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BACKGROUND




Elliptic curve cryptography 4135

* Curve defined over finite field F

- With point at infinity O and group law +, defines
a group
-« O identity element

« P+ @ found with “chord-and-tangent” rule

- Scalar multiplication [k(]P =P+ P+ -+ P

- Finding k given (P, [k]P) is hard on certain curves
(ECDLP)




EC DSA 5/35
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Nonce is sensitive

« Nonce k should NEVER be leaked
- In case of full leakage, secret key sk easily recovered

S:H(m)—l—sk-'r(E)Sk:k-s—H(m)

k r




LADDERLEAK




(0)V/= I'ViEW 8/35

Less than one bit of leakage ?

- Uses the leak of one most significant bit (MSB) of the nonce

- Leak can have a probability < 1to be correct

- Needs MSBs from many different nonces

Combines methods based on the Hidden Number Problem (HNP) and Discrete
Fourier Transform (DFT)

Can be tweaked depending on available resources and needs

Leakage is part of the paper



HIDDEN NUMBER PROBLEM (HNP) AND
ECDSA




HNP with erroneous input

g a prime number

sk € Z, a secret.

h;, k; € Z, uniformly distributed for all i = {1, ..., M}
z;, = k; —h, -skmod q

x; @ distribution on {0,1}° for b > 0

EMSB, (z) = MSB,(z) ®e

* e is a b bits error string sampled from y;,

HNP with erroneous input asks one to find sk given M samples
(h;, z;) and EMSBXb(kZ.)



ECDSA as the HNP 11/35

ECDSA signatures from the same private key with leaky nonces are instances of the
same HNP

sZ:H(mi)—l_Sk'ri@ H(m,) _k s
k, S; S,




BIAS FUNCTION




Bias function 13/35

- Goal: Function B, quantifies (modular) bias of a collection of samples K = {’%}il
* B,(K) ~ 1when K is a collection of biased samples in Z,
* B,(K) ~ 0when K is a collection of uniformly distributed samples in Z,

- ldea: Use the inverse discrete Fourier transform (DFT)

M
L 1 E : 2772—7'
= e q
M
1=1



Intuition

: Im : Im
Uniform k; € Z, = Biased k; € [0, q/2) "
> Re > Re




Bias function 15/35

For [ fixed MSBs of the samples, the bias function’s magnitude can be approximated
(for a large ¢) with



Erroneous form

Attack focuses on inputs with an error on the MSB of ¢ € |0, 5], bias should take this
into account.

Let b € {0,1},¢ € [0, 3] and an even integer ¢ > 0. Let K be a random variable with
the following distribution over Z,

1 —
S pb—

Pr(MSB(K) = 0) = (1 —b) oReTs

1—¢ €
Pr(MSB(K)=1)=5b /2 + (1 —b)q/—2

The modular bias of K is

B,(K) = (1 - 2)B,(K,)

for K, uniformly distributed over [bZ, (b + 1)%]



BLEICHENBLACHER'S ATTACK FRAMEWORK




Idea to solve HNP and naive approach

. . M
* B,(K) quantifies bias on K = {ki}i =12 +h; - skp_)

- HNP states that we know {(z;, hi)}?il

- We can compute K, = {2, + h; -w}?il foranyw € Z,
- Observation: |B (K, )| is highest when w = sk

B, (K,)| ~ \/LM when w # sk

- We could try all possible w € Z,

- Not better than exhaustive search



Collision search

- Observation: Linear combinations generating M’ newsamples{( 1,2) ) where

7=1
h’; < Lypr broaden the peak’s width to approximately
« Reduces number of candidate points to Lppy
- Can be tweaked taking into account O(Lgpy log Lypr) time and O(Lgpr) Space

- Downside: Peak height reduces exponentially with the number of linear combina-
tions

L FFT

For coefficients w; ; € {—1,0,1} sit

{(h;7 _{(Z w,] zvz w,] z)}
The new peak helght is | B, x| where Q, = > w;

M/

1=1




Collision search
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The attack

Algorithm 3 Bleichenbacher’s attack framework

Require:
{(hi, z,-)}f."zf1 - HNP samples over Zg.
M’ - Number of linear combinations to be found.
Lgpr - FFT table size.
Ensure: Most significant bits of sk
1: Collision search
2: Generate M’ samples {(h]’.,z]’.)}]].‘fl, where (h}, zJ’.) =
(X wi,jhi, X wi jzi) is a pair of linear combinations
with the coefficients w; j € {-1,0, 1}, such that for j € [1, M’]
(1) Small: 0 < hJ'. < Lgpr and

(2) Sparse: [Bo(K)|™ > 1/VM’ forall j € [1, M’], where Q; :=
2ilwijl-
Bias Computation
ZI:(Z(), R ’ZLFFT_l) — (0, oo ,0)
for j =1to M’ do
, , 2rz/qi
Zhj — Zhj +e J
end for _
{Bq(Kw,) };5 ™" « FFT(Z), where w; = iq/Lgpr.
Find the value i such that |Bq(Kwi)| is maximal.
10: Output most significant log Lypr bits of w;.

Y e N Doew

Note: HNP samples are chosen according to the MSB of the leaked nonce



XK -LIST SUM PROBLEM




K -list sum problem 23/35

Definition

Given X sorted lists L, ..., L, each of which consists of 2 uni-
formly random [-bit integers, the X -list sum problem consists of
finding a non-empty list L’ consisting of 2’ = > w,,, where X
-tuples (zy,....,2x) € L; X ... X Ly and (wq,...,wx) € {—1,0,1}%
satisfy MSB, (x”) = 0 for some target parameter n <



4-list sum problem 24135

Algorithm 4 Parameterized 4-list sum algorithm based on
Howgrave-Graham-Joux [35]

Require:
{Li }‘;-121 - Sorted lists of 2% uniform random £-bit samples.
n - Number of nullified top bits per each round.
v € |0, a] - Parameter.
Ensure: £’ - List of (£ — n)-bit samples.
1. For each ¢ € [0,27) :

a. Look for pairs (x1, x2) € L1 X L3 such that MSB4(x1 +x2) =
c. Store the expected number of 22974 = 29 output sums
x1 + X2 in a new sorted list L'l'. Do the same for L3 and
L4 to build the sorted list LE.

b. Look for pairs (x],x;) € L] x L) such that MSB,(|x] —
x5|) = 0. Store the expected number of g2a-(n-a) = p3a-n
output sums |x] — x£| in the list £’.

2. Output £’ of the expected length M’ = 234+v~-"

- The 4-list sum algorithm efficiently reduces candidate nonces by performing a
collision search to generate M’ samples with the top n, bits null while respecting
the small and sparse linear combination properties.
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UNIFIED TIME-SPACE-DATA TRADEOFFS




Tradeoffs for parametrized 4-list Sum algorithm

- Time-space tradeoffs analyzed in the previous works such as HGJ approach made
two artificial assumptions:

1. M = M’ = Lgpy in the Bleichenbacher’s attack framework.
2. The number of collided bits is a fixed constant in the 4-list sum algorithm

- a third parameter of data complexity expanded to the time-space complexity
tradeoffs

=>a “mild” generalization of Dinur’s tradeoff formula for our parametrized 4-list sum
algorithm



Tradeoffs for parametrized 4-list Sum algorithm

- Following tradeoff holds for the 4-list sum problem approached in the paper:
22M'N=TM? &m’ =3a+v—n

- N = 2" =>n:= # of top bits to be nullified

« M =2™ =4 x 2% => # of input samples

- 2% => length of each sublist

- M’ =2m" < 9% => # of output samples s.t. top n bits are 0

- v € [0,a] => parameter deciding # of iterations of collision search

« T =2 = 221V => time complexity.

- Gives more flexibility to sample amplification



Integration with Bleichenbacher and Linear Programming 29135

Table 2: Linear programming problems based on the itera-
tive HG]J 4-list sum algorithm (Algorithm 5). Each column

R . . _ corresponds to the objective and constraints of linear pro-
Construct a l'l near program mi ng prOb gramming problems for optimizing time, space, and data
le m by | nte g ratl n go complexities, respectively. The boxed equations are the com-
1t ad eoff fo m l.a for 4 lSt S al mon constraints for all problems.

. Lr rmu ! um at-
gorithm & Time Space Data
. . minimize fyp =...= tp- my=...=My- Min
- Following two constraints of whiectto  — ot %tmx 0 < o
. subject to mi < Mmax — m; < Mmax
Bleichenbacher’s attack frame- bjec 1 — T
mir1  =3a; +vi —n; i T —
work Ho = ai+o; iefor—1]
. . . Vi <a ielo,r—1]
2. small linear combination mi =ai+2 i€ [0.r—1]
. . . mit < 2a; iel0,r—1]
3. sparse linear combination me = mo+ f
4 < Crer + [+ 20 n
my = 2(log & — 4" log(|B4(K)I))




Integration with Bleichenbacher and Linear Programming
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Figure 3: Time-Data tradeoffs where mmax = 30, nonce k is 1-bit biased, slack parameter « = 8 and the number of rounds r = 2.
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Figure 4: Time-Data tradeoffs where mpy,x = 35, nonce k is 1-bit biased, slack parameter « = 8 and the number of rounds r = 2.

- optimal time and data complexities for attacking a 1-bit biased HNP with varying
FFT sizes and maximum memory bounds



EXPERIMENTS AND RESULTS




Experiments and results

- Attack successfully implemented
- Used modified version of OpenSSL 1.0.2u
+ Modifications for convenience in MSB leakage
- Recovered secret keys on P-192 and sect163r1 curves



Experiments and results

- P-192 (~96 bits security)
24 AWS instances with 96 vCPUs for collision search
- 2 AWS instances with 4 TB of RAM for FFT tables of size Lypr = 2% entries of 32B

e | Input | Output | Lgpr | Total time | Recovered MSBs
0 229 227 238 113.5h 39
0.01 | 2% 230 237 64h 39




Experiments and results

- sect163r1 (~80 bits security)
 Cluster of 16 nodes with 16 core CPUs + 128 GB RAM fore =0
« 48-core + 512 GB RAM workstation for e = 0.027

£ Input | Output | Lypy | Total time | Recovered MSBs
0 223 227 23 8h 36
0.027 | 2% 229 234 43h 35
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https://www.maths.ox.ac.uk/system/files/media/picture3.png

Cryptography and security (COM-401), fall 2024

Presentation of LadderLeak https://youtu.be/UbjOKMTVMWQ
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