Liberating Web Data Using
Decentralized Oracles for TLS

Cornell Tech & Cornell University
The 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS "20)

Presentation by: Mina Petrovic, Bogdana Kolic & Iman Attia

Roadmap

1. Introduction

2. DECO protocol

e Three-party handshake
e Query execution
e Proof generation

3. Applications

e Confidential financial instruments
e Anonymous credentials: Age proof
e Price discrimination

4. Implementation and Evaluation

5. Conclusion

Roadmap

1. Introduction

2. DECO protocol

e Three-party handshake
e Query execution
e Proof generation

3. Applications

e Confidential financial instruments
e Anonymous credentials: Age proof
e Price discrimination

4. Implementation and Evaluation

5. Conclusion

why DECO?

| want to buy
them. Let me
check my
bank
account.

J

Alice (client-prover)

| want to sell you
my homework
solutions. But |
need to know you
have money to
buy it.

Charlie (verifier)

why DECO?

Bob (server -bank) Charlie (verifier)

Alice (client-prover)

why DECO?

Do you

Pinky promise you
promise have the
money?

TLS

J

Bob (server -bank) Charlie (verifier)

Alice (client-prover)

Solutions before DECO

e Screenshots

o Not anymore - banks have protections
o Photo editing applications are powerful tool
Sending Charlie her bank credentials - she would lose the money

Forwarding TLS data to Charlie & screenshot
Implement changes into TLS
Use trusted hardware

o Proven that it is not that trusted lately

: Leaking too much data, Alice only needs to prove that she has enough money,
not show how much does she have

What is DECO?

° : Prove facts in zero knowledge with NO server modification

° : Using three-party handshake — splitting the key between prover and verifier

o Alice and Charlie generate SHARED key for TLS session with Bob
o For Bob, the whole process is transparent

o Alice cannot forge the data from server
o Alice can prove zero knowledge about data to Charlie

Roadmap

1. Introduction

2. DECO protocol

e Three-party handshake
e Query execution
e Proof generation

3. Applications

e Confidential financial instruments
e Anonymous credentials: Age proof
e Price discrimination

4. Implementation and Evaluation

5. Conclusion

Towards the DECO protocol

e Symmetric keys
e One key for encryption, one for the MAC tag

1. The prover sends all exchanged (encrypted) messages with the server to the verifier
2. Proves statements about server’s responses

e The prover holds session keys before sending messages to the verifier
o It can forge arbitrary data (the commitment is not secure)

DECO protocol

The prover holds session keys before sending messages to the verifier
o It can forge arbitrary data (the commitment is not secure)

e The prover and the verifier act as one client
e The prover learns the MAC key only after she commits

e Three-party handshake
e Query execution

Three-party handshake

Elliptic curve Diffie-Hellman key exchange with
ephemeral secrets (ECDHE) :

e Computation of a shared secret Z €
EC(Fp)

e Evaluation of the TLS-PRF function with Z
to derive the session key k

P and V compute their share
of the secret Z:

Z2=2,+2,

P an V evaluate the TLS-PRF
function on Z,and Z,, to
derive their share of the
session key:

k=ko+k,

Three-party handshake - key exchange

Reminder: we are working with EC(F), the generator is G

VERIFIER PROVER SERVER

Z 1. ClientHello

2. Certificate, Y= sS.G

5. Yp=5,G+Y,

Three-party handshake - key derivation

P and V evaluate the TLS-PRF on their share of Z

... but, addition of EC(IFp) points in a boolean circuit is costly - approximately, we need over
900,000 AND gates

Optimization - compute additive shares of one coordinate

Now, addition of two F points has AND complexity of about 3|p|

ECtF function

For computation of the additive shares of the x-coordinate of Z.
Takes Z, and Z,, as inputs, each party learns its additive share (in IFp)

14

Query execution

1

After the 3P-HS, the prover holds the encryption key
kENC and the prover and the receiver hold their secret
shares k"< and k "¢ of the MAC key k™A¢

The prover sends the query Q to the server as a

standard TLS client

A 2PC protocol between P and V is used to compute the MAC tag T without
revealing kMACto P, then P uses kENC to encrypt (Q]|1) and sends it to the server

2PC is expensive for large queries

We need to optimize the MAC tag computations

15

Query execution

Recall the formula for computing HMAC of message M with key K:

HMAC (K, M) =H((K®opad) || H((Keipad) || M)) (H stands for SHA-256)

K eipad M

K ®eopad

HMAC

Query execution

Recall the formula for computing HMAC of message M with key K:

HMAC,, (K, M) =H((Keopad) ||

K eipad

Outer hash K eopad

HMAC

)

(H stands for SHA-256)

M

Notice the (potential)
difference in the
input sizel

Query execution

Recall the formula for computing HMAC of message M with key K:

HMAC (K, M) =H((K®opad) |) (H stands for SHA-256, CF is the
one-way compression function)
ipad oy, M, My
CF CF CF CF
Hln

H > g - | Recall: The motivation for using
opad] 2PC s hidin%r;che secret key K from
e prover
K % ;\ ‘\

CF CF

Y

[V—— —>tag

https://lwww.researchgate.net/figure/The-HMAC-SHA-256-construction_fig1_307694142

<>

Server S Prover P Verifier V

A\
Session keys k

Send Q = Query(Q,)

Receive response R

Commit to (Q, R)

Verify R using k, and k|, kv

Proof generation

e Reveal mode - reveal only a certain chunk of the plaintext to the verifier
e Redact mode - reveal the plaintext without a certain chunk to the verifier

e Context integrity - prove that the revealed substring is produced in a certain
way expected by the verifier

e Two-stage parsing - Reduce the cost of proving context integrity by
preprocessing the server’s response (P and V both agree on the
transformation that is to be used)

Roadmap

1. Introduction

2. DECO protocol

e Three-party handshake
e Query execution
e Proof generation

3. Applications

e Confidential financial instruments
e Anonymous credentials: Age proof
e Price discrimination

4. Implementation and Evaluation

5. Conclusion
21

1. Confidential financial instruments

e Financial derivatives are commonly cited in smart contract applications,
emphasizing the need for authenticated data feeds (e.g., stock prices).

e Reminder: A smart contract is a self-executing digital contract where the
terms of the agreement are written directly into code.

e One popular financial instrument that is easy to implement in a smart
contract is a binary option.

1. Confidential financial instruments

Binary Option?
Charlie

A contract between two parties betting on
whether, at a designated future time (e.g., the
close of day D), the price P* of some asset N
will equal or exceed a predetermined target
price P. The contract condition is: P* = P

1. Confidential financial instruments

Past Approach: Mixicle

Mechanism:

The oracle O can conceal the underlying asset N and target price P for a binary option on
chain. It simply accepts the option details off chain, and reports only a bit specifying the
outcome Stmt := P*>? P

Limitation:
A limitation of a basic Mixicle construction is that the oracle O itself learns the details of
the financial instrument. Prior to DECO, only oracle services that use TEE could conceal

queries from the oracle.

1. Confidential financial instruments

1. Setup:
Charlie @ Alice

1. Confidential financial instruments

2. Settlement:

PROVER O, www.CoolPrices.com
Alice (Winner)
VERIFIER é
Oracle O ¥ N
N N2
ZKP using DEC® &
S = Sig(skyIDg) > GET
/query?function=GLOBAL_QUOTE&
g <— symbol= GOOGL

Host: www.CoolPrices.com

>

{"Global Quote™: {"01. symbol":
"GOOGL", "05. price": "1157.7500",
"07. day": "2019-07-16"}}

1. Confidential financial instruments

3. Payout: PROVER ©_: www.CoolPrices.com

Alice (Winner)
VERIFIER h‘ —
Oracle O *"; '(\/6 @ e
Ny N2

ZKP using DEC® / A)
S = Sig(sk,IDg.)

Seno,s Contract SC

Re

Cas

J G/l/e PQ l_
$

1. Confidential financial instruments

Implementation Details - Two Stage Parsing Scheme:

First Stage:
Party P parses the response R locally and identifies the smallest substring that can convince
Party V.

Second Stage:

Party P proves knowledge of (Rprice, P, r;) in Zero-Knowledge (ZK), ensuring the following:
1. R, ..is asubstring of the decrypted ciphertext R.

2. Tﬁe price starts with “05. price”.

3. The subsequent characters form a floating-point number P*, and that P* > P.

4. com(P, r;) = C,, where C, is the commitment for price P.

Using the CBC-HMAC cipher suite, the ZKP circuit involves redacting the entire record,
computing commitments, and performing string processing.
Secure? Unique keys!

2. Anonymous credentials: Age proof

PROVER 0 : www.isa.epfl.ch
Alice

VERIFIER
Oracle O

3. Price discrimination

Price Discrimination: Same product sold at different
prices to different buyers based on tracking data (e.g.,
Zip codes).

Legal Aspects: Permissible unless it harms
competition (U.S. CFT laws); impacted by privacy
laws (e.g., GDPR in Europe).

DECO's Solution: Allows buyers to verify price
discrimination claims while keeping personal info
hidden.

AES-GCM Cipher: Uses AES-GCM cipher suite and
Reveal mode to reveal only necessary order details.

<table >
<tr>Order Placed: November 23,
2018</tr>
<tr>Order Total: $34.28</tr>
<tr>ltems Ordered: Food
Processor</tr>

</table >

 Shipping Address:

<ul class="displayAddressUL ">
<li class="FullName">Alice
<li class="Address">Wonderland
<li class="City">New York

<Mul>

3. Price discrimination

PROVER ep: www.dmazon.com
Alice
VERIFIER p—
Oracle O \’j u . a»

DEC® ZKP: Price & Date / \

a O\

Third Party

Limitations of DECO in practice

e DECO can’t generate ZK proofs directly without having the Oracle Network.
e Alice and Charlie need to trust O for integrity.

ep:www.ubs.com
/alice/balance

FFFFFFFF % UBS
TLS € Private account >

&3 Savings

Roadmap

1. Introduction

2. DECO protocol

e Three-party handshake
e Query execution
e Proof generation

3. Applications
e Confidential financial instruments
e Anonymous credentials: Age proof
e Price discrimination

4. Implementation and Evaluation

5. Conclusion
33

Implementation

e Implemented in ~4700 lines of C++ code

e Three-party handshake (3P-HS) protocol for TLS 1.2.

e Two-party computation protocols (2PC-HMAC, 2PC-GCM).

o Uses Relic (Paillier cryptosystem) and EMP toolkit for secure computation.

e Integrated with mbedTLS for end-to-end TLS session security.

e Zero-knowledge proofs were implemented using libsnark, with statement templates

adapted for specific applications via SNARK compilers like xjsnark.

Evaluation

Table 1: Run time (in ms) of 3P-HS and query execution

protocols.
LAN WAN
Online Offline | Online Offline

3P-Handshake TLS 1.2 only 368.5(0.6) 1668 (4) 2850 (20) 10290 (10)
2PC-HMAC TLS 1.2 only 133.8(0.5) 164.9 (0.4) | 2520 (20) 3191 (8)
2PC-GCM (256B) 1.2and 1.3 36.65(0.02) 392 (8) 1208.5 (0.2) 12010 (70)
2PC-GCM (512B) 12and13 53.0(0.5) 610(10) | 2345 (1) 12520 (70)
2PC-GCM (1KB) 12and13 101.9(0.5) 830(20) | 4567 (4) 14300 (200)
2PC-GCM (2KB) 1.2and 1.3 204.7(0.9) 1480 (30) | 9093.5(0.9) 18500 (200)

Evaluation

Table 2: Costs of generating and verifying ZKPs in proof-
generation phase of DECO for applications in Sec. 6.

Binary Option Age Proof Price Discrimination

prover time 12.97 £ 0.04s 3.67 = 0.02s 12.68 + 0.02s
verifier time 0.01s 0.01s 0.05s
proof size 861B 574B 1722B

constraints 617k 164k 535k

memory 1.78GB 0.69GB 0.92GB

Roadmap

1. Introduction

2. DECO protocol

e Three-party handshake
e Query execution
e Proof generation

3. Applications

e Confidential financial instruments
e Anonymous credentials: Age proof
e Price discrimination

4. Implementation and Evaluation

5. Conclusion

37

Conclusion

| have no | only have
idea what eyes for
Alice
are they
doing!

Bob (server -bank)

Let’s share a

Alice (client-prover)

key!

Charlie (verifier)

No need for
pinky
promise, we
have DECOI!

Thanks!

CREDITS: This presentation template was created by Slidesgo, and includes icons by Flaticon, and infographics & images by Freepik

39

https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

