
LadderLeak: Breaking ECDSA With Less Than
One Bit Of Leakage

Srushti Singh
EPFL

srushti.singh@epfl.ch

Jonathan Poveda Colominas
EPFL

jonathan.povedacolominas@epfl.ch

Abstract—This report introduces LadderLeak[1], a sophisti-
cated attack on ECDSA which allows a potential attacker to
recover a secret key from less than one bit of nonce leakage. In
particular, it suffices that the attacker is able to leak the most
significant bit of the nonce with a probability ≤ 1 on several
signatures for them to recover the secret key.

I. INTRODUCTION

As one of the most popular signature schemes, ECDSA
has gathered attention from researchers who have tried to find
weak points in its real-life implementation. One popular attack
vector has been to find weaknesses around the nonce k, which
turns out to be quite sensitive: the successful leakage of this
value would allow attackers to compute the secret key sk.
Based on this fact, some research has focused on the idea of
recovering the secret key using only part of the nonce. As of
the end of 2019, some methods were developed that allowed
an attacker to leak a 160-bits secret key from 1 bit of nonce
leakage[2] from 233 signatures.

Ladderleak builds upon past research[2], [3] and methods to
create a novel attack which relies on solving the Hidden Num-
ber Problem (HNP) using a Fourier analysis-based method[4]
on DSA and ECDSA. This results in an attack which works
even when the most significant bit of the nonce is leaked
inconsistently (with error probability between 0 and 1/2).

II. BACKGROUND

A. Elliptic curve cryptography

An elliptic curve E(F) defined over a finite field F is a set
of points (x, y) ∈ F2 which satisfy a curve equation along
with a point at infinity O. A group can be defined using an
elliptic curve and a group law + (in additive notation) for
which the point O is the identity element. On elliptic curves
defined over real numbers, the point P +Q can be found by
drawing the line that passes through P and Q and taking the
symmetry of axis x of the intersection between the line and
the curve.

From this group law, given a point P ∈ E(F) and a scalar
k ∈ Z, we define the scalar multiplication [k]P := P+· · ·+P
where P is added to itself k−1 times. Cryptographic protocols
based on elliptic curves rely on the Elliptic Curve Discrete
Logarithm Problem (ECDLP): given some pair (P, [k]P), an
adversary would need to recover the scalar k. It turns out that
this problem is hard (on classical computers) for certain curves
defined as standards.

Fig. 1: Group law on an elliptic curve over R

B. ECDSA and its nonce

ECDSA is a signature scheme that relies on elliptic curves
and, most specifically, the hardness of the ECDLP to ensure
that a message has been sent by the owner of a public key. On
an elliptic curve E(F) of prime order q with generator G ∈
E(F), a sender who has the key pair (sk, pk) = (sk, [sk]G)
signs a message m in the following way:

1) Generation of a random nonce k ∈ Z∗
q

2) Computation of r = ([k]G)x mod q where (P)x is the
x coordinate of P

3) Computation of s = k−1(H(m) + sk · r) where k−1 is
the multiplicative inverse of k in Zq and H is a hash
function

4) Sender sends σ = (r, s) to receiver

The receiver checks the signature’s validity by checking if
the following equality holds:

r
?
= (

H(m)

s
G+

r

s
Q) mod q

One major potential flaw in the implementation of this
scheme is the problem of nonce leakage. If implementation
flaws lead to an attacker leaking the nonce k, the secret key
can be computed easily with the known elements:

sk =
k · s−H(m)

r
mod q

Thus, the nonce is also part of the sensitive values that
need to be protected from leakage and has naturally become
a potential target for attacks on ECDSA.

III. THEORETICAL LadderLeak ATTACK

LadderLeak is built upon some methods developed in pre-
vious works which allowed an attacker to retrieve the secret
key using leaks of as few as 1 bit of the nonce. It improves
one specific method to create an attack that can work with
leaks of 1 bit with error probability between 0 and 1/2.

A. Hidden number problem and ECDSA

Extracting the secret key from nonce leakages in ECDSA
signatures is equivalent to solving the Hidden Number Prob-
lem (HNP). The article mentions a variant of this problem
which takes into account the probability that the leaked bits
are not correct called Hidden Number Problem with Erroneous
Input.

Definition 1: Let q be a prime number and sk ∈ Zq be
a secret. Let hi, ki be uniformly random elements of Zq for
each i = 1, . . . ,M and define zi = ki − hi · sk mod q.
Suppose a fixed distribution χb on {0, 1}b for b > 0 and define
a probabilistic algorithm EMSBχb

(x) = MSBb(x)⊕ e which
returns the b most significant bits of x with e as an error string
sampled from χb. The HNP with error distribution χb asks one
to find sk given (hi, zi) and EMSBχb

(ki) for i = 1, . . . ,M .
In the concrete attack, the authors focus on the case where

b = 1 and χb is the Bernoulli distribution for some error
parameter ε ∈ [0, 1

2] (Pr(e = 1) = ε = 1 − Pr(e = 0)).
In other words, EMSBχb

(x) returns the negation of the most
significant bit of x with probability ε.

By rearranging terms on the calculation of the s in ECDSA,
we quickly see that a set of signatures with leaky nonces and
computed using the same secret key result in an instance of
the HNP. More precisely, we get:

H(mi)

si
= ki −

ri
si
sk

By letting zi = H(mi)/si mod q and hi = ri/si mod q,
we obtain the structure seen in Definition 1 for an instance of
the HNP if the most significant bit of ki is leaked with some
probability.

B. Bias function

The method used by the authors of LadderLeak is based
on an attack briefly presented by Bleichenbacher in 2000[4].
This attack relies on a bias function which can be used to
quantify the modular bias of the nonce. If K = {ki}Mi=1 is
the set of collected nonces, the function should be defined in
such a way that Bq(K) ≈ 0 when the nonces are uniform in
Zq and Bq(K) ≈ 1 when they are biased.

The function proposed by Bleichenbacher uses the (magni-
tude of the) inverse discrete Fourier transform:

Bq(K) =
1

M

M∑
i=1

e(2πki/q)i

Intuitively, we see that the requirements on the values of the
function given the bias of the nonces are somewhat respected.
The bias sums complex values that lay on the unit circle of

Fig. 2: Visualization of uniform and biased distribution on
Bq(K)

the complex plane. If those values are uniformly distributed,
we expect almost every point to have an opposite on the unit
circle and their sum would lead to canceling both terms. Thus,
|Bq(K)| ≈ 0. However, if the nonces are biased, they will be
more numerous on a certain part of the unit circle with few
opposite points to cancel them. Therefore, the sum leads to a
vector of magnitude ≈ M and thus, Bq(K) ≈ 1.

When the first l MSBs of each nonce in K are fixed to some
constant and the rest is uniform modulo q, it has been shown
that |Bq(K)| converges to 2l/π · sin(π/2l) for a large q [3].
For instance, for a single fixed MSB, the bias is estimated to
|Bq(K)| ≈ 2/π ≈ 0.637. Moreover, for uniformly distributed
ki’s over Zq , the mean of the norm of the bias can be
approximated by 1/

√
M .

This definition of bias function applies in the ideal situation
where the samples are uniformly biased, that is, where the first
l bits are fixed and the rest is uniform modulo q. The authors
are however focused on using this method with some error
ε ∈ [0, 1/2] in the input. Note that ε = 1/2 means that the
samples are not biased (equivalent to random guess of the
MSB) and thus, the bias function degenerates to 0. Therefore,
the definition of bias must be adapted to the following:

Lemma 1: For b ∈ {0, 1}, any error ε ∈ [0, 1/2] and even
integer q > 0, the following holds.

Let K be a random variable following the weighted uniform
distribution over Zq below

Pr(MSB(K) = 0) = (1− b) · 1− ε

q/2
+ b

ε

q/2

Pr(MSB(K) = 1) = b
1− ε

q/2
+ (1− b) · ε

q/2

Then, the modular bias of K is

Bq(K) = (1− 2ε)Bq(Kb)

where Kb is uniformly distributed over [bq/2, (b+ 1)q/2).
Note that the lemma above holds for odd q with an additive

error of order 1/q, which is negligible in practice.

C. Bleichenblacher’s Attack Framework

Given such a bias function |Bq(K)|, a naive approach to
find sk given an instance of the HNP would be to compute
the set of candidate nonces Kw = {zi + hiw mod q}Mi=1 for
all w ∈ Zq . The authors claim that for w ̸= sk, the bias
|Bq(Kw)| is close to 1/

√
M . However, if w = sk, |Bq(Kw)|

will be closer to 1. Therefore, by looking for a peak value on
the sampled bias, the secret key could be found.

However, this method is not better than a naive exhaustive
search over Zq . To circumvent this problem, the collision
search of input samples is required as a preliminary step. This
step is based on the following observation: by taking linear
combinations of {(hi, zi)}Mi=1 to generate M ′ new samples
{(h′

j , z
′
j)}M

′

j=1 such that h′
j < LFFT , the peak’s width broad-

ens to approximately q/LFFT . Thus, after computing these
new samples, the number of candidate points reduces to LFFT

and since the Fast Fourier Transform (FFT) can be computed
in O(LFFT logLFFT) time and takes O(LFFT) space, the
value should be tweaked in order to find linear combinations
that are small enough to make the FFT practically computable
given the available resources.

However, this comes with a downside: in exchange for a
broader peak width, the peak height gets reduced exponen-
tially. Concretely, if the coefficients of the linear combinations
are restricted to ωi,j ∈ {−1, 0, 1} such that {(h′

j , z
′
j)}M

′

j=1 =

{(
∑

i ωi,jhi,
∑

i ωi,jzi)}M
′

j=1 as the authors chose, the height
of the bias decreases exponentially with the L1-norm of the
coefficient vector. Therefore, the new height is |Bq(K)|Ωj

where Ωj =
∑

i |ωi,j |. This adds an extra constraint to
the linear combinations: they must be sparse enough for
the diminished peak height to be distinguishable from the
noise floor, which is 1/

√
M ′ in average. The method used to

find such linear combinations are explained in the following
chapters.

Once the collision search step is done, the attack consists
on computing the bias using the newly formed linear combi-
nations with different candidate keys wn = nq/LFFT . The
sampled bias after the collision search is

Bq(Kwn
) =

1

M ′

M ′−1∑
j=0

e2πi(z
′
i+h′

i·sk)/q

=

M ′−1∑
t=0

(
1

M ′

∑
{j|h′

j=t}

e2πiz
′
j/q)e2πitn/M

′

Thus, by taking the term between parentheses and construct-
ing a vector Z = (Z0, . . . , ZLFFT−1), the sampled bias can
be computed by doing a FFT on Z. The algorithm then finds
the value wn where |Bq(Kwn

)| is the largest and outputs the
most significant logLFFT bits of wn.

Once the top l′ MSBs of sk have been recovered, the
recovery of the remaining bits consists in running the same
method again but removing the known part of the secret key
from the hidden number in the HNP. Let sk = skhi·2l−l′+sklo
(skhi is the l′ MSBs of sk), the new instance of the HNP can
be written as k = z + h · sk = (z + k · skhi · 2l−l′) + h · sklo.
This can be done until the number of remaining bits is low
enough that an exhaustive search makes more sense.

D. K-list sum problem
The K-list sum problem, which is a subproblem of the

Generalized Birthday Problem, has been used by the authors

in the Bleichenbacher’s attack where the value of K is set to
4 (4-list sum problem). The general definition of this problem
is in Definition 2.3 of the paper as follows:

Definition 2: Given K sorted lists L1, . . . , LK, each of which
consists of 2a uniformly random l-bit integers, the K-list sum
problem consists of finding a non-empty list L′ consisting of
x′ =

∑K
i=1 ωixi, where K-tuples (x1, ..., xK) ∈ L1× ...×LK

and (ω1, ..., ωK) ∈ {−1, 0, 1}K satisfy MSBn(x
′) = 0 for

some target parameter n ≤ l
For example, considering the 4-list algorithm based on

Howgrave-Graham-Joux (HGJ) which has been used in this
paper, there are 4 sorted lists with a cardinality of 2a. For
each c ∈ [0, 2v), where v is a parameter of the algorithm,
we form two sorted lists L′

1 and L′
2 respectively from L1, L2

and L3, L4 s.t. (x, y) ∈ L1 × L2 (resp. L3 × L4) have their
MSBa(x+y) = c. Now, we look for tuples (x′, y′) ∈ L′

1×L′
2

s.t. MSBn(|x′−y′|) cancel out. Output the absolute difference
of the tuple values in the final output list L′

f .
The 4-list sum algorithm is an efficient manner by which we

can reduce the size of the candidate nonce samples in order
to avoid brute forcing all the possible nonce values over Zq .
Thus, the algorithm is used for collision search to generate M ′

samples which consists in finding pairs of linear combinations
such that enough top bits are nullified to fulfill the smallness
condition of all h′

j . Furthermore, each linear combination has
only 4 terms and thus, Ωj = 4 for all j, which respects the
sparsity condition if M ′ is large enough.

E. Unified time-space-data tradeoffs

1) Tradeoffs for Parameterized 4-list Sum algorithm: The
time-space tradeoffs analyzed in the previous works such
as the HGJ approach made two artificial assumptions (1.
cardinality of input, output samples and FFT table size is

equal in Bleichenbach’s attack framework: M = M ′ = LFFT ;
2. The number of collided bits is a fixed constant in the 4-
list sum algorithm) which greatly reduced flexibility for the
optimization of the attacks.

The authors’ motivation for introducing a third parameter of
data complexity was followed by a practical approach where
the attacker may want to trade ”online” side-channel detection
costs (data complexity) with ”offline” computational costs
(time and space complexity). Thus, they introduce a gener-
alization of Dinur’s tradeoff formula [5] for the parametrized
4-list sum algorithm in order to strike the optimal balance
between the time, memory, and input data complexities:

24M ′N = TM2 ⇔ m′ = 3a+ v − n

where N = 2n, n being the number of top bits to be
nullified; M = 2m = 4× 2a is the number of input samples,
2a being the length of each sublist; M ′ = 2m

′ ≤ 22a is
the number of output samples such that the top n bits are
0; v ∈ [0, a] is a parameter deciding how many iterations of
the collision search to be executed; T = 2t = 2a+v is the time
complexity.

This tradeoff formula is advantageous than its previous
counterparts by giving more flexibility to the sample am-
plification, which is an important aspect to Bleichenbacher’s
framework as controlling the output samples in a way such
that the signal stands above the noise floor indeed proves to
be very useful for the attack framework.

2) Integration with Bleichenbacher and Linear Program-
ming: Next, we integrate the tradeoff formula along with
the two previously discussed important constraints of the
Bleichenbach framework, i.e. small and sparse linear combi-
nations. Thus, a linear programming problem is constructed
from all the constraints whose goal is to optimize time,
space and data complexities given a certain set of constraints.
Given below the linear programming table for the 4-list sum
algorithm used in the paper: we see that the first row gives
the objective for each column whereas the rest of them
denote the constraints imposed. For example, we see that
in order to optimize the data complexity, the objective is
to minimize the logarithm of number of input samples, min

given tmax,mmax, lFFT , slack parameter α, and estimated
bias Bq(K) as fixed constraint parameters. One can even
iteratively solve the linear programming over various choices
of r to find the optimal number of rounds leading to the best
result, with at most 5 rounds needed for biases under 4 bits,
making the process efficient. Fig.3 & 4 in the paper present
the optimal time and data complexities for attacking a 1-bit
biased HNP with varying FFT sizes and maximum memory
bounds.

IV. ATTACK EXPERIMENTS AND RESULTS

The authors have implemented the attack on a modified
version of OpenSSL 1.0.2u (in a way that the MSB of the
nonce is leaked with the same error rate as their experiments
with side-channel attacks) for the P-192 and sect163r1 curves.

Fig. 3: Linear programming problems based on the 4-list sum
problem

For the P-192 curve, they used 24 r5.24xlarge instances
of AWS EC2 R5 with 96 vCPUs each to carry out the collision
search step. Then, they used 2 x1e.32xlarge instances of
AWS EC2 with ≈ 4TB of RAM each to store FFT tables
of size LFFT = 238 and conduct the search for the peak.
The experiments were conducted with error rates of ε = 0
and ε = 0.01. The latter error rate was estimated through
experiments from the authors on a Flush+Reload side channel
attack on OpenSSL. The main results are summarized in the
table below.

ε Input Output LFFT Total time Recovered MSBs
0 229 227 238 113.5h 39

0.01 235 230 237 64h 39

For the sect163r1 curve, the authors used a cluster of 16 ×
16 core nodes with a total of 128GB of RAM to attack an HNP
instance with ε = 0 and a single 48-core workstation with
512GB of RAM to attack an HNP instance with ε = 0.027.
The main results are summarized in the table below.

ε Input Output LFFT Total time Recovered MSBs
0 223 227 235 8h 36

0.027 224 229 234 43h 35

They observed that for both experiments, the expected num-
ber of most significant key bits (logLFFT) were recovered and
the detected peak sizes matched the estimates.

REFERENCES

[1] D. F. Aranha, F. R. Novaes, A. Takahashi, M. Tibouchi, and Y. Yarom,
“Ladderleak: Breaking ecdsa with less than one bit of nonce leakage,”
in Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 225–242.

[2] D. F. Aranha, P.-A. Fouque, B. Gérard, J.-G. Kammerer, M. Tibouchi, and
J.-C. Zapalowicz, “Glv/gls decomposition, power analysis, and attacks on
ecdsa signatures with single-bit nonce bias,” in International Conference
on the Theory and Application of Cryptology and Information Security.
Springer, 2014, pp. 262–281.

[3] A. Takahashi, M. Tibouchi, and M. Abe, “New bleichenbacher records:
Fault attacks on qdsa signatures,” Cryptology ePrint Archive, 2018.

[4] D. Bleichenbacher, “On the generation of one-time keys in dl signature
schemes,” in Presentation at IEEE P1363 working group meeting, 2000,
pp. 81–83.

[5] I. Dinur, “An algorithmic framework for the generalized birthday prob-
lem,” Designs, Codes and Cryptography, vol. 87, pp. 1897–1926, 2019.

	Introduction
	Background
	Elliptic curve cryptography
	ECDSA and its nonce

	Theoretical LadderLeak attack
	Hidden number problem and ECDSA
	Bias function
	Bleichenblacher's Attack Framework
	K-list sum problem
	Unified time-space-data tradeoffs
	Tradeoffs for Parameterized 4-list Sum algorithm
	Integration with Bleichenbacher and Linear Programming

	Attack experiments and results
	References

