

Anonymous Tokens

Serge Vaudenay

EPFL

LASEC

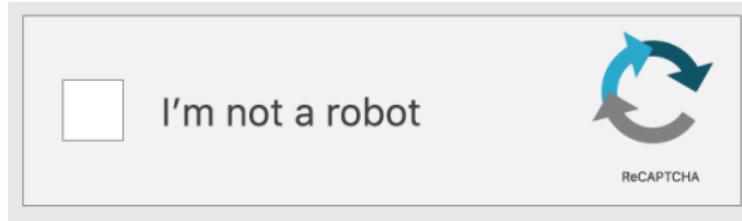
1 Motivation

2 Privacy Pass

3 Extensions

4 Security and Privacy of PP

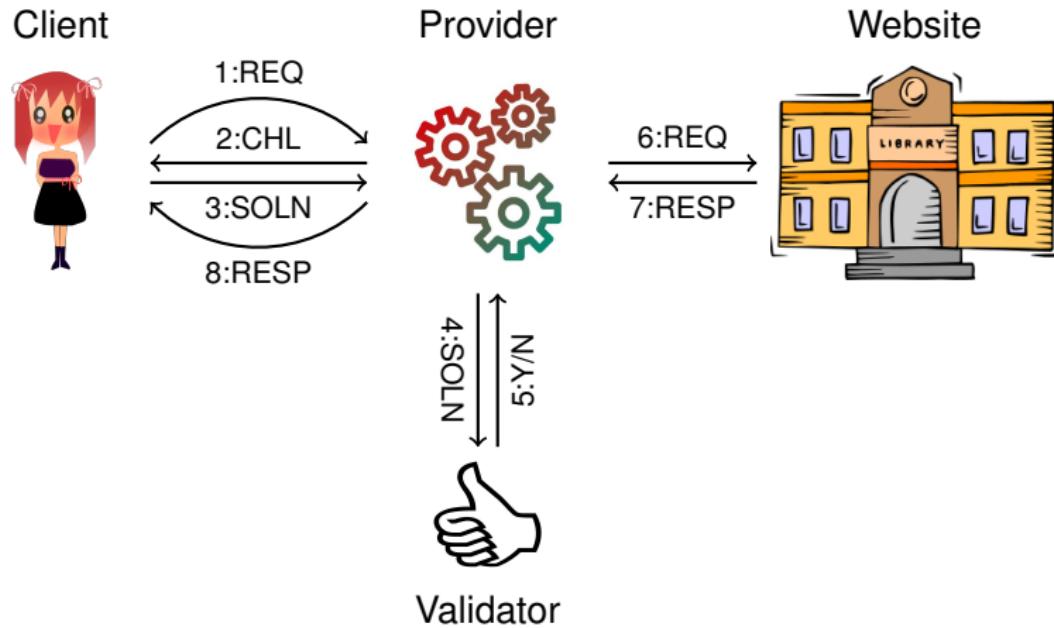
Captcha - Proof of Humanhood



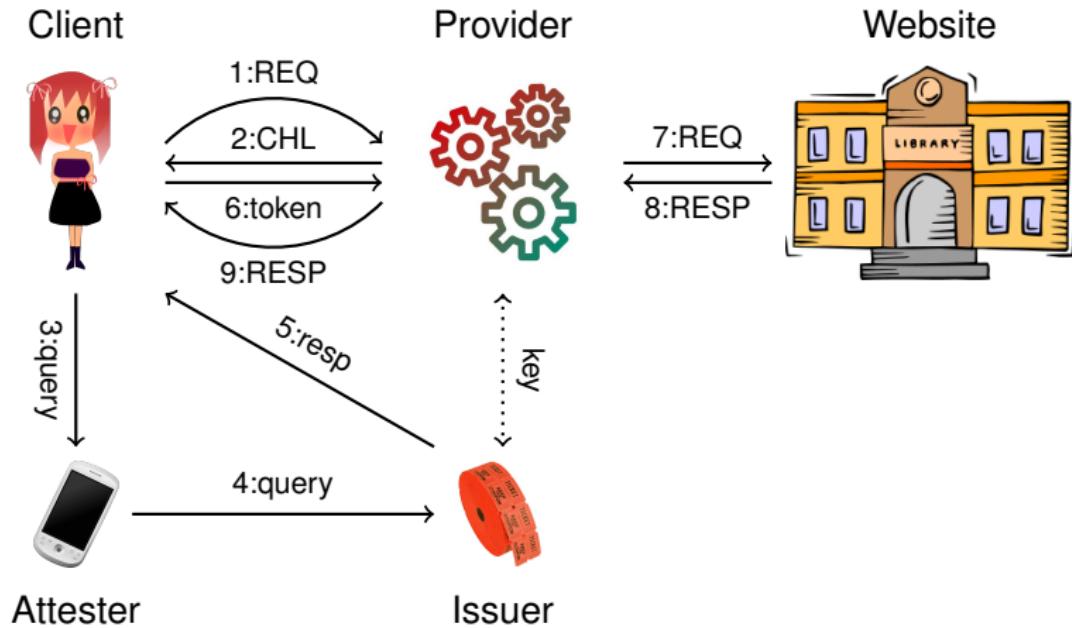
- not a good UX
- sometimes ambiguous
- not really secure
- free human labor to train AI

→ really unpleasant

Browsing Model (e.g. with Captcha)



Model to Eliminate Captchas

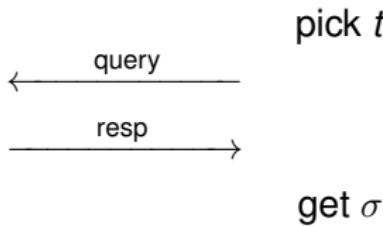
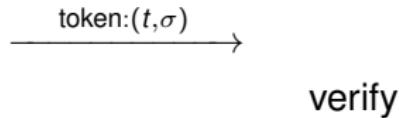


Applications

- separate authorization from service
- let the client carry its own authorization
- ticketing: issuer=cashier verifier=server

Privacy-Preserving e-Ticketing

Issuer (sk)	[sign]	Client	[redeem]	Verifier (sk)
-----------------------	--------	---------------	----------	-------------------------



- 1 Motivation
- 2 Privacy Pass
- 3 Extensions
- 4 Security and Privacy of PP

Privacy Pass (Simplified)

key generation: $Y = \text{sk} \cdot X$

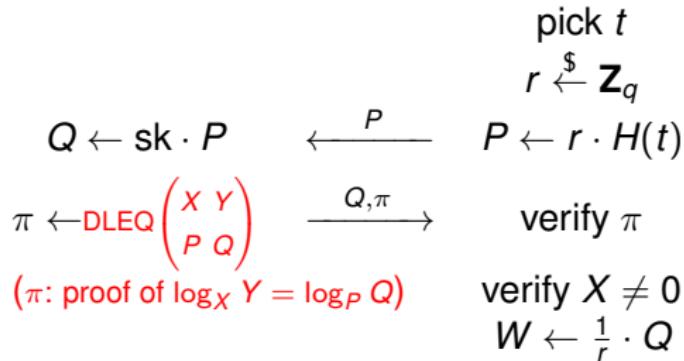
Issuer
(sk)

[sign]

Client
(X, Y)

[redeem]

Verifier
(sk)



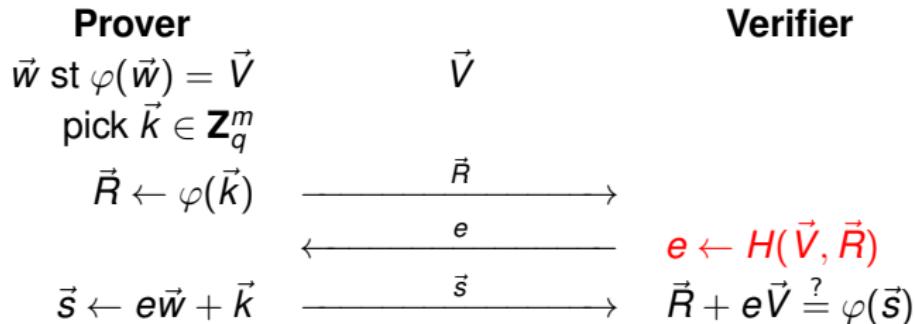
$\xrightarrow{t, W}$ is t fresh?

\approx symmetric blind signature

$W \stackrel{?}{=} \text{sk} \cdot H(t)$

DLEQ from Schnorr Generalized + Fiat-Shamir

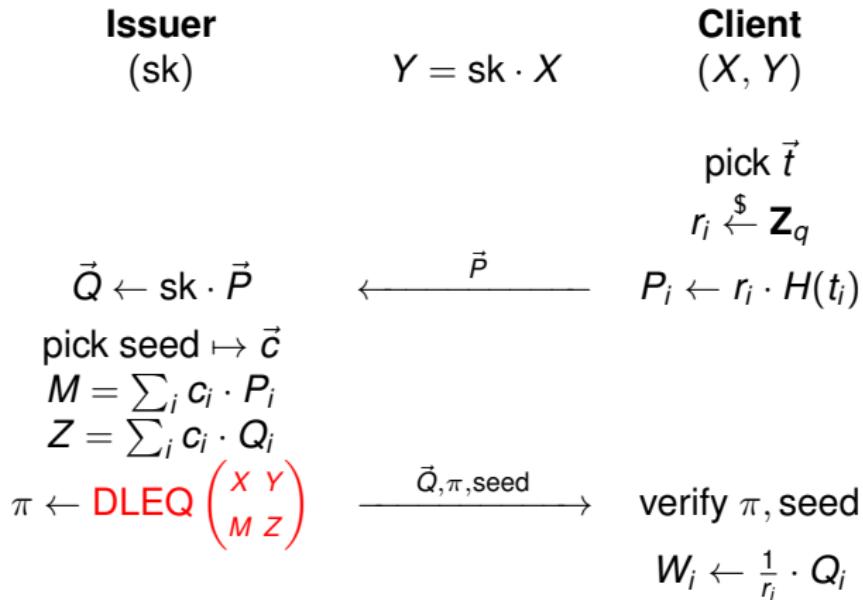
- group homomorphism $\varphi : \mathbf{Z}_q^m \rightarrow G^n$, prime q
- relation $R((\varphi, \vec{V}), \vec{w})$: $\varphi(\vec{w}) = \vec{V}$
- Σ -protocol with Fiat-Shamir:



- $\pi = (\vec{R}, \vec{s})$
- DLEQ: discrete log equality

m	n	\vec{w}	\vec{V}	$\varphi(\vec{w})$
1	2	sk	(Y, Q)	$(\text{sk} \cdot X, \text{sk} \cdot P)$

Privacy Pass with Batch Signature



- batch proof with a pseudorandom linear combination
- add seed in the proof
- Client gets N tokens (t_i, W_i)

Privacy Pass with Request Authorization

Client

$$\mu \leftarrow \text{MAC}_{\text{KDF}(t, W)}(R) \xrightarrow{t, R, \mu} \text{is } t \text{ fresh?}$$
$$\mu \stackrel{?}{=} \text{MAC}_{\text{KDF}(t, \text{sk} \cdot H(t))}(R)$$

Verifier
(sk)

- use (t, W) to derive a one-time MAC key
- use the MAC to authorize request R

No Double-Spending

- t must be fresh (nonce)
- use a Bloom filter to detect t reuse
- update sk frequently (expire tokens)

- 1 Motivation
- 2 Privacy Pass
- 3 Extensions
- 4 Security and Privacy of PP

- PP is an oblivious computation (OPRF) of:

$$\text{PRF}(t) = \text{sk} \cdot H(t)$$

- PP is a “verifiable” by the client (VOPRF) using DLEQ
- we can make it universally verifiable using pairing and $\hat{Y} = \text{sk} \cdot \hat{X}$:

$$e(\text{PRF}(t), \hat{X}) = e(H(t), \hat{Y})$$

- we can use other OPRF
- we can use “randomized PRF” (algebraic MAC)

From OPRF to Algebraic MAC

- instead of a PRF, how about a (non-deterministic) authentication code?
- with secret (x, y)

$$\text{MAC}_{x,y}(m) \rightarrow (P, (x + ym)P)$$

- with secret x

$$\text{MAC}_x(m) \rightarrow \left(r, s, \frac{1}{x+s} (G_1 + mG_2 + rG_3) \right)$$

- can easily replace m by a vector of scalar attributes

Anonymous Token with Hidden Metadata (ATHM)

Client

$$\text{pp} = (\text{gp}, q, G, Z, Y'', m')$$
$$r, t_C \leftarrow \mathbf{Z}_q$$
$$T \leftarrow m' Y'' + t_C Z + rG$$

\xrightarrow{T}

verify m, U, V, t_S, π
verify $U \neq 0$
 $c \leftarrow \mathbf{Z}_q^*$
 $P \leftarrow cU$
 $Q \leftarrow c(V - rU)$
 $t \leftarrow t_C + t_S$
 $\sigma \leftarrow (P, Q)$
output: m, m', t, σ

Issuer

$$\text{sk} = (x, y, y', y'', z), b \in \{0, 1\}, m$$
$$(Z = zG) (Y'' = y'' G)$$

$\xleftarrow{m, U, V, t_S, \pi}$

$t_S \leftarrow \mathbf{Z}_q$
 $d \leftarrow \mathbf{Z}_q^*$
 $U \leftarrow dG$
 $V \leftarrow d(xG + byG + my' G + t_S zG + T)$
 $\pi \leftarrow \text{proof}$

private bit metadata by issuer
public metadata
private metadata by client

redeem: verify $P \neq 0$ and $Q = (x + by + my' + m'y'' + tz)P$

Tricky Part about Private Metadata by Issuer

- can be used as a marker
- → degrades unlinkability
- we must enforce that the information is limited (one bit)
- we must define unlinkability “up to one bit”

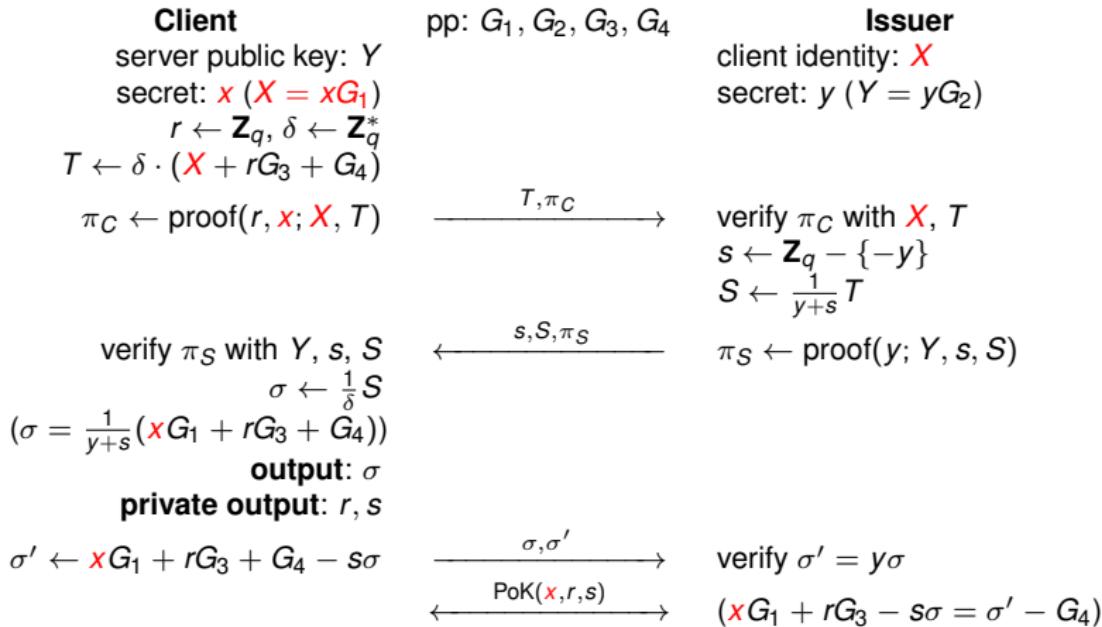
Extension: Anonymous Credentials

- **Anonymous Credentials:**
redeem part is a ZK proof (multi-use credentials)
verifiable without secret
- **Keyed-Verification Anonymous Credentials (KVAC):**
same but with a secret to verify

Extension: Non-Transferability

- nominative + anonymous token !!!
- idea: redeem requires client's long-term secret
- assume that client is identified during issuance
- (later) client proves possession of a valid identity

Non-Transferable Anonymous Token (NTAT)



- 1 Motivation
- 2 Privacy Pass
- 3 Extensions
- 4 Security and Privacy of PP

Privacy: Unlinkability

“signing and redeeming are unlinkable”

Game UNLINK_b:

- 1: setup
- 2: $\mathcal{A} \rightarrow X, Y$
- 3: pick t_0, t_1
- 4: compute P_0, P_1
- 5: $\mathcal{A}(P_0, P_1) \rightarrow Q_0, \pi_0, Q_1, \pi_1$

- 6: verify π_0, π_1
- 7: compute W_0, W_1
- 8: $\mathcal{A}(t_b, W_b) \rightarrow z$
- 9: **return** z

Oracle RO(z):

- 10: **return** $H(z)$

$$\text{Adv} = \Pr[z = 1 | b = 1] - \Pr[z = 1 | b = 0]$$

Theorem

For any \mathcal{A} , we have $\text{Adv} \leq 2^{\frac{2+\#\{H \text{ queries}\}}{q}}$ in ROM.

Proof

- By using the Difference Lemma, we reduce UNLINK to Game 1

$$|\text{Adv} - \text{Adv}_1| \leq 2 \Pr[\neg \log_X Y = \log_{P_0} Q_0 = \log_{P_1} Q_1]$$

- $\text{Adv}_1 = \text{Adv}_2 = \text{Adv}_3$
- Game 3 does not use b so $\text{Adv}_3 = 0$

Game 1:

- 1: setup
- 2: $\mathcal{A} \rightarrow X, Y$
- 3: $\text{sk} \leftarrow \log_X Y$
- 4: pick t_0, t_1, r_0, r_1
- 5: $P_i \leftarrow r_i \cdot H(t_i), i = 0, 1$
- 6: $\mathcal{A}(P_0, P_1)$
- 7: $Q_i \leftarrow \text{sk} \cdot P_i, i = 0, 1$
- 8: $W_i \leftarrow \frac{1}{r_i} \cdot Q_i, i = 0, 1$
- 9: $\mathcal{A}(t_b, W_b) \rightarrow z$
- 10: **return** z

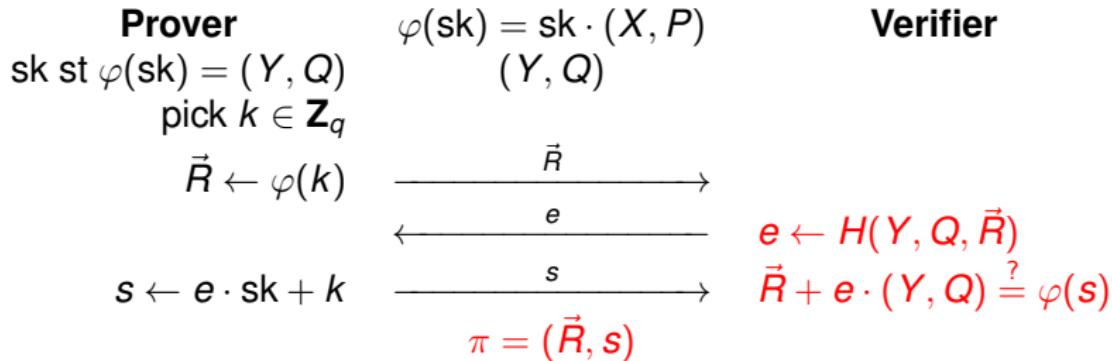
Game 2:

- 1: setup
- 2: $\mathcal{A} \rightarrow X, Y$
- 3: $\text{sk} \leftarrow \log_X Y$
- 4: pick t_0, t_1
- 5: **pick P_0, P_1**
- 6: $\mathcal{A}(P_0, P_1)$
- 7: $W_i \leftarrow \text{sk} \cdot H(t_i), i = 0, 1$
- 8: $\mathcal{A}(t_b, W_b) \rightarrow z$
- 9: **return** z

Game 3:

- 1: setup
- 2: $\mathcal{A} \rightarrow X, Y$
- 3: $\text{sk} \leftarrow \log_X Y$
- 4: **pick t**
- 5: pick P_0, P_1
- 6: $\mathcal{A}(P_0, P_1)$
- 7: $W \leftarrow \text{sk} \cdot H(t)$
- 8: $\mathcal{A}(t, W) \rightarrow z$
- 9: **return** z

Soundness of DLEQ



- set $E = \varphi(\mathbf{Z}_q)$
- if $(Y, Q) \notin E$, then $\Pr[\vec{R} + H(Y, Q, \vec{R}) \cdot (Y, Q) \in E] \leq \frac{1}{q}$
- for each (Y, Q, \vec{R}) query to H , the probability it defines a correct π is bounded by $\frac{1}{q}$ if $\log_X Y \neq \log_P Q$
- the probability that a non-query gives a valid π is $\frac{1}{q}$

Security: One-More-Unforgeability

“cannot redeem ℓ times after $\ell - 1$ signatures”

Game OMUF:

- 1: setup, key generation
- 2: set \mathcal{A} 's view to X, Y
- 3: **for** $i = 1$ to $\ell - 1$ **do**
- 4: $\mathcal{A} \rightarrow P_i$
- 5: compute Q_i, π_i
- 6: add to \mathcal{A} 's view
- 7: **end for**

- 8: **for** $i = 1$ to ℓ **do**
- 9: $\mathcal{A} \rightarrow t_i, W_i$
- 10: redeem (t_i, W_i)
- 11: **end for**

Oracle RO(z):

- 12: **return** $H(z)$

$\text{Adv} = \Pr[\text{all redeems succeed and all } t_i \text{ different}]$

Theorem

For any PPT \mathcal{A} , we have $\text{Adv} = \text{negl}$, assuming the hardness of OMCDH in ROM.

One-More CDH

“cannot compute $\ell + 1$ power-sk from ℓ queries”

Game OMCDH:

- 1: setup
- 2: pick sk
- 3: $\text{cnt} \leftarrow 0$
- 4: $C \xleftarrow{\$} (C_1, \dots, C_{\ell+1})$
- 5: $\mathcal{B}(C) \rightarrow (D_1, \dots, D_{\ell+1})$

Oracle $\mathcal{O}(Z)$:

- 6: increment cnt
- 7: **if** $\text{cnt} > \ell$ **then** abort
- 8: **return** $\text{sk} \cdot Z$

$$\text{Adv} = \Pr[D_i = \text{sk} \cdot C_i \text{ for all } i]$$

Theorem

For any PPT \mathcal{A} playing OMUF, there is a PPT \mathcal{B} playing OMCDH such that $\text{Adv}_{\mathcal{A}} \leq \text{Adv}_{\mathcal{B}} + \text{negl}$.

Proof of PP in ROM

- to construct $\mathcal{B}(C)$:
 - set $X = C_{\ell+1}$
 - call $\mathcal{O}(X)$ and set $D_{\ell+1} = Y = \mathcal{O}(X)$
 - run $\mathcal{A}(X, Y)$
 - whenever \mathcal{A} returns P_i , call $\mathcal{O}(P_i) \rightarrow Q_i$ and forge π_i using ROM programmability (negl loss)
 - whenever \mathcal{A} calls $\text{RO}(t)$, return $H_t = \sum_{j=1}^{\ell} r(t)^{j-1} \cdot C_j$ where $r(\cdot)$ is a random function
 - in the end, invert a Vandermonde matrix with the $r(t_i)$, multiply to \vec{W} to get (D_1, \dots, D_ℓ)
- at the end of the game, assume that every $\text{RO}(t_i)$ was queried in winning cases (negl loss)
→ deduce $W_i = \text{sk} \cdot H_i, i = 1, \dots, \ell$
- deduce $D_i = \text{sk} \cdot C_i, i = 1, \dots, \ell + 1$

OMCDH in the Algebraic Group Model (AGM)

\mathcal{B} must provide an expression of the D_i and P_i in terms of the C_i and $Q_i = \text{sk} \cdot P_i$: $\vec{D} = \mathcal{D}\vec{C} + \bar{\mathcal{D}}\vec{Q}$, $\vec{P} = \mathcal{P}\vec{C} + \bar{\mathcal{P}}\vec{Q}$ ($\bar{\mathcal{P}}$ triangular)

- $(\mathcal{I} - \text{sk}\bar{\mathcal{P}})\vec{P} = \mathcal{P}\vec{C}$ so $\vec{P} = (\mathcal{I} + \text{sk}\bar{\mathcal{P}} + \cdots + \text{sk}^{\ell-1}\bar{\mathcal{P}}^{\ell-1})\mathcal{P}\vec{C}$

$$\underbrace{\vec{D} - \text{sk}\vec{C}}_{0 \text{ if win}} = \left(\underbrace{\mathcal{D} + \text{sk}\bar{\mathcal{D}}(\mathcal{I} + \text{sk}\bar{\mathcal{P}} + \cdots + \text{sk}^{\ell-1}\bar{\mathcal{P}}^{\ell-1})\mathcal{P}}_{\text{MatPoly}(\text{sk})} - \text{sk}\mathcal{I} \right) \vec{C}$$

- in the winning case:

case 1 $\text{MatPoly}(\text{sk}) \neq 0$: $\rightarrow \vec{C}$ in a non-trivial kernel (\rightarrow solve Dlog)

case 2 $\mathcal{D} = 0$: $\rightarrow \text{sk}\vec{C} = \vec{D} = \text{sk}\bar{\mathcal{D}}\vec{P}$ so $\vec{C} = \bar{\mathcal{D}}\vec{P}$ we generate \vec{C} from a $\ell + 1$ vector \vec{P} (\rightarrow solve Dlog)

case 3 other: \rightarrow find sk as a root of MatPoly (\rightarrow solve sk with \mathcal{O})

Theorem

In AGM, solving OMCDH implies solving $(\ell - 1)$ -Dlog:

$$G, \text{sk}G, \dots, \text{sk}^{\ell-1}G \mapsto \text{sk}$$

Conclusion

	anonymous tokens	credentials
non verifiable	OPRF	(O)MAC
univ. verifiable		blind signature

- many cryptographic primitives for authorization
- many options, efficient

References

- Privacy Pass: Bypassing Internet Challenges Anonymously
PoPETs 2018 (Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, Filippo Valsorda)
<https://doi.org/10.1515/popets-2018-0026>
- Anonymous Tokens with Stronger Metadata Bit Hiding from Algebraic MACs
CRYPTO 2023 (Melissa Chase, F. Betül Durak, Serge Vaudenay)
https://doi.org/10.1007/978-3-031-38545-2_14
<https://eprint.iacr.org/2022/1622>
- Non-Transferable Anonymous Tokens by Secret Binding
CCS 2024 (F. Betül Durak, Laurane Marco, Abdullah Talayhan, Serge Vaudenay)
(to appear)
<https://eprint.iacr.org/2024/711>
- Anonymous Credentials Zoo (Michele Orrù)
<https://tokenzoo.github.io>