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why DECO?

| want to buy
them. Let me
check my
bank
account.

J

Alice (client-prover)

| want to sell you
my homework
solutions. But |
need to know you
have money to
buy it.

Charlie (verifier)
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why DECO?

Do you

Pinky promise you
promise have the
money?

TLS

J

Bob (server -bank) Charlie (verifier)

Alice (client-prover)



Solutions before DECO

e Screenshots

o Not anymore - banks have protections
o Photo editing applications are powerful tool
Sending Charlie her bank credentials - she would lose the money

Forwarding TLS data to Charlie & screenshot
Implement changes into TLS
Use trusted hardware

o Proven that it is not that trusted lately

: Leaking too much data, Alice only needs to prove that she has enough money,
not show how much does she have



What is DECO?

° : Prove facts in zero knowledge with NO server modification

° : Using three-party handshake — splitting the key between prover and verifier

o Alice and Charlie generate SHARED key for TLS session with Bob
o For Bob, the whole process is transparent

o Alice cannot forge the data from server
o Alice can prove zero knowledge about data to Charlie
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Towards the DECO protocol

e Symmetric keys
e One key for encryption, one for the MAC tag

1. The prover sends all exchanged (encrypted) messages with the server to the verifier
2. Proves statements about server’s responses

e The prover holds session keys before sending messages to the verifier
o It can forge arbitrary data (the commitment is not secure)



DECO protocol

The prover holds session keys before sending messages to the verifier
o It can forge arbitrary data (the commitment is not secure)

e The prover and the verifier act as one client
e The prover learns the MAC key only after she commits

e Three-party handshake
e Query execution



Three-party handshake

Elliptic curve Diffie-Hellman key exchange with
ephemeral secrets (ECDHE) :

e Computation of a shared secret Z €
EC(Fp)

e Evaluation of the TLS-PRF function with Z
to derive the session key k

P and V compute their share
of the secret Z:

Z2=2,+2,

P an V evaluate the TLS-PRF
function on Z,and Z,, to
derive their share of the
session key:

k=ko+k,



Three-party handshake - key exchange

Reminder: we are working with EC(F ), the generator is G

VERIFIER PROVER SERVER

Z 1. ClientHello

2. Certificate, Y= sS.G

5. Yp=5,G+Y,



Three-party handshake - key derivation

P and V evaluate the TLS-PRF on their share of Z

... but, addition of EC(IFp) points in a boolean circuit is costly - approximately, we need over
900,000 AND gates

Optimization - compute additive shares of one coordinate

Now, addition of two F points has AND complexity of about 3|p|

ECtF function

For computation of the additive shares of the x-coordinate of Z.
Takes Z, and Z,, as inputs, each party learns its additive share (in IFp)
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Query execution

1

After the 3P-HS, the prover holds the encryption key
kENC and the prover and the receiver hold their secret
shares k"< and k "¢ of the MAC key k™A¢

The prover sends the query Q to the server as a

standard TLS client

A 2PC protocol between P and V is used to compute the MAC tag T without
revealing kMACto P, then P uses kENC to encrypt (Q]|1) and sends it to the server

2PC is expensive for large queries

We need to optimize the MAC tag computations
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Query execution

Recall the formula for computing HMAC of message M with key K:

HMAC (K, M) =H((K®opad) || H((Keipad) || M)) (H stands for SHA-256)

K eipad M

K ®eopad

HMAC



Query execution

Recall the formula for computing HMAC of message M with key K:

HMAC,, (K, M) =H((Keopad) ||

K eipad

Outer hash K eopad

HMAC

)

(H stands for SHA-256)

M

Notice the (potential)
difference in the
input sizel




Query execution

Recall the formula for computing HMAC of message M with key K:

HMAC (K, M) =H((K®opad) | ) (H stands for SHA-256, CF is the
one-way compression function)
ipad oy, M, My
CF CF CF CF
Hln

H > g - | Recall: The motivation for using
opad ] 2PC s hidin%r;che secret key K from
e prover
K % ;\ ‘\

CF CF

Y

[V—— —>tag

https://lwww.researchgate.net/figure/The-HMAC-SHA-256-construction_fig1_307694142



<>

Server S Prover P Verifier V

A\
Session keys k

Send Q = Query(Q,)

Receive response R

Commit to (Q, R)

Verify R using k, and k|, kv




Proof generation

e Reveal mode - reveal only a certain chunk of the plaintext to the verifier
e Redact mode - reveal the plaintext without a certain chunk to the verifier

e Context integrity - prove that the revealed substring is produced in a certain
way expected by the verifier

e Two-stage parsing - Reduce the cost of proving context integrity by
preprocessing the server’s response (P and V both agree on the
transformation that is to be used)
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1. Confidential financial instruments

e Financial derivatives are commonly cited in smart contract applications,
emphasizing the need for authenticated data feeds (e.g., stock prices).

e Reminder: A smart contract is a self-executing digital contract where the
terms of the agreement are written directly into code.

e One popular financial instrument that is easy to implement in a smart
contract is a binary option.



1. Confidential financial instruments

Binary Option?
Charlie

A contract between two parties betting on
whether, at a designated future time (e.g., the
close of day D), the price P* of some asset N
will equal or exceed a predetermined target
price P. The contract condition is: P* = P



1. Confidential financial instruments

Past Approach: Mixicle

Mechanism:

The oracle O can conceal the underlying asset N and target price P for a binary option on
chain. It simply accepts the option details off chain, and reports only a bit specifying the
outcome Stmt := P*>? P

Limitation:
A limitation of a basic Mixicle construction is that the oracle O itself learns the details of
the financial instrument. Prior to DECO, only oracle services that use TEE could conceal

queries from the oracle.



1. Confidential financial instruments

1. Setup:
Charlie @ Alice




1. Confidential financial instruments

2. Settlement:

PROVER O, www.CoolPrices.com
Alice (Winner)
VERIFIER é
Oracle O ¥ N
N N2
ZKP using DEC® &
S = Sig(skyIDg) > GET
/query?function=GLOBAL_QUOTE&
g <— symbol= GOOGL

Host: www.CoolPrices.com

>

{"Global Quote™: {"01. symbol":
"GOOGL", "05. price": "1157.7500",
"07. day": "2019-07-16"}}



1. Confidential financial instruments

3. Payout: PROVER ©_: www.CoolPrices.com

Alice (Winner)
VERIFIER h‘ —
Oracle O *"; '(\/6 @ e
Ny N2

ZKP using DEC® / A )
S = Sig(sk,IDg.)

Seno,s Contract SC

Re

Cas

J G/l/e PQ l_
$




1. Confidential financial instruments

Implementation Details - Two Stage Parsing Scheme:

First Stage:
Party P parses the response R locally and identifies the smallest substring that can convince
Party V.

Second Stage:

Party P proves knowledge of (Rprice, P, r;) in Zero-Knowledge (ZK), ensuring the following:
1. R, ..is asubstring of the decrypted ciphertext R.

2. Tﬁe price starts with “05. price”.

3. The subsequent characters form a floating-point number P*, and that P* > P.

4. com(P, r;) = C,, where C, is the commitment for price P.

Using the CBC-HMAC cipher suite, the ZKP circuit involves redacting the entire record,
computing commitments, and performing string processing.
Secure? Unique keys!



2. Anonymous credentials: Age proof

PROVER 0 : www.isa.epfl.ch
Alice

VERIFIER
Oracle O




3. Price discrimination

Price Discrimination: Same product sold at different
prices to different buyers based on tracking data (e.g.,
Zip codes).

Legal Aspects: Permissible unless it harms
competition (U.S. CFT laws); impacted by privacy
laws (e.g., GDPR in Europe).

DECO's Solution: Allows buyers to verify price
discrimination claims while keeping personal info
hidden.

AES-GCM Cipher: Uses AES-GCM cipher suite and
Reveal mode to reveal only necessary order details.

<table >
<tr>Order Placed: November 23,
2018</tr>
<tr>Order Total: $34.28</tr>
<tr>ltems Ordered: Food
Processor</tr>

</table >

<b> Shipping Address: </b>

<ul class="displayAddressUL ">
<li class="FullName">Alice</li>
<li class="Address">Wonderland</li>
<li class="City">New York</li>

<Mul>



3. Price discrimination

PROVER ep: www.dmazon.com
Alice
VERIFIER p—
Oracle O \’j u . a»

DEC® ZKP: Price & Date / \

a O\

Third Party



Limitations of DECO in practice

e DECO can’t generate ZK proofs directly without having the Oracle Network.
e Alice and Charlie need to trust O for integrity.

ep:www.ubs.com
/alice/balance

FFFFFFFF % UBS
TLS € Private account >

&3 Savings
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Implementation

e Implemented in ~4700 lines of C++ code

e Three-party handshake (3P-HS) protocol for TLS 1.2.

e Two-party computation protocols (2PC-HMAC, 2PC-GCM).

o Uses Relic (Paillier cryptosystem) and EMP toolkit for secure computation.

e Integrated with mbedTLS for end-to-end TLS session security.

e Zero-knowledge proofs were implemented using libsnark, with statement templates

adapted for specific applications via SNARK compilers like xjsnark.



Evaluation

Table 1: Run time (in ms) of 3P-HS and query execution

protocols.
LAN WAN
Online Offline | Online Offline

3P-Handshake TLS 1.2 only 368.5(0.6) 1668 (4) 2850 (20) 10290 (10)
2PC-HMAC TLS 1.2 only 133.8(0.5) 164.9 (0.4) | 2520 (20) 3191 (8)
2PC-GCM (256B) 1.2and 1.3  36.65(0.02) 392 (8) 1208.5 (0.2) 12010 (70)
2PC-GCM (512B) 12and13  53.0(0.5)  610(10) | 2345 (1) 12520 (70)
2PC-GCM (1KB) 12and13  101.9(0.5) 830(20) | 4567 (4) 14300 (200)
2PC-GCM (2KB) 1.2and 1.3 204.7(0.9) 1480 (30) | 9093.5(0.9) 18500 (200)




Evaluation

Table 2: Costs of generating and verifying ZKPs in proof-
generation phase of DECO for applications in Sec. 6.

Binary Option Age Proof  Price Discrimination

prover time 12.97 £ 0.04s  3.67 = 0.02s 12.68 + 0.02s
verifier time 0.01s 0.01s 0.05s
proof size 861B 574B 1722B

# constraints 617k 164k 535k

memory 1.78GB 0.69GB 0.92GB
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Conclusion

| have no | only have
idea what eyes for
Alice
are they
doing!

Bob (server -bank)

Let’s share a

Alice (client-prover)

key!

Charlie (verifier)

No need for
pinky
promise, we
have DECOI!



Thanks!

CREDITS: This presentation template was created by Slidesgo, and includes icons by Flaticon, and infographics & images by Freepik
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