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VDF

A verifiable delay function

Alice Bob

“Give me f(x) please”
© Ox

1] | 2 ”
Sure! Here's y and 1t Time T later

‘7

f — function taking time T to compute
X — The input of Alice

y — The output of the function

1T — Proof that y is the correct output



Efficient VDF

An efficient verifiable delay function

1)Size of proof 1t
2)Evaluation time of f
3) Verification time of result y



Why VDF?



Randomness beacons

But! They don’t trust @

So they propose a scheme to generate a random outcome, trusted by all parties!




commit-and-reveal

© © @

Step1l Random . Random r Random r
Step2 Send H(ra) Send H(ry) Send H(r.)
Step3 Revealr; Reveal r,

Reveal r.

Step 4 Combine all values to get trusted random




commit-and-reveal

o O O,

Stepl Randomra, Random ry Random r
Step2 Send H(ra) Send H(ry) Send H(r.)
Step3 Revealr; Reveal 1, Observe raand rp

Reveal rconly if
good outcome



VDF based
© S) @&

Stepl Randomr, Random r;

Random r;
Step2 Sendr, Send r, Send r.

Time limitatmostg < T

Step 3 Run VDF (takes time T) on ra, r» and rc

i

Trusted random value
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Background & Related work

Time locks — Rivest, Shamir, Wagner — 1996

Slow-timed hash functions — Lenstra, Wesolowski — 2016

VDFs — Boneh et al — 2018

Simple VDFs — Pietrzak — 2018



Foundations



What is time?

Amount of sequential work in a given model M

Attacker’s model not exactly specified

N, T,

All operations an Cost function ¢ Time-cost function t
attacker could
perform

Measuring an algorithm: C(A,x) T(A,x)



2 Constructions

Need: group of unknown order

RSA vs Class Group of Imaginary Quadratic Field

!

* Simpler to work with * Tricky to work with
* Tricky to achieve unknown order + Simpler to achieve unknown
order



RSA Setup



Basic Idea

Given group G of unknown order, a timing parameter t,

t

for a random x€G, compute y= X

Given a random prime [, compute the proof 7 = X2,

With r=2"'mod !, verify by checking that y=x'g'.

For RSA setup, G=(Z/N Z)*/{+1} for an RSA modulus N,
with N of unknown factorization.



(0,t)-Time-Lock Game

Let keZ,,be a difficulty parameter (entropy), and A be an algorithm
playing the game. With t€Z_,, 6:Z_,2 R,, (J(k) gives the time-cost
of computing a single squaring in the group). The game goes as follows:

1. An RSA modulus N is generated randomly, for the security parameter k;
2. A(N) outputs an algorithm B;

3. An element geZ/N Z is uniformly randomly generated,;
4. B(g) outputs h€Z/N Z.

A wins the game if h=¢*> mod N and T(B,g)<td(k), where T(B,g)
is the time for B(g) to output h.



Time-Lock Assumption

Proposed by Rivest, Shamir and Wagner. Can be expressed as follows:

Thereisa 0:Z_,- R_, such that:

1. dan algorithm S, s.t. V. RSA modulus N generated with security
parameter k, and any g€Z/NZ, S(N,g)=g” mod N, and the
time-cost T(S,(N,g))<d(k); and

2. VteZ,,, no algorithm A of pelynomial cost * wins the (0,t)-time-
lock game with non-negligible probability (w.r.t k).

* One can define the cost as the size of the circuit used for computation.




Trapdoor VDF
keygen - ( pk, sk) Generate a public-private key pair

trapdoor,, (x,A)>(y,7) Compute y using the secret key
(cheating), along with a proof

eval , (x,A)>(y,7) Compute y using the public key,
along with a proof

verify ,(x,y,7,A)>Boolean Check if y is the correct output for x,
possibly with the help of 7



Construction: RSA Setup — Evaluation

Let H:{0,1}"{0,1}* denote a secure cryptographic hash function;
N =pq, where p, g be 2 primes generated by an RSA keygen routine;
and g=H ,(x)=int(H (x)) mod N.

keygen - ( pk, sk) pk=(N,H,),sk=(p—1)(q—1)
trapdoor, (x,t)2(y,7z)  y=g¢> ™ * mod N

eval , (x,A)>(y,7) y=g°> mod N



Construction: RSA Setup — Verification

Let Primes(2k) denote the set containing the first 2° prime numbers,
| be a prime number sampled uniformly at random from Primes (2k),

and r=2" mod I

[2t/lJ mod sk

trapdoor,, (x,t)=>(y,n) T=g mod N

evalpk(x,A)é(y,n) glzt”J mod N

verify ,(x,y,m,A)»>Boolean y==n'g" mod N



Fiat—Shamir Transformation and Optimization

The protocol can be made non-interactive by letting I=H ; . (g,y),
where H ;. is ahash function which maps the input into an element
of Primes (2k).

Typically, an evaluator would compute the output y and the proof 7,
and send the pair (y, ) to the verifiers. And the verifiers would com-
pute | from g and y.

Instead, it's also possible to transmit (1,7 ) and compute y from g, 7
and I, and verify that [==H ; .(g,y). This reduces the bandwidth and

storage footprint almost by 2 (sizeof (1)~10°, sizeof ( y)~107).



Computing the Proof 1t (~ O(t))

Data: an element g in a group G (with identity 1¢), a prime number ¢ and a
positive integer t.

Result: gtzt/ ¢,

r ¢+ 1lg € G;

r<1¢€Z;

fori <+ 0toT —1do
b« |2r/t| € {0,1} € Z;
r < least residue of 2r modulo /;
r — x2g°;

end

return z;

Algorithm 4: Simple algorithm to compute gl2tf ‘]| with an on-the-fly long
division [5].



Computing the Proof 1t (~ O(t / log(t)))
Let p=|2'/1|, B=2"(where x€[1,t]).

:p:Z b, B :Z_: b( Y. B') (where b,€[0,B—1])

b=0 1|bb

T~ t//(+/(2KK €2 0 (thog (1)), C~t/x ~O(t/og(t))

j+1i l'
:Z Z b, ;B (where b, ,€[0,B—1],y€[1,%])

i= 0 j=0
EoEne SrEuE e

T~t//(+g//(2 et /By O(t/log(t)), C~t




Proof Shortness vs Prover Efficiency

The computation of sz can only start after the evaluation of the VDF

e : : L T
output g° is completed, which results in an inevitable overhead o -

Such an overhead can be reduced by computing a proof sz, for the

: - ‘ t w : :
intermidiate result g,=g° , where t,= , which can start earlier

w+1
in parallel. In the end, we just need to complement the proof with

tH{w+1)

.. T
another proof 77, for y=g; , resulting in an overhead ~—.

w

This trick can be applied recursively.



A-Evaluation Race Game

Let A be a party playing the game. With A:Z_,- R, a function of the
security parameter k *, the game goes as follows:

1. keygen outputs pk;

2. A(pk) outputs an algorithm B;

3. An x is generated randomly according to some random distribution of
min-entropy at least k;

4. B®(x) outputs y, where O is an oracle that outputs trapdoor, (x',A)
on any input x'#x.

A wins the game if eval , (x,A) outputs y and T (B, X )<A.
*Think of A(k)~td(k) for some specific t and &.



A-Sequentiality

A trapdoor VDF is A-sequential if any polynomially bounded player
(with respect to the implicit security parameter) wins the A-evaluation
race game with negligible probability.

Remark: Suppose the input x is hashed as H(x) (by a secure crypto-
graphic function) before being evaluated, i.e.

trapdoor, (x,A)=t_ (H(x),A)
for some procedure t, and similarly for eval and verify. Then, it is
unnecessary to give to B access to the oracle O, i.e. the application
of H offsets any potential advantage gained from getting access to
the oracle O.




Proof of (td)-Sequentiality

Let A be a player winning the (t 0 )-evaluation race game with
probability p . under the random oracle model, who is limited

to g oracle queries.

1. show that there is a player C for the (0,t)-time-lock game
with a winning probability of at least (1—q/2") p... . (i.e. if
A can win with non-negligible probability, so can C)

2. By the time-lock assumption, C cannot win with non-negli-

gible probability, and therefore neither can A do so.
3. Hence, p .. must be negligible= (t 0 )-sequentiality holds.



Soundness

A trapdoor VDF is sound if any polynomially bounded algorithm solves
the following soundness-breaking game with negligible probability:

given as input the public key pk, output a message x, a value y 'and a
proof 7' such that y ';éevalpk(x,A), and Verifypk(x,y "I ',A):true.



Root Finding Game

Let A be a party playing the game. The game goes as follows:

1. keygen outputs an RSA modulus N, which is givento A;

2. A outputsa ueZ/N Z;

3. An integer | is sampled uniformly from Primes(2k) and givento A;
4. A outputsa veZ/N Z.

A wins the game if v'=u#+1modN .

*No known reduction of this problem to standard assumptions such as
factoring N or the RSA problem.



Proof of Soundness

Let A be a player winning the soundness-breaking game with
probability p . under the random oracle model, who is limited

to g oracle queries.

1. show that there is a player D for the root finding game with
a winning probability of at least p,,. /(g+1). (i.e. if A can
win with non-negligible probability, so can D)

2. Since the root finding problem is (believed to be) hard, C
cannot win with non-negligible probability, and therefore
neither can A do so.

3. Hence, p .. must be negligible = soundness holds



Generalizations and Extensions

* Construction can be generalized to be based on other sets of finite groups, as
long as the (generalized) assumptions also hold

* In particular, the paper recommends the class group of an imaginary quadratic
field of discriminant d. Advantages include simpler group generation process
than RSA setup.

« The proofs can be aggregated: producing a single short proof that
simultaneously proves the correctness of several VDF evaluations.

* The proofs can be watermarked: tying a proof to the evaluator’s identity.



Conclusion



Summary

VDFs and Efficiency
Applications of VDFs

Time-lock & groups of unknown order

Setup & Proof complexity

Sequentiality



Thank you for
your attention!
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