
Passive SSH Key Compromise via Lattices
Seminar Report

Roxanne Chevalley
roxanne.chevalley@epfl.ch

Léopold Galhaud
leopold.galhaud@epfl.ch

Paul Tissot-Daguette
paul.tissot-daguette@epfl.ch

March 13, 2025

Abstract

The paper [5] demonstrates that a passive network at-
tacker can extract private RSA host keys from an SSH
server if a fault happens during the signature process.
They use their method to identify hundreds of compro-
mised keys in the wild from multiple vulnerable imple-
mentations.

1 Introduction

RSA digital signatures may expose the signer’s private
key if a computational or hardware error occurs dur-
ing the signing process. In unprotected implementations
that use the Chinese Remainder Theorem along with a
deterministic padding scheme such as PKCS#1 v1.5, just
one faulty signature combined with the public key and
a single GCD computation is enough to recover the se-
cret key. Previous studies identified that faulty hardware
generating invalid signatures could expose RSA private
keys, primarily exploited against TLS. This paper ex-
pands on that, showing that passive attackers can use
lattice-based attacks (specifically a technique by Coron
et al.) to recover RSA keys from single faulty PKCS#1
v1.5 signatures in SSH and IPsec as well.

The authors conducted large-scale internet scans, an-
alyzing historical and current data, uncovering multi-
ple vulnerable implementations due to hardware flaws.
Their dataset included 5.2 billion SSH records, revealing
nearly 600,000 invalid RSA signatures, leading to recov-
ery of 189 unique RSA private keys.

2 Background

2.1 RSA Signature

RSA signatures are fundamental cryptographic primi-
tives widely used in network protocols such as SSH,
IPsec, and TLS. The textbook RSA signature for a

message m involves raising it to the power of a pri-
vate exponent d modulo a public modulus N : s = md

mod N . To set up RSA, we start by choosing two dis-
tinct large primes p and q and computing their prod-
uct as the modulus: N = pq. Then, we select a public
exponent e, coprime with the Euler’s totient function
φ(N) = (p − 1)(q − 1). The private exponent d is com-
puted as the modular inverse of e modulo φ(N), d = e−1

mod φ(N). The security of RSA lies in the fact that
without the knowledge of p and q, φ(N) is hard to find.
Thus it is a hard problem to recover d. Signature ver-
ification is performed by the recipient using the public
exponent e: m

?
= se mod N . This verification works

correctly because of Euler’s theorem, which guarantees
that med ≡ m mod N . This follows from the fact that
ed ≡ 1 mod φ(N) implies ed = 1 + kφ(N), and thus
med = m1+kφ(N) ≡ m mod N .

However, directly signing m ("textbook RSA") is
insecure. Practical implementations therefore utilize
padding schemes such as PKCS#1 v1.5, which determin-
istically hashes the message m with a hash function H
and pads the result to match the length of N . Thus, the
signature is computed as s = Pad(H(m))d mod N . Due
to the deterministic nature of PKCS#1 v1.5 padding, an
observer knowing the message and hash function can re-
construct the exact padded message signed.

2.1.1 CRT-RSA Optimization

An optimization commonly applied to improve RSA sig-
nature computation performance is based on the Chinese
Remainder Theorem (CRT), called CRT-RSA. CRT-
RSA exploits the factorization of the modulus N = pq to
split one large modular exponentiation into two smaller,
faster computations modulo p and q. First, compute
two smaller exponentiations: sp = mdp mod p and
sq = mdq mod q, where dp = d mod (p−1) and dq = d
mod (q−1). These intermediate results are combined us-
ing CRT as follows: s = (sp ·q ·(q−1 mod p)+sq ·p ·(p−1

mod q)) mod N .

1

The CRT optimization significantly accelerates RSA
signature computation because exponentiation modulo
smaller primes p and q is substantially faster than expo-
nentiation modulo their product N .

2.1.2 RSA Fault Attacks

RSA signatures using CRT-RSA optimization are sus-
ceptible to fault-based attacks, particularly when faults
occur during modular exponentiation. A common sce-
nario involves an error occurring during computation
modulo one of the primes, say q. We compute sp = mdp

mod p and ŝq ̸= mdq mod q. This generates an invalid
signature ŝ, which remains correct modulo the other
prime p. Given a correct signature s and a faulty sig-
nature ŝ, an attacker can compute gcd(N, ŝ − s) = p.
This attack was later extended, indeed, knowledge of
the signed message alone suffices, allowing the attacker
to compute gcd(N, ŝe−m) = p. In both cases, the knowl-
edge of p is enough to get the factorization of N and thus
recover the private key used to sign messages.

In an article called Fault Attacks on RSA Signatures
with Partially Unknown Messages Coron et al. [1] intro-
duced a more generalized lattice-based approach for fault
attacks when the signed message is partially unknown.
Specifically, in scenarios where PKCS#1 v1.5 padding is
used, the padded message can be expressed as a linear ex-
pression a+x, where a is known and x is bounded by the
hash function’s output length. The faulty signature sat-
isfies the linear congruence ŝe = a+x mod p, which can
be solved using lattice-based Coppersmith techniques.

2.2 SSH
SSH (Secure Shell) is a protocol that creates a crypto-
graphically protected channel between a client and a re-
mote server machine.

It is typically used for running commands on remote
hosts and transferring files securely.

2.2.1 Handshake and server authentication

In order to establish the secure connection, the client and
the server go through the following steps.

1. Agree on a cipher suite.

2. Perform a Diffie-Hellman key exchange to establish
a shared secret.

3. Both parties compute the session identifier, a hash
of their ids, the shared secret and the messages they
sent to each other.

4. The server authenticates itself by signing the session
ID with its host key.

5. The client verifies the signature to authenticate the
server.

As soon as these steps completed successfully, all mes-
sages sent between the two parties are fully encrypted.
As a result, a passive adversary observing the network
can access the following information:

1. Cipher used.

2. Diffie-Hellman pre-keys.

3. Host’s signature over the session identifier.

2.2.2 Implications of compromised host key

An attacker successfully stealing a server’s private host
key will be able to perform the following attacks

1. Impersonate the server to steal user’s password, po-
tentially leads to full man-in-the-middle.

2. If public key authentication is ued, it is possible to
impersonate the server to steal user’s private data,
but full man-in-the-middle not directly possible.

3. With SSH Agent Forwaring is enabled on the client,
then full man-in-the-middle is possible.

3 Lattice attack

3.1 Lattices
A lattice is a discrete additive subgroup of Rn specified
by a set of vectors called a basis. A lattice is made of all
the points that can be obtained thanks to linear combi-
nations of the basis vectors. The main problem related to
lattices that is useful in this work is the relatively short
vector problem. In order to solve this problem we use
the Lenstra-Lenstra-Lovasz algorithm (LLL) [3]. This
algorithm reduces a lattice basis to smaller basis. This
can be used in order to find a relatively short vector.

3.2 PACD
The Partially Approximate Common Divisor problem is
a mathematical problem where the adversary has access
to two integers N0 = pq0 and N1 = pq1 + r1 with |r1| ≤
2log r and must recover p. This problem, first formulated
by Howgrave-Graham [2], is solvable thanks to lattice-
based algorithms.

The method to solve this problem used in this work [5]
comes from May [4]. The first thing to see here is that
if we can find r1 then we can trivially compute N1 −
r1 = pq1 and then simply compute GCD(N1 − r1, N0)
= p. Therefore our goal is to find the value of r1. It
consists of building a polynomial f(x) that has r1 as a
root mod p and to use this polynomial to build another
set of polynomial Qj(x) depending on two variables t
and k with 0 ≤ j ≤ t. All the polynomials that can
be constructed with different values of j all have r1 as a
root mod pk.

2

We can now take the coefficients of the polynomial
Qj(2

log rx) and plug them into a matrix B. We then use
this matrix as the basis of a lattice L. We can now run
the LLL algorithm [3] to reduce the size of the basis of
this L. The goal of this is to find a relatively short vector
v⃗ that can then be interpreted as the coefficients vector of
a new polynomial g(2log rx). If the coefficients are small
enough, then we can bind |g(z)| ≤ pk for |z| ≤ 2log r and
use g(r1) = 0 mod pk to conclude that g(r1) = 0. We
can simply find the roots of g and recover r1 this way.
As explained earlier this would lead us to a state where
we can trivially compute p.

Now we should look into the conditions for this at-
tack to succeed. For that we need to be able to re-
cover a polynomial g small enough to satisfy the con-
dition |g(z)| ≤ pk for |z| ≤ 2log r. In order for that
to be the case, the lattice L has to satisfy the condi-
tion :

√
dim(B) 2dim(B)/4 det(B)1/ dim(B) < 2log pk

with
B the basis matrix of L, dim(B) = t + 1 and det(B) =

2
t(t+1)

2 log r N
k(k+1)

2
0 . If this is satisfied we can then re-

cover r1 in polynomial time as explained in Ryan et al.
[5]. What this bounds means in our RSA case is that
it is possible to recover a short vector v⃗ and recover the
root if the the hash length is up to a fourth of the RSA
modulus length, which corresponds to : log r ≤ logN/4

3.3 Partially unknown messages attack

When we only partially know the message, the situation
is a bit more complicated. The method presented by
Ryan et al.[5] is inspired from Coron et al. [1] and uses
the PACD solving method presented in the paragraph
above.

The first step is to represent a padded message m as
a string made of known and unknown bits. We have
i known bits as we already know the formatting of the
PKCS#1 v1.5 protocol and the padding function utilized
in our case. The rest of the message, the hashed message
is unknown. If the original message was hashed with an
l-bits hash function, we obtain m = a+h with a being the
midpoint of the range of the possible padded messages
m and h satisfying |h| ≤ 2log l−1. What this means is
that we can obtain every possible padded message m by
adding a to some value h that satisfies this bound.

This helps us set-up our PACD instance. From this
form of m we can compute (ŝe − a mod N) = kp +
h using ŝe = m and the fact that the signature was
incorrectly computed mod q. Once we have this form
we setup our PACD instance as such : N0 = N = pq and
N1 = (ŝe − a mod N) = kp+ h.

Now we can use the solving method presented earlier
to find h and then we compute gcd(N0, N1−h) to obtain
p. We have successfully retrieved the private key !

3.4 The attack in practice

Now that we understood how the attack works, it is time
to look into how efficient is it in practice. The two main
vectors of optimization are minimizing the lattice dimen-
sion (minimizing t) and minimizing the size of the ele-
ments in the lattice (minimizing k) while making sure
we keep a high probability of success for our attack. The
attack was implemented using a mix of Python and Sage-
Math and used a C++ implementation of the lattice re-
duction algorithm and was run on Intel Xeon E5-2699
v4 CPUs single cores running at 2.20GHz.

Empirical results show that the optimal value of k is
⌊t/2⌋. What this means is that there exists a minimal
value of t such that parameters(t, ⌊t/2⌋) succeed with
high probability.

The main results from Ryan et al. [5] are that :

• A lattice of dimension 3 is sufficient to solve a PACD
problem for relatively large errors

• The closer we get from the theoretical bound of
log r = logN/4 the more the attack time increase.
This can be problematic as some parameters used
in SSH such as RSA-1024 with SHA-256 get close
to it. In order to fix that and avoid an attack that
takes too long, Ryan et al. [5] use a brute-force ap-
proach. They randomly guess the first bits of the
unknown part of the message and try the attacks
on the rest of the unknown bits. They try this un-
til the lattice attack succeeds, that means that the
guess was right. The computational cost of this at-
tack is smaller than the cost of reducing very large
lattices.

With most of the parameters combination often used
in SSH, the attack time is very short (< 0.2s). There
are two outliers. First of all RSA-2048 with SHA-512
takes way longer to compute as it is really close to the
theoretical bound and requires a high dimension lattice
to solve. Conveniently a very little amount of signatures
used this combination of parameters in the dataset. Sec-
ondly, among the commonly used parameters combina-
tion, there is one the attack can not be run on : RSA-
1024, SHA-512. Indeed here we are way over the theo-
retical bound of logN/4 making the attack impossible.

4 Data Collection and Analysis

This section summarizes the authors’ approach to
identifying vulnerable signatures, detailing their
methodologies and findings obtained through extensive
active and historical data scans, SSH key recovery
procedures, and thorough analyses of impacted devices.

Active Internet-Wide Scans Weekly IPv4 scans
were conducted for 10 months. Each scan revealed:

3

• Around 22 million hosts with port 22 open.

• 16 million successful handshakes.

• 3 to 5 million RSA host key signatures observed.

Historical Scan Data Censys provided historical scan
data, but it lacked metadata such as cipher offerings,
SSH configurations, and signature hashes. The lattice
attack does not require signature hashes, but they are
necessary for the GCD attack.

Active SSH Key Recovery and Analysis Parsing
the collected data resulted in 1,248,108,063 SSH RSA
host key signatures. Of these:

• 593,671 (0.048%) RSA signatures failed validation.

• 4,962 enabled RSA private key recovery via the lat-
tice attack.

• Recovered 189 unique RSA key pairs.

Processing invalid signatures required approximately
2080 core hours, while performing the lattice attack
took 26 core hours.

Details of Affected Devices Only five unique
SSH version strings produced signatures leading to
factored keys. The most prevalent was the Zyxel SSH
server.

Longevity of Stolen Keys Some hosts vanished
from scans after generating faulty signatures. The
longest-lived faulty key remained for 7 years, with a
median of 4 months.

Fault Classification Zyxel servers producing faulty
signatures almost never generated non-faulty ones,
indicating a likely permanent hardware issue, probably
in ZyWALL firewall devices. Modern Zyxel devices
use OpenSSL and are unaffected. SSHD faults were
intermittent, possibly linked to Hillstone Networks.
Cisco and Mocana errors were rare, and a mitigation
was deployed in 2022.

Long-Term Trends RSA usage is declining, whereas
elliptic curves are becoming increasingly popular.
Nevertheless, RSA-1024 remains consistently present.
Although RSA-3072 was uncommon before 2020, its use
has risen since 2022, aligning with the default settings
introduced in OpenSSH 8.0 in April 2019. The majority
of faulty signatures were observed between 2017 and
2020.

IPSec The paper also discusses IPSec and IKEv1-
2, but no faulty signatures were found and no key was
recovered.

5 Conclusion
The countermeasure against the attacked described in
the paper is trivial. It suffices to validate signatures be-
fore sending them. OpenSSL implemented these protec-
tions since 2001. OpenSSH uses OpenSSL to generate
signatures and is thus protected from this attack.

Lessons from these vulnerabilities highlight essential
cryptographic protocol design principles, notably en-
crypting handshake data as soon as possible and vali-
dating critical operations before sending data over the
network. Moreover, this demonstrates once again that
the use of legacy devices can be risky in unexpected ways.

References
[1] Jean-Sebastien Coron et al. Fault Attacks on RSA

Signatures with Partially Unknown Messages. Cryp-
tology ePrint Archive, Paper 2009/309. 2009. url:
https://eprint.iacr.org/2009/309.

[2] Nick Howgrave-Graham. “Approximate integer
common divisors”. In: International cryptography
and lattices conference. Springer. 2001, pp. 51–66.

[3] Arjen K Lenstra, Hendrik Willem Lenstra, and Lás-
zló Lovász. “Factoring polynomials with rational co-
efficients”. In: (1982).

[4] Alexander May. “Using LLL-reduction for solving
RSA and factorization problems”. In: The LLL al-
gorithm: survey and applications. Springer, 2009,
pp. 315–348.

[5] Keegan Ryan et al. “Passive SSH Key Compromise
via Lattices”. In: CCS ’23 (2023), pp. 2886–2900.
doi: 10.1145/3576915.3616629. url: https://
doi.org/10.1145/3576915.3616629.

4

