
DECO: Liberating Web Data Using Decentralized Oracles for TLS
- Summary Report

Bogdana Kolic
390123

Mina Petrovic
390255

Iman Attia
387653

ABSTRACT
Traditional Transport Layer Security (TLS) ensures data confiden-
tiality and integrity but lacks a mechanism for proving the authen-
ticity and provenance of accessed data to third parties. Without
server-side modifications or trusted intermediaries this limitation
restricts data portability and prevents secure data export. DECO
(Decentralized Oracles for TLS)[3] addresses this issue by enabling
users to prove the authenticity of TLS-protected data while pre-
serving privacy through zero-knowledge proofs. Unlike existing
solutions, DECO requires no modifications to web servers and sup-
ports standard TLS, making it a practical and secure approach for
decentralized applications, smart contracts, and privacy-preserving
verification systems.

1 INTRODUCTION
The Internet relies on Transport Layer Security (TLS) to provide
secure communication, ensuring data confidentiality and integrity.
However, TLS does not allow users to show to third parties that
the data they access came from a legitimate source. This limita-
tion restricts data portability, preventing its use in decentralized
applications and trustless environments.

Existing solutions to this problem often require server-side mod-
ifications, rely on trusted hardware, or involve privacy risks. To
address these challenges, DECO (Decentralized Oracle for TLS)
offers a novel approach that enables users to securely export and
verify TLS-protected data without requiring cooperation from web
servers. Using cryptographic techniques such as zero-knowledge
proofs, DECO ensures both authenticity and privacy, making it
applicable to smart contracts, anonymous credential verification,
and other privacy-preserving systems.

This report explores the design of DECO, its advantages over
existing methods, and its potential impact on secure data portability,
as well as applications implemented using DECO.

1.1 Why do we need DECO?
To understand the problem that DECO solves, consider a scenario
involving Alice (the client and prover) and Charlie (the verifier).
Charlie wants to sell his homework solutions but needs to ensure
that the buyer has enough money before making the deal. Alice,
who wants to purchase the solutions, logs into her bank account
(Bob, the server) via a secure TLS connection. Bob, however, is
unaware of Alice’s intent and does not provide a way for her to
prove her account balance to a third party.

Alice has a few options, but none are ideal. She could take a
screenshot of her bank balance, but with the prevalence of photo-
editing tools, Charlie has no way to verify its authenticity. She could
0This report provides a summary on the ideas published by Fan Zhang, Deepak Maram,
Harjasleen Malvai, Steven Goldfeder and Ari Juels in [3] and presented at the 2020
ACM SIGSAC Conference on Computer and Communications Security (CCS ’20)

share her bank credentials, but that would compromise her account
security. Ultimately, there is no straightforward way for Alice to
prove to Charlie that she has enough money without exposing
sensitive information.

This is where DECO comes in. With DECO, Alice can crypto-
graphically prove to Charlie that she has sufficient funds without
revealing her exact balance or any other personal details. DECO
ensures that the proof is verifiable and tamper-proof, solving the
trust issue without requiring cooperation from the bank or com-
promising Alice’s privacy.

2 BACKGROUND
2.1 Transport Layer Security (TLS)
The TLS protocol has two main components: the handshake protocol
and the record protocol.

The handshake protocol is used to establish a connection be-
tween the client and the server: they decide which cryptographic
algorithms (cipher suite) will be used, the server is authenticated,
and a shared-secret is computed. DECO assumes the use of the
elliptic curve Diffie-Hellman key exchange with ephemeral secrets
(ECDHE [2]). This means that the client and the server use asym-
metric cryptography to compute the shared secret, then derive the
symmetric keys (one for encryption, one for the MAC tag) using a
TLS-PRF key derivation function.

The record protocol is used for exchanging the application data.
The plaintext data must first be split into fixed-sized fragments
called records. Then, the MAC tag of each record is computed,
and encrypted together with the data before transmission. DECO
supports the AEScipher with either the CBC-HMAC mode or
GCM.

2.2 Multi-party computation
Multi-party computation protocols allow n parties 𝑃1, ...𝑃𝑛 , each
holding a secret 𝑠𝑖 to jointly compute some 𝑓 (𝑠1, ...𝑠𝑛), without
revealing any of the secrets 𝑠𝑖 to 𝑃 𝑗≠𝑖 . DECO uses the special-case
two-party computation protocols (2PC). In this scenario, 𝑛 = 2,
the protocols are secure if they do not leak any secrets even if an
adversary corrupts one of the two parties.

3 THE DECO PROTOCOL
3.1 Problem statement
The goal of the paper is to construct "oracles" - entities that can
prove provenance and properties of online data [3]. We consider
a prover 𝑃 , a verifier 𝑉 and a server 𝑆 . The prover 𝑃 can obtain
some private data from the server 𝑆 , potentially by providing a
secret input 𝜃𝑠 . 𝑃 wishes to prove to 𝑉 that the data came from 𝑆 .
In addition, it might also want to prove some statements about data.

The goal is that these proofs happen in zero-knowledge, keeping
both the data and the optional secret input hidden from the verifier.

One solution would be to let the server act as an oracle - thus
being a central point of control. DECO, in contrast, implements
decentralized oracles: anyone can prove the provenance of the data
she can access, without requiring neither trusted hardware nor any
server-side modifications. The ideas are presented on the example
of TLS 1.2 using CBC-HMAC, but can be modified to support TLS
version 1.3 and AES-GCM cipher suite. For more details, we refer
the reader to [3].

Threat model. DECO assumes the presence of a static, malicious
network adversary. The server 𝑆 is assumed to be honest, and all of
its responses are considered to be the ground truth. DECO aims to
provide the following security guarantees (as defined in [3]):

• Prover-integrity: A malicious 𝑃 cannot forge content prove-
nance, nor can she cause 𝑆 to accept invalid queries or re-
spond incorrectly to valid ones.

• Verifier-integrity A malicious 𝑉 cannot cause 𝑃 to receive
incorrect responses

• Privacy Amalicious𝑉 learns only public information (Query,𝑆)
and the evaluation of Statement(R), where Query is the query
template and R is the server’s response.

3.2 Overview of DECO

A strawman protocol. A naive implementation that seemingly
achieves the goal would be the following strawman protocol: 𝑃
establishes the connection to 𝑆 , sends the queries and receives the
responses from 𝑆 , and keeps a record of all exchanged encrypted
messages 𝑀̂ = (𝑄̂, 𝑅), where 𝑄̂ = (𝑄1, ...𝑄𝑛) are the queries and
𝑅 = (𝑅1, ...𝑅𝑛) are server’s responses. Then, 𝑃 computes in zero-
knowledge the proof 𝑝𝑟 that each received response decrypts to a
plaintext record and its correct MAC tag with respect to the key
𝑘𝑀𝐴𝐶 , as well as that the evaluation of the desired statement on
the response is 𝑏 = 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 (𝑅). 𝑃 also computes 𝑝𝑞 , the proof
that the query 𝑄 was generated by using the correct template
on its private input 𝜃𝑠 , that is, 𝑄 = 𝑄𝑢𝑒𝑟𝑦 (𝜃𝑠). Finally, 𝑃 sends
(𝑝𝑞, 𝑝𝑟 , 𝑘𝑀𝐴𝐶 , 𝑀̂, 𝑏) to 𝑉 .
Although 𝑀̂ seems to be a secure commitment to the session data
(the CBC-HMAC binds to the underlying plaintext data), the prover
integrity does not hold - the authenticity is not ensured because in
TLS the server and the client both have the same key, hence 𝑃 can
use that key to to insert arbitrary encrypted data in 𝑀̂ . Moreover,
the computational cost of generating 𝑝𝑟 and 𝑝𝑞 is high, and should
be reduced to allow the protocol to be used in practice.

DECO. DECO solves the binding problem by introducing the three-
party handshake: during the TLS handshake, 𝑃 and𝑉 each receive
their share of the session key 𝑘𝑀𝐴𝐶 , and 𝑉 reveals its share only
after 𝑃 has committed to the data. The protocol is implemented
only on the prover and receiver side, from the server’s perspective,
it performs a regular TLS handshake with 𝑃 .
Since the query needs to be sent to 𝑆 before 𝑉 reveals its share of
𝑘𝑀𝐴𝐶 , DECO relies on 2PC to allow 𝑃 and 𝑉 to jointly compute
the correct tag of the query, but introduces custom optimizations

to reduce the computational cost of query execution.

Proof generation. Once the prover commits to a ciphertext, its
goal is to prove statements about it to 𝑉 . The simplest way to do
so is to share the encryption key with 𝑉 . However, this would not
preserve privacy. Another approach 𝑃 could take is using generic
zero-knowledge proofs - but is expensive.
DECO introduces selective opening and two-stage parsing to
counter this. With selective opening, 𝑃 can either reveal only a
chunk of the plaintext message to 𝑉 - Reveal mode, or reveal
everything but some chunks of the plaintext message - Redact
mode. Still, this is not enough. 𝑃 needs to prove that the revealed
string appears in the right context in𝑅 - context integrity. Consider
the following example: Alice wants to prove to Charlie that she
has over $5000 in her account, but her bank statement contains a
substring "balance": $1000. Without context checking, Alice could
send a message containing a substring "balance": $6000 to the server
in the same TLS session and wait for the response. Then, she would
use the same substring in the response to falsely prove a to Charlie
that she has enough money on her account. To optimize the cost of
zero-knowledge proofs of ontext integrity, DECO first pre-processes
the response and then proves in zero-knowledge that the revealed
string appears in the right context - this is the two-stage parsing.

3.3 Three-party handshake
DECO’s three-party handshake (3P-HS) allows 𝑃 and 𝑉 to act as
one client to the server 𝑆 , providing a way for 𝑃 to commit to the
session data without requiring any changes to the server’s code.
At the end of the protocol, 𝑃 and 𝑆 hold the same encryption key
𝑘𝐸𝑁𝐶 , while 𝑃 and 𝑉 receive secret shares of the MAC key, 𝑘𝑀𝐴𝐶

𝑃

and 𝑘𝑀𝐴𝐶
𝑉

, so that the server’s key 𝑘𝑀𝐴𝐶 is equal to 𝑘𝑀𝐴𝐶
𝑃

+𝑘𝑀𝐴𝐶
𝑉

.
In ECDHE, we are working with points on the elliptic curve 𝐸𝐶 (F𝑝),
generated by a point𝐺 . The handshake begins when 𝑃 sends a stan-
dard TLSClientHellomessage to 𝑆 . 𝑆 respondswith a ServerHello
message and a signed ephemeral DH public key 𝑌𝑆 = 𝑠𝑆 ·𝐺 . 𝑃 veri-
fies that the certificate from the ServerHello message is valid and
checks the signature, then it forwards the message to 𝑉 to perform
the same checks. If everything is correct, 𝑉 computes 𝑌𝑉 = 𝑠𝑉 ·𝐺
from its sampled secret 𝑠𝑉 and sends it to 𝑃 . 𝑃 then uses its secret
𝑠𝑃 to compute 𝑌𝑃 = 𝑠𝑃 ·𝐺 + 𝑌𝑉 and sends it to 𝑆 , which uses it to
compute the shared secret 𝑍 as 𝑠𝑆 · 𝑌𝑃 . As we want 𝑍 = 𝑍𝑃 + 𝑍𝑉 ,
the prover and the verifier compute their shares as 𝑍𝑃 = 𝑠𝑃 ·𝑌𝑆 and
𝑍𝑉 = 𝑠𝑉 · 𝑌𝑆 , respectively. Notice that:

(1) This protocol is secure as long as the discrete logarithm is
hard in 𝐸𝐶 (F𝑝), and

(2) 𝑍 stays hidden from both 𝑃 and 𝑉 .

The second step of the 3P-HS is the key derivation - 𝑃 and 𝑆 use
a 2PC protocol to compute their additive shares of the key from
their secrets 𝑍𝑃 and 𝑍𝑉 . This entails performing both arithmetic
operations (to add points in 𝐸𝐶 (F𝑝)), and bitwise operations (to
evaluate the TLS-PRF) function, which incurs a high cost. Since the
TLS-PRF function is evaluated on the x-coordinate of 𝑍 ∈ F𝑝 , and
addition of points in F𝑝 costs a lot less than addition of points in
𝐸𝐶 (F𝑝), DECO proposes an intermediary step in the key derivation
process: 𝑃 and 𝑉 first use an 𝐸𝐶𝑡𝐹 function [3] to convert their

2

Figure 1: The three phases of DECO [3]

shares of the secret 𝑍 in 𝐸𝐶 (F𝑝) into shares of 𝑍 ’s x-coordinate
in F𝑝 . Once the 𝐸𝐶𝑡𝐹 function is executed, 𝑃 and 𝑉 evaluate the
TLS-PRF in 2PC.

3.4 Query execution
After the three-party handshake, 𝑃 and 𝑉 have their secret shares
𝑘𝑀𝐴𝐶
𝑃

and 𝑘𝑀𝐴𝐶
𝑉

of the key 𝑘𝑀𝐴𝐶 , which they use to jointly com-
pute the MAC tag of the query in 2PC, before 𝑃 can send it to 𝑆 .
However, computing the tag of a message𝑚 using the key 𝑘 in 2PC
according to the formula 𝐻𝑀𝐴𝐶𝐻 (𝑘,𝑚) = 𝐻 ((𝑘 ⊕ 𝑜𝑝𝑎𝑑) | |𝐻 ((𝑘 ⊕
𝑖𝑝𝑎𝑑) | |𝑚)), where 𝐻 represents SHA-256, can be expensive for
large messages. In case of a large query, most of the complexity
lies in computing the inner hash 𝐻 ((𝑘 ⊕ 𝑖𝑝𝑎𝑑) | |𝑚), as the outer
hash is computing the hash of the inner hash - a substantially
shorter message. The idea for the optimization is to leverage the
Merkle–Damgård scheme, and primarily perform the computations
locally at 𝑃 , without using the 2PC. If we denote 𝑓𝐻 the one-way
compression function of 𝐻 , the computation of the inner hash be-
comes 𝐻 ((𝑘 ⊕ 𝑖𝑝𝑎𝑑) | |𝑚) = 𝑓𝐻 (𝑓𝐻 (𝐼𝑉 , 𝑘𝑀𝐴𝐶 ⊕ 𝑖𝑝𝑎𝑑), 𝑄), with 𝐼𝑉

the initialization vector. Now, as 𝑓𝐻 is one-way, the key 𝑘𝑀𝐴𝐶 can-
not be recovered from 𝑓𝐻 (𝐼𝑉 , 𝑘𝑀𝐴𝐶 ⊕ 𝑖𝑝𝑎𝑑), and there is no reason
to keep using the 2PC to compute the inner hash. We just need to
provide 𝑓𝐻 (𝐼𝑉 , 𝑘𝑀𝐴𝐶 ⊕𝑖𝑝𝑎𝑑) to 𝑃 and it can finish the computation.
Then, we use 2PC to compute the outer hash on a smaller input.

3.5 Full protocol
When 𝑃 receives all the responses from the server, it can send 𝑀̂ to
𝑉 as a commitment, and𝑉 will respond by revealing its share of the
MAC key. With the full key 𝑘𝑀𝐴𝐶 , 𝑃 can then verify the integrity
of 𝑆 ’s responses and start proving statements about them. Figure 1
shows all three phases of DECO.

3.6 Selective opening
The efficiency of selective opening depends on the cipher suite
used in the TLS session: DECO can reveal chunks of a message
at a TLS record-level in CBC-HMAC, and redact them at an AES
block-level. With GCM, both revealing and redacting is efficient

at a block level. We show how DECO implements the Reveal mode
with CBC-HMAC, the other examples can be found in [3].

Revealing a TLS record. Proving the correct encryption of a
message𝑀 into 𝑀̂ without sharing the encryption key 𝑘𝐸𝑁𝐶 can
be done by proving the correct encryption of each AES block (up
to 1027 blocks) in zero knowledge. To optimize this in CBC-HMAC
mode, DECO lets 𝑃 prove in zero knowledge the encryption of the
last 3 blocks corresponding to the MAC tag, then reveal the entire
plaintext record to 𝑉 . This scheme is secure if the hash-function in
HMAC is collision-resistant.

4 APPLICATIONS
DECO can be used in any oracle-based application. To demonstrate
its versatility, the authors implemented and evaluated three use
cases:

(1) A confidential financial instrument using smart contracts.
(2) Anonymous credential conversion from legacy credentials.
(3) Privacy-preserving price discrimination reporting.

4.1 Confidential financial instruments
Financial derivatives, such as binary options, are commonly im-
plemented in smart contracts and rely on authenticated data feeds
like stock prices. A binary option is a contract between two parties
wagering on whether the price 𝑃∗ of an asset 𝑁 will meet or exceed
a target price 𝑃 at a future time (e.g., the close of day 𝐷). A smart
contract can call an oracle 𝑂 to determine the outcome.

Traditionally, the oracle learns the details of the financial instru-
ment, including 𝑁 and 𝑃 . DECO enables secure execution of binary
options without revealing these details to the oracle. Unlike previ-
ous methods that required Trusted Execution Environments (TEEs),
DECO preserves privacy by processing option data off-chain and
reporting only the outcome.

The concept is that the winner of the binary option acts as 𝒫
and receives a signed statement, Stmt, from 𝒪, who serves as the
verifier 𝒱 . We now outline the protocol and how it functions.

Protocol. Let {sk𝒪, pk𝒪} represent the oracle’s key pair. In
this protocol, a binary option is defined by three parameters: the
asset name 𝑁 , the threshold price 𝑃 , and the settlement date 𝐷 .
A message 𝑀 is committed as 𝐶𝑀 = com(𝑀, 𝑟𝑀) using a random
witness 𝑟𝑀 .

(1) Setup:Alice and Bobmutually agree on the binary option pa-
rameters {𝑁, 𝑃, 𝐷} and deploy a smart contract 𝑆𝐶 identified
by ID𝑆𝐶 . This contract includes pk𝒪 , the parties’ addresses,
and commitments to each parameter {𝐶𝑁 ,𝐶𝑃 ,𝐶𝐷 }, along
with witnesses known to both participants. They also estab-
lish the public parameters 𝜃𝑝 (such as the URL to fetch asset
prices).

(2) Settlement: If Alice wins the option, she must prove her
claim. To do so, she utilizes DECO to construct a zero-knowledge
proof (ZK proof) demonstrating that the asset price retrieved
supports her position. She and 𝒪 (the verifier) execute the
DECO protocol to obtain the asset price from 𝜃𝑝 . It is as-
sumed that the response includes (𝑁 ∗, 𝑃∗, 𝐷∗). Along with

3

the DECO ZK proof that confirms the source 𝜃𝑝 . Upon suc-
cessful proof verification, the oracle returns a signed copy.
If the proof verification succeeds, the oracle generates a dig-
itally signed message that includes the contract ID, denoted
𝑆 = Sig(sk𝒪, ID𝑆𝐶).

(3) Payout: Alice sends the signed message 𝑆 to the smart con-
tract. Upon validating the signature, the contract releases
the payment to the designated winner.

4.2 Legacy credentials to anonymous
credentials: Age proof

User credentials are typically confined within the service provider’s
environment.While some providers offer third-party access through
OAuth tokens, these tokens often expose user identities. DECO
enables users with existing credentials—referred to as legacy cre-
dentials—to prove specific statements about their credentials to
external verifiers, all while preserving anonymity. DECO is the
first system to transform any web-based legacy credential into an
anonymous one, without needing backend server modifications or
trusted hardware.

As a use case, consider a student wishing to prove they are over
18 using demographic data stored on their university’s website.
This age verification can then be shared with third parties such
as a government agency for issuing a driver’s license or a health-
care provider for medical consent. This scenario is implemented
using the AES-GCM cipher suite and a two-stage parsing approach,
optimized using unique key identifiers.

4.3 Price discrimination
Price discrimination refers to the practice of offering the same
product or service at varying prices to different customers. With
widespread consumer tracking, many e-commerce and booking
platforms employ advanced forms of price discrimination—for ex-
ample, tailoring prices based on a buyer’s zip code. Although this
strategy can enhance economic efficiency and is generally lawful,
it faces regulatory scrutiny in certain regions. In the United States,
the FTC prohibits price discrimination when it causes competi-
tive harm, and new privacy-focused regulations in Europe, such as
the GDPR, are also questioning its legality. Regardless of legality,
most consumers are uncomfortable with being targeted by price
discrimination.

At present, there is no reliable method for users to report in-
cidents of online price discrimination. DECO addresses this by
enabling users to prove that the price they were shown for a prod-
uct exceeds a certain threshold—without revealing private details
like their name or address. This claim is cryptographically verifiable.
We implement this scenario using the AES-GCM cipher suite for
the TLS session and selectively disclose 24 AES blocks that include
the relevant order information and the request URL.

5 IMPLEMENTATION
The implementation of DECO involved developing the three-party
handshake protocol (3P-HS) for TLS 1.2 and query execution pro-
tocols (2PC-HMAC and 2PC-GCM) in approximately 4,700 lines
of C++ code. The system used a hand-optimized TLS-PRF circuit
with an AND complexity of 779,213, along with AES circuits from

previous work. Cryptographic operations were supported by Relic
for the Paillier cryptosystem and the EMP toolkit for maliciously
secure two-party computation (2PC) protocols. Integration with
mbedTLS, a widely used TLS implementation, was achieved for
3P-HS and 2PC-HMAC, while 2PC-GCM required additional engi-
neering effort.

For proof generation, DECO employed zero-knowledge proofs
(ZKPs) using libsnark [1], chosen for its mature tooling and efficient
verification. Developers could adapt statement templates for spe-
cific applications using SNARK compilers such as xjsnark, which
abstracted low-level circuit details.

6 EVALUATION
Performance evaluations were conducted in both LAN and WAN
settings. In the LAN environment, DECO demonstrated high effi-
ciency, with the three-party handshake completing in 0.37 seconds
and 2PC-HMAC processing records in 0.13 seconds each. The cost
of 2PC-GCM varied with query size, ranging from 36.65 ms for
256B requests to 204.7 ms for 2KB requests. In the WAN setting,
network latency became the dominant factor, increasing the online
phase of 3P-HS to 2850 ms. Despite this, the performance remained
acceptable for applications where DECOwould be used periodically
rather than in real-time.

Proof generation metrics were measured across three applica-
tions: Binary Option, Age Proof, and Price Discrimination. The Bi-
nary Option application, the most complex, required around 12.97
seconds for proof generation, 617000 arithmetic constraints, and
1.78 GB of memory, with proofs sized at 861 B. Verification times
were consistently fast, taking no more than 0.05 seconds. While
DECO is slower than trusted hardware solutions like Town Crier
(which completes similar tasks in 0.6 seconds), it provides stronger
cryptographic guarantees without relying on trusted execution
environments.

7 CONCLUSION
By eliminating the need for server-side cooperation and enabling
secure data export, DECO provides a significant improvement over
existing oracle-based approaches. Its compatibility with standard
TLS and its ability to facilitate trustless verification make it a pow-
erful tool for decentralized and federated systems, where data au-
thenticity and integrity are crucial.

REFERENCES
[1] 2025. libsnark: AC++ library for zk-SNARKs. (2025). https://github.com/scipr-lab/

libsnark Accessed: 2025-03-28.
[2] Bodo Moeller, Nelson Bolyard, Vipul Gupta, Simon Blake-Wilson, and Chris

Hawk. 2006. Elliptic Curve Cryptography (ECC) Cipher Suites for Transport
Layer Security (TLS). RFC 4492. (May 2006). https://doi.org/10.17487/RFC4492

[3] Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and Ari Juels.
2020. Deco: Liberating web data using decentralized oracles for tls. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security.
1919–1938.

4

https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://doi.org/10.17487/RFC4492

	Abstract
	1 Introduction
	1.1 Why do we need DECO?

	2 Background
	2.1 Transport Layer Security (TLS)
	2.2 Multi-party computation

	3 The DECO protocol
	3.1 Problem statement
	3.2 Overview of DECO
	3.3 Three-party handshake
	3.4 Query execution
	3.5 Full protocol
	3.6 Selective opening

	4 Applications
	4.1 Confidential financial instruments
	4.2 Legacy credentials to anonymous credentials: Age proof
	4.3 Price discrimination

	5 Implementation
	6 Evaluation
	7 Conclusion
	References

