
Efficient Verifiable Delay Functions

Benjamin Wesolowski – EUROCRYPT 2019

VDF

VDF

A verifiable delay function

VDF

A verifiable delay function

Evaluation requires at least some given time

VDF

A verifiable delay function

Result easily verifiable

VDF

A verifiable delay function

Alice Bob“Give me f(x) please”

“Sure! Here’s y and π” Time T later

VDF

A verifiable delay function

Alice Bob“Give me f(x) please”

“Sure! Here’s y and π” Time T later

● f – function taking time T to compute
● x – The input of Alice
● y – The output of the function
● π – Proof that y is the correct output

Efficient VDF

An efficient verifiable delay function

1)Size of proof π

2)Evaluation time of f

3)Verification time of result y

Why VDF?

Randomness beacons
and went to the casino

To play

But! They don’t trust

So they propose a scheme to generate a random outcome, trusted by all parties!

commit-and-reveal

Step 1 Random ra Random rb Random rc

Step 2 Send H(ra) Send H(rb) Send H(rc)

Step 3 Reveal ra Reveal rb Reveal rc

Step 4 Combine all values to get trusted random

commit-and-reveal

Step 1 Random ra Random rb Random rc

Step 2 Send H(ra) Send H(rb) Send H(rc)

Step 3 Reveal ra Reveal rb Observe ra and rb

!

Reveal rc only if
good outcome

VDF based

Step 1 Random ra Random rb Random rc

Step 2 Send ra Send rb Send rc

Step 3

Time limit at most q < T

Run VDF (takes time T) on ra, rb and rc

Trusted random value

Related Work

Background & Related work

Time locks – Rivest, Shamir, Wagner – 1996

Slow-timed hash functions – Lenstra, Wesolowski – 2016

Simple VDFs – Pietrzak – 2018

VDFs – Boneh et al – 2018

Foundations

What is time?
Amount of sequential work in a given model M

Attacker’s model not exactly specified

All operations an
attacker could
perform

Cost function c Time-cost function t

Measuring an algorithm: C(A,x) T(A,x)

2 Constructions
Need: group of unknown order

RSA vs Class Group of Imaginary Quadratic Field

● Simpler to work with
● Tricky to achieve unknown order

● Tricky to work with
● Simpler to achieve unknown

order

RSA Setup

Basic Idea

 Given group G of unknown order, a timing parameter t ,

for a random x∈G , compute y=x2t

.

Given a random prime l , compute the proof π =x⌊2
t / l ⌋ .

With r=2t mod l , verify by checking that y=π l gr .

For RSA setup, G=(Z /N Z)× /{±1} for an RSA modulus N ,
with N of unknown factorization .

 Let k∈Z>0 be a difficulty parameter (entropy), and A be an algorithm
playing the game. With t∈Z>0 , δ :Z>0→R>0 (δ (k) gives the time-cost
of computing a single squaring in the group). The game goes as follows:

1. An RSA modulus N is generated randomly, for the security parameter k ;
2. A (N) outputs an algorithm B ;
3. An element g∈Z /N Z is uniformly randomly generated;
4. B(g) outputs h∈Z /N Z .

A wins the game if h=g2t

 mod N and T (B , g)<t δ (k), where T (B , g)
is the time for B(g) to output h .

(δ,t)-Time-Lock Game

 Proposed by Rivest, Shamir and Wagner. Can be expressed as follows:

There is a δ :Z>0→R>0 such that:
1. ∃an algorithm S , s.t. ∀ RSA modulus N generated with security
 parameter k , and any g∈Z /N Z , S(N , g)=g2 mod N , and the
 time-cost T (S ,(N , g))<δ (k); and
2. ∀ t∈Z>0 , no algorithm A of polynomial cost * wins the (δ , t)-time-
 lock game with non-negligible probability (w.r.t k).

* One can define the cost as the size of the circuit used for computation.

Time-Lock Assumption

 keygen→(pk , sk) Generate a public-private key pair

trapdoor sk(x ,Δ)→(y ,π) Compute y using the secret key
(cheating), along with a proof

eval pk(x ,Δ)→(y ,π) Compute y using the public key,
along with a proof

verify pk(x , y ,π ,Δ)→Boolean Check if y is the correct output for x,
possibly with the help of π

Trapdoor VDF

 Let H :{0 ,1}*→{0 ,1 }2k denote a secure cryptographic hash function;
N=pq , where p , q be 2 primes generated by an RSA keygen routine;
and g=H N (x)=int (H (x)) mod N .

Construction: RSA Setup – Evaluation

keygen→(pk , sk) pk=(N , H N), sk=(p−1)(q−1)

trapdoor sk(x , t)→(y ,π) y=g2t mod sk mod N

evalpk (x ,Δ)→(y ,π) y=g2t

 mod N

 Let Primes(2 k) denote the set containing the first 22 k prime numbers,
l be a prime number sampled uniformly at random from Primes(2 k),
and r=2t mod l

Construction: RSA Setup – Verification

trapdoorsk (x , t)→(y , π) π=g⌊2
t /l⌋ mod sk mod N

eval pk (x ,Δ)→(y , π) π=g⌊2
t /l⌋ mod N

verify pk (x , y , π ,Δ)→Boolean y==π l gr mod N

 The protocol can be made non-interactive by letting l=H prime(g , y),
where H prime is a hash function which maps the input into an element
of Primes(2 k).

Typically, an evaluator would compute the output y and the proof π ,
and send the pair (y ,π) to the verifiers. And the verifiers would com-
pute l from g and y .
Instead, it's also possible to transmit (l ,π) and compute y from g , π
and l , and verify that l == H prime(g , y). This reduces the bandwidth and

storage footprint almost by 2 (sizeof (l)∼102 , sizeof (y)∼103).

Fiat–Shamir Transformation and Optimization

Computing the Proof π (~ O(t))

Computing the Proof π (~ O(t / log(t)))

Let p=⌊2t /l ⌋, B=2κ (where κ ∈[1 , t]).

⇒ p=∑
i=0

..

bi Bi =∑
b=0

B−1

b(∑
i |bi=b

Bi) (where bi∈[0 , B−1])

 T∼t /κ +κ 2κ ∼
κ=log(t)/2

O(t / log (t)), C∼t /κ ∼O(t / log (t))

 =∑
i=0

..

∑
j=0

γ −1

bi , j B j+iγ (where bi , j∈[0 , B−1] ,γ ∈[1 ,
t
κ])

 =∑
j=0

γ −1

B j∑
i=0

..

bi , j Biγ =∑
j=0

γ−1

B j (∑
b=0

B−1

b(∑
i | bi , j=b

Biγ))

 T∼t /κ +γ κ 2κ ∼
κ =log (t)/3 ,γ=√t

O(t / log(t)) , C∼√t

 The computation of π can only start after the evaluation of the VDF

output g2t

 is completed, which results in an inevitable overhead
T
ω .

Such an overhead can be reduced by computing a proof π 1 for the

intermidiate result g1=g2t 1

, where t1=
tω
ω+1

, which can start earlier

in parallel. In the end, we just need to complement the proof with

another proof π 2 for y=g1
2t /(ω+1)

, resulting in an overhead ∼T

ω 2 .

This trick can be applied recursively.

Proof Shortness vs Prover Efficiency

 Let A be a party playing the game. With Δ :Z>0→R>0 a function of the
security parameter k *, the game goes as follows:

1. keygen outputs pk ;
2. A (pk) outputs an algorithm B ;
3. An x is generated randomly according to some random distribution of
 min-entropy at least k ;
4. BO(x) outputs y , where O is an oracle that outputs trapdoor sk(x ' ,Δ)
 on any input x '≠x .

A wins the game if eval pk (x ,Δ) outputs y and T (B , X)<Δ .

*Think of Δ(k)∼t δ (k) for some specific t and δ .

∆-Evaluation Race Game

 A trapdoor VDF is ∆-sequential if any polynomially bounded player
(with respect to the implicit security parameter) wins the ∆-evaluation
race game with negligible probability.

Remark: Suppose the input x is hashed as H (x) (by a secure crypto-
graphic function) before being evaluated, i.e.

trapdoor sk(x ,Δ)=t sk (H (x) ,Δ)
for some procedure t , and similarly for eval and verify . Then, it is
unnecessary to give to B access to the oracle O , i.e. the application
of H offsets any potential advantage gained from getting access to
the oracle O .

∆-Sequentiality

 Let A be a player winning the (tδ)-evaluation race game with
probability pwin under the random oracle model, who is limited
to q oracle queries.

1. show that there is a player C for the (δ , t)-time-lock game
 with a winning probability of at least (1−q /2k) pwin . (i.e. if
 A can win with non-negligible probability, so can C)
2. By the time-lock assumption, C cannot win with non-negli-
 gible probability, and therefore neither can A do so.
3. Hence, pwin must be negligible⇒ (tδ)-sequentiality holds.

Proof of (tδ)-Sequentiality

 A trapdoor VDF is sound if any polynomially bounded algorithm solves
the following soundness-breaking game with negligible probability:

given as input the public key pk , output a message x, a value y ' and a
proof π ' such that y ′≠evalpk (x ,Δ) , and verify pk (x , y ′ ,π ′ ,Δ)=true.

Soundness

 Let A be a party playing the game. The game goes as follows:

1. keygen outputs an RSA modulus N , which is given to A ;
2. A outputs a u∈Z /N Z ;
3. An integer l is sampled uniformly from Primes(2k) and given to A ;
4. A outputs a v∈Z /N Z .

A wins the game if vl=u≠±1 mod N .

*No known reduction of this problem to standard assumptions such as
 factoring N or the RSA problem.

Root Finding Game

 Let A be a player winning the soundness-breaking game with
probability pwin under the random oracle model, who is limited
to q oracle queries.

1. show that there is a player D for the root finding game with
 a winning probability of at least pwin/(q+1). (i.e. if A can
 win with non-negligible probability, so can D)
2. Since the root finding problem is (believed to be) hard, C
 cannot win with non-negligible probability, and therefore
 neither can A do so.
3. Hence, pwin must be negligible⇒ soundness holds

Proof of Soundness

● Construction can be generalized to be based on other sets of finite groups, as
long as the (generalized) assumptions also hold

● In particular, the paper recommends the class group of an imaginary quadratic
field of discriminant d. Advantages include simpler group generation process
than RSA setup.

● The proofs can be aggregated: producing a single short proof that
simultaneously proves the correctness of several VDF evaluations.

● The proofs can be watermarked: tying a proof to the evaluator’s identity.

Generalizations and Extensions

Conclusion

Summary

● VDFs and Efficiency

● Applications of VDFs

● Time-lock & groups of unknown order

● Setup & Proof complexity

● Sequentiality

Thank you for
your attention!

	Slide 1
	Motivation
	Intro
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	RSA Setup
	Basic Idea _clipboard0
	Basic Idea
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

