
LadderLeak: Breaking ECDSA With Less
Than One Bit Of Nonce Leakage
Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi
Tibouchi, Yuval Yarom

CCS 2020

Presentation by Srushti Singh & Jonathan Poveda Colominas
07.04.2025

Contents

1. Background
2. LadderLeak
3. Hidden Number Problem (HNP) and ECDSA
4. Bias function
5. Bleichenblacher’s attack framework
6. 𝒦-list sum problem
7. Unified Time-Space-Data tradeoffs
8. Experiments and results

Background

Elliptic curve cryptography 4/35

• Curve defined over finite field 𝔽
• With point at infinity 𝑂 and group law +, defines

a group
• 𝑂 identity element

• 𝑃 + 𝑄 found with “chord-and-tangent” rule
• Scalar multiplication [𝑘]𝑃 = 𝑃 + 𝑃 + ⋯ + 𝑃
• Finding 𝑘 given (𝑃 , [𝑘]𝑃) is hard on certain curves

(ECDLP)

ECDSA 5/35

Nonce is sensitive 6/35

• Nonce 𝑘 should NEVER be leaked
• In case of full leakage, secret key sk easily recovered

𝑠 = 𝐻(𝑚) + sk · 𝑟
𝑘

⇔ sk = 𝑘 · 𝑠 − 𝐻(𝑚)
𝑟

LadderLeak

Overview 8/35

• Less than one bit of leakage ?
• Uses the leak of one most significant bit (MSB) of the nonce
• Leak can have a probability < 1 to be correct
• Needs MSBs from many different nonces

• Combines methods based on the Hidden Number Problem (HNP) and Discrete
Fourier Transform (DFT)

• Can be tweaked depending on available resources and needs
• Leakage is part of the paper

Hidden Number Problem (HNP) and
ECDSA

HNP with erroneous input 10/35

• 𝑞 a prime number
• sk ∈ ℤ𝑞 a secret.
• ℎ𝑖, 𝑘𝑖 ∈ ℤ𝑞 uniformly distributed for all 𝑖 = {1, …, 𝑀}
• 𝑧𝑖 = 𝑘𝑖 − ℎ𝑖 · sk mod 𝑞
• 𝜒𝑏 a distribution on {0, 1}𝑏 for 𝑏 > 0
• EMSB𝜒𝑏

(𝑥) = MSB𝑏(𝑥) ⊕ 𝑒
• 𝑒 is a 𝑏 bits error string sampled from 𝜒𝑏

HNP with erroneous input asks one to find sk given 𝑀 samples
(ℎ𝑖, 𝑧𝑖) and EMSB𝜒𝑏

(𝑘𝑖)

ECDSA as the HNP 11/35

ECDSA signatures from the same private key with leaky nonces are instances of the
same HNP

𝑠𝑖 = 𝐻(𝑚𝑖) + sk · 𝑟𝑖
𝑘𝑖

⇔ 𝐻(𝑚𝑖)
𝑠𝑖⏟
𝑧𝑖

= 𝑘𝑖 − 𝑟𝑖
𝑠𝑖⏟
ℎ𝑖

sk

Bias function

Bias function 13/35

• Goal: Function 𝐵𝑞 quantifies (modular) bias of a collection of samples 𝐾 = {𝑘𝑖}
𝑀
𝑖=1

• 𝐵𝑞(𝐾) ≈ 1 when 𝐾 is a collection of biased samples in ℤ𝑞
• 𝐵𝑞(𝐾) ≈ 0 when 𝐾 is a collection of uniformly distributed samples in ℤ𝑞

• Idea: Use the inverse discrete Fourier transform (DFT)

𝐵𝑞(𝐾) = 1
𝑀

∑
𝑀

𝑖=1
𝑒2𝜋𝑖𝑘𝑖

𝑞

Intuition 14/35

𝐵𝑞(𝐾) = 1
𝑀

∑
𝑀

𝑖=1
𝑒2𝜋𝑖𝑘𝑖

𝑞

Bias function 15/35

For 𝑙 fixed MSBs of the samples, the bias function’s magnitude can be approximated
(for a large 𝑞) with

|𝐵𝑞(𝐾)| ≈ 2𝑙

𝜋
· sin(𝜋

2𝑙)

For 𝑙 = 1, |𝐵𝑞(𝐾)| ≈ 0.637

Erroneous form 16/35

Attack focuses on inputs with an error on the MSB of 𝜀 ∈ [0, 1
2], bias should take this

into account.

Let 𝑏 ∈ {0, 1}, 𝜀 ∈ [0, 1
2] and an even integer 𝑞 > 0. Let 𝑲 be a random variable with

the following distribution over ℤ𝑞

Pr(MSB(𝑲) = 0) = (1 − 𝑏)1 − 𝜀
𝑞/2

+ 𝑏 𝜀
𝑞/2

Pr(MSB(𝑲) = 1) = 𝑏1 − 𝜀
𝑞/2

+ (1 − 𝑏) 𝜀
𝑞/2

The modular bias of 𝑲 is

𝐵𝑞(𝑲) = (1 − 2𝜀)𝐵𝑞(𝑲𝑏)

for 𝑲𝑏 uniformly distributed over [𝑏 𝑞
2 , (𝑏 + 1) 𝑞

2]

Bleichenblacher’s attack framework

Idea to solve HNP and naive approach 18/35

• 𝐵𝑞(𝐾) quantifies bias on 𝐾 = {𝑘𝑖}
𝑀
𝑖=1 = {𝑧𝑖 + ℎ𝑖 · sk}𝑀

𝑖=1

• HNP states that we know {(𝑧𝑖, ℎ𝑖)}
𝑀
𝑖=1

• We can compute 𝐾𝑤 = {𝑧𝑖 + ℎ𝑖 · 𝑤}𝑀
𝑖=1 for any 𝑤 ∈ ℤ𝑞

• Observation: |𝐵𝑞(𝐾𝑤)| is highest when 𝑤 = sk

• |𝐵𝑞(𝐾𝑤)| ≈ 1√
𝑀

 when 𝑤 ≠ sk

• We could try all possible 𝑤 ∈ ℤ𝑞

• Not better than exhaustive search

Collision search 19/35

• Observation: Linear combinations generating 𝑀 ′ new samples {(ℎ′
𝑗, 𝑧′

𝑗)}
𝑀′

𝑗=1
 where

ℎ′
𝑗 < 𝐿FFT broaden the peak’s width to approximately 𝑞

𝐿FFT

• Reduces number of candidate points to 𝐿FFT
• Can be tweaked taking into account 𝑂(𝐿FFT log 𝐿FFT) time and 𝑂(𝐿FFT) space

• Downside: Peak height reduces exponentially with the number of linear combina-
tions

For coefficients 𝜔𝑖,𝑗 ∈ {−1, 0, 1} s.t

{(ℎ′
𝑗, 𝑧′

𝑗)}
𝑀′

𝑗=1
= {(∑𝑖 𝜔𝑖,𝑗ℎ𝑖, ∑𝑖 𝜔𝑖,𝑗𝑧′

𝑖)}
𝑀′

𝑖=1

The new peak height is |𝐵𝑞(𝐾)|Ω𝑗 where Ω𝑗 = ∑𝑖|𝜔𝑖,𝑗|

Collision search 20/35

The attack 21/35

Note: HNP samples are chosen according to the MSB of the leaked nonce

𝒦-list sum problem

𝒦-list sum problem 23/35

Definition

Given 𝒦 sorted lists 𝐿1, …, 𝐿𝐾 , each of which consists of 2𝑎 uni-
formly random 𝑙-bit integers, the 𝒦-list sum problem consists of
finding a non-empty list 𝐿′ consisting of 𝑥′ = ∑𝐾

𝑖=1 𝜔𝑖𝑥𝑖, where 𝒦
-tuples (𝑥1, …, 𝑥𝐾) ∈ 𝐿1 × … × 𝐿𝐾 and (𝜔1, …, 𝜔𝐾) ∈ {−1, 0, 1}𝐾

satisfy MSB𝑛(𝑥′) = 0 for some target parameter 𝑛 ≤ 𝑙

4-list sum problem 24/35

• The 4-list sum algorithm efficiently reduces candidate nonces by performing a
collision search to generate 𝑀 ′ samples with the top 𝑛𝑖 bits null while respecting
the small and sparse linear combination properties.

4-list sum problem 25/35

Unified Time-Space-Data tradeoffs

Tradeoffs for parametrized 4-list Sum algorithm 27/35

• Time-space tradeoffs analyzed in the previous works such as HGJ approach made
two artificial assumptions:

1. 𝑀 = 𝑀 ′ = LFFT in the Bleichenbacher’s attack framework.

2. The number of collided bits is a fixed constant in the 4-list sum algorithm

• a third parameter of data complexity expanded to the time-space complexity
tradeoffs

=> a “mild” generalization of Dinur’s tradeoff formula for our parametrized 4-list sum
algorithm

Tradeoffs for parametrized 4-list Sum algorithm 28/35

• Following tradeoff holds for the 4-list sum problem approached in the paper:

24𝑀 ′𝑁 = TM2 ⇔ 𝑚′ = 3𝑎 + 𝑣 − 𝑛

• 𝑁 = 2𝑛 => n := # of top bits to be nullified

• 𝑀 = 2𝑚 = 4 × 2𝑎 => # of input samples

• 2𝑎 => length of each sublist

• 𝑀 ′ = 2𝑚′ ≤ 22a => # of output samples s.t. top n bits are 0

• 𝑣 ∈ [0, 𝑎] => parameter deciding # of iterations of collision search

• 𝑇 = 2𝑡 = 2a +v => time complexity.

• Gives more flexibility to sample amplification

Integration with Bleichenbacher and Linear Programming 29/35

• Construct a linear programming prob-
lem by integrating:
1. tradeoff formula for 4-list sum al-

gorithm &
• Following two constraints of

Bleichenbacher’s attack frame-
work

2. small linear combination
3. sparse linear combination

Integration with Bleichenbacher and Linear Programming 30/35

• optimal time and data complexities for attacking a 1-bit biased HNP with varying
FFT sizes and maximum memory bounds

Experiments and results

Experiments and results 32/35

• Attack successfully implemented
• Used modified version of OpenSSL 1.0.2u

• Modifications for convenience in MSB leakage
• Recovered secret keys on P-192 and sect163r1 curves

Experiments and results 33/35

• P-192 (~96 bits security)
• 24 AWS instances with 96 vCPUs for collision search
• 2 AWS instances with 4 TB of RAM for FFT tables of size 𝐿FFT = 238 entries of 32B

𝜀 Input Output 𝐿FFT Total time Recovered MSBs
0 229 227 238 113.5h 39

0.01 235 230 237 64h 39

Experiments and results 34/35

• sect163r1 (~80 bits security)
• Cluster of 16 nodes with 16 core CPUs + 128 GB RAM for 𝜀 = 0
• 48-core + 512 GB RAM workstation for 𝜀 = 0.027

𝜀 Input Output 𝐿FFT Total time Recovered MSBs
0 223 227 235 8h 36

0.027 224 229 234 43h 35

Sources 35/35

• https://www.maths.ox.ac.uk/system/files/media/picture3.png
• Cryptography and security (COM-401), fall 2024
• Presentation of LadderLeak https://youtu.be/UbjOKMTVMWQ
• Takahashi, Akira, Mehdi Tibouchi, and Masayuki Abe. “New Bleichenbacher records:

Fault attacks on qDSA signatures.” Cryptology ePrint Archive (2018).

https://www.maths.ox.ac.uk/system/files/media/picture3.png
https://youtu.be/UbjOKMTVMWQ

	Background
	LadderLeak
	Hidden Number Problem (HNP) and ECDSA
	Bias function
	Bleichenblacher's attack framework
	K-list sum problem
	Unified Time-Space-Data tradeoffs
	Experiments and results

