executing digital contract where the
terms of the agreement are written directly into code.

● One popular financial instrument that is easy to implement in a smart
contract is a binary option.

22

1. Confidential financial instruments
Binary Option?

23

AliceCharlie

A contract between two parties betting on
whether, at a designated future time (e.g., the
close of day D), the price 𝑃* of some asset 𝑁
will equal or exceed a predetermined target
price 𝑃. The contract condition is: 𝑃* ≥ 𝑃

1. Confidential financial instruments
Past Approach: Mixicle

Mechanism:
The oracle O can conceal the underlying asset N and target price P for a binary option on
chain. It simply accepts the option details off chain, and reports only a bit specifying the
outcome Stmt := P∗ ≥? P

Limitation:
A limitation of a basic Mixicle construction is that the oracle 𝑂 itself learns the details of
the financial instrument. Prior to DECO, only oracle services that use TEE could conceal
queries from the oracle.

24

1. Confidential financial instruments

25

AliceCharlie

1. Setup:

 - IDSC
 - {N,P,D}
 - pkO

 - {CN,CP,CD}
 - Өp

 - IDSC: Smart Contract ID
 - {skO,pkO}: denote the oracles’ key pair
 - {N,P,D}: binary option
 - {CN,CP,CD}: commitments
 - Өpthe URL to retrieve asset prices

1. Confidential financial instruments

26

 2. Settlement:

Alice (Winner)
PROVER Өp: www.CoolPrices.com

VERIFIER
Oracle O TLS

> GET
/query?function=GLOBAL_QUOTE&
 ↩→ symbol= GOOGL
Host: www.CoolPrices.com
 >
 { "Global Quote": { "01. symbol":
"GOOGL", "05. price": "1157.7500",
"07. day": "2019-07-16"}}

 ZKP using

S = Sig(skO,IDSC)

1. Confidential financial instruments

27

 3. Payout:

Alice (Winner)
PROVER Өp: www.CoolPrices.com

VERIFIER
Oracle O

- IDSC
- …..

TLS

 ZKP using

S = Sig(skO,IDSC) Contract SCSend SReceive Payout

1. Confidential financial instruments

28

Implementation Details - Two Stage Parsing Scheme:

First Stage:
Party P parses the response R locally and identifies the smallest substring that can convince
Party V.

Second Stage:
Party P proves knowledge of (Rprice, P, rP) in Zero-Knowledge (ZK), ensuring the following:
1. Rprice is a substring of the decrypted ciphertext Ŕ.
2. The price starts with “05. price”.
3. The subsequent characters form a floating-point number P∗, and that P∗ ≥ P.
4. com(P, rP) = CP, where CP is the commitment for price P.

Using the CBC-HMAC cipher suite, the ZKP circuit involves redacting the entire record,
computing commitments, and performing string processing.
Secure? Unique keys!

2. Anonymous credentials: Age proof

29

Alice
PROVER Өp: www.isa.epfl.ch

VERIFIER
Oracle O TLS

ZKP: Age =

3. Price discrimination
Price Discrimination: Same product sold at different
prices to different buyers based on tracking data (e.g.,
zip codes).

Legal Aspects: Permissible unless it harms
competition (U.S. CFT laws); impacted by privacy
laws (e.g., GDPR in Europe).

DECO's Solution: Allows buyers to verify price
discrimination claims while keeping personal info
hidden.

AES-GCM Cipher: Uses AES-GCM cipher suite and
Reveal mode to reveal only necessary order details.

30

<table >
 <tr>Order Placed: November 23,
2018</tr>
 <tr>Order Total: $34.28</tr>
 <tr>Items Ordered: Food
Processor</tr>

 </table >
 ...
 Shipping Address:
 <ul class="displayAddressUL ">

 <li class="FullName">Alice
 <li class="Address">Wonderland
 <li class="City">New York

3. Price discrimination

31

Alice
PROVER Өp: www.amazon.com

VERIFIER
Oracle O TLS

ZKP: Price & Date

Third Party

Limitations of DECO in practice
● DECO can’t generate ZK proofs directly without having the Oracle Network.
● Alice and Charlie need to trust O for integrity.

32

TLS

Өp:www.ubs.com
/alice/balance

Alice

Roadmap
1. Introduction

2. DECO protocol
● Three-party handshake
● Query execution
● Proof generation

33

4. Implementation and Evaluation

3. Applications
● Confidential financial instruments
● Anonymous credentials: Age proof
● Price discrimination

5. Conclusion

Implementation

● Implemented in ~4700 lines of C++ code

● Three-party handshake (3P-HS) protocol for TLS 1.2.

● Two-party computation protocols (2PC-HMAC, 2PC-GCM).

● Uses Relic (Paillier cryptosystem) and EMP toolkit for secure computation.

● Integrated with mbedTLS for end-to-end TLS session security.

● Zero-knowledge proofs were implemented using libsnark, with statement templates

adapted for specific applications via SNARK compilers like xjsnark.

34

Evaluation

35

Evaluation

36

Roadmap
1. Introduction

2. DECO protocol
● Three-party handshake
● Query execution
● Proof generation

37

4. Implementation and Evaluation

3. Applications
● Confidential financial instruments
● Anonymous credentials: Age proof
● Price discrimination

5. Conclusion

Conclusion

38

Alice (client-prover)
Bob (server -bank)

TLS

Charlie (verifier)

No need for
pinky

promise, we
have DECO!!!!

Let’s share a
key!

I have no
idea what
are they
doing!

I only have
eyes for

Alice

CREDITS: This presentation template was created by Slidesgo, and
includes icons by Flaticon, and infographics & images by Freepik

Thanks!
Do you have any questions?

39CREDITS: This presentation template was created by Slidesgo, and includes icons by Flaticon, and infographics & images by Freepik

https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

