

Efficient Verifiable Delay Functions

Benjamin Wesolowski – EUROCRYPT 2019

VDF

VDF

A verifiable delay function

VDF

A verifiable **delay function**

Evaluation requires at least some given time

VDF

A **verifiable** delay function

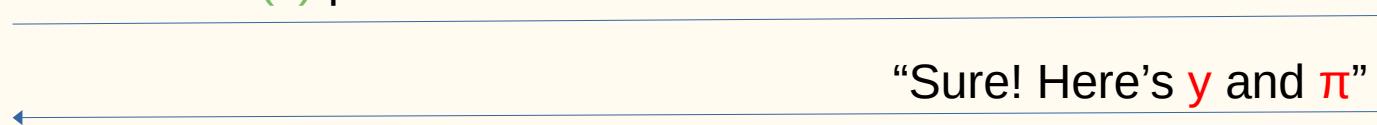
Result easily verifiable

VDF

A **verifiable** delay function

Alice

“Give me $f(x)$ please”



Bob

Time T later

“Sure! Here’s y and π ”

VDF

A **verifiable** delay function

Alice

“Give me $f(x)$ please”

“Sure! Here’s y and π ”

Bob

Time T later

- f – function taking time T to compute
- x – The input of Alice
- y – The output of the function
- π – Proof that y is the correct output

Efficient VDF

An **efficient verifiable delay function**

- 1) Size of proof π
- 2) Evaluation time of f
- 3) Verification time of result y

Why VDF?

Randomness beacons

 and went to the casino

To play

But! They don't trust

So they propose a scheme to generate a random outcome, trusted by all parties!

commit-and-reveal

Step 1 Random r_a

Random r_b

Random r_c

Step 2 Send $H(r_a)$

Send $H(r_b)$

Send $H(r_c)$

Step 3 Reveal r_a

Reveal r_b

Reveal r_c

Step 4

Combine all values to get trusted random

commit-and-reveal

Step 1 Random r_a

Random r_b

Random r_c

Step 2 Send $H(r_a)$

Send $H(r_b)$

Send $H(r_c)$

Step 3 Reveal r_a

Reveal r_b

Observe r_a and r_b

Reveal r_c only if
good outcome

VDF based

Step 1 Random r_a

Random r_b

Random r_c

Step 2 Send r_a

Send r_b

Send r_c

Time limit at most $q < T$

Step 3

Run VDF (takes time T) on r_a , r_b and r_c

Trusted random value

Related Work

Background & Related work

Time locks – Rivest, Shamir, Wagner – 1996

Slow-timed hash functions – Lenstra, Wesolowski – 2016

VDFs – Boneh et al – 2018

Simple VDFs – Pietrzak – 2018

Foundations

What is time?

Amount of **sequential** work in a given model M

Attacker's model not exactly specified

All operations an attacker could perform

Cost function c

Time-cost function t

Measuring an algorithm:

$$C(A, x)$$

$$T(A, x)$$

2 Constructions

Need: group of unknown order

RSA vs **Class Group of Imaginary Quadratic Field**

- Simpler to work with
- Tricky to achieve unknown order

- Tricky to work with
- Simpler to achieve unknown order

RSA Setup

Basic Idea

Given group G of **unknown** order, a timing parameter t ,
for a random $x \in G$, compute $y = x^{2^t}$.

Given a random prime l , compute the proof $\pi = x^{\lfloor 2^t/l \rfloor}$.
With $r = 2^t \bmod l$, verify by checking that $y = \pi^l g^r$.

For RSA setup, $G = (\mathbb{Z}/N\mathbb{Z})^\times / \{\pm 1\}$ for an RSA modulus N ,
with N of **unknown factorization**.

(δ, t) -Time-Lock Game

Let $k \in \mathbf{Z}_{>0}$ be a difficulty parameter (entropy), and A be an algorithm playing the game. With $t \in \mathbf{Z}_{>0}$, $\delta: \mathbf{Z}_{>0} \rightarrow \mathbf{R}_{>0}$ ($\delta(k)$ gives the time-cost of computing a single squaring in the group). The game goes as follows:

1. An RSA modulus N is generated randomly, for the security parameter k ;
2. $A(N)$ outputs an algorithm B ;
3. An element $g \in \mathbf{Z}/N\mathbf{Z}$ is uniformly randomly generated;
4. $B(g)$ outputs $h \in \mathbf{Z}/N\mathbf{Z}$.

A wins the game if $h = g^{2^t} \pmod{N}$ and $T(B, g) < t \delta(k)$, where $T(B, g)$ is the time for $B(g)$ to output h .

Time-Lock Assumption

Proposed by Rivest, Shamir and Wagner. Can be expressed as follows:

There is a $\delta: \mathbf{Z}_{>0} \rightarrow \mathbf{R}_{>0}$ such that:

1. \exists an algorithm S , s.t. \forall RSA modulus N generated with security parameter k , and any $g \in \mathbf{Z}/N\mathbf{Z}$, $S(N, g) = g^2 \bmod N$, and the time-cost $T(S, (N, g)) < \delta(k)$; and
2. $\forall t \in \mathbf{Z}_{>0}$, no algorithm A of **polynomial cost*** wins the (δ, t) -time-lock game with non-negligible probability (w.r.t k).

* One can define the cost as the **size of the circuit** used for computation.

Trapdoor VDF

$\text{keygen} \rightarrow (pk, sk)$

Generate a public-private key pair

$\text{trapdoor}_{sk}(x, \Delta) \rightarrow (y, \pi)$

Compute y using the secret key (cheating), along with a proof

$\text{eval}_{pk}(x, \Delta) \rightarrow (y, \pi)$

Compute y using the public key, along with a proof

$\text{verify}_{pk}(x, y, \pi, \Delta) \rightarrow \text{Boolean}$

Check if y is the correct output for x , possibly with the help of π

Construction: RSA Setup – Evaluation

Let $H: \{0,1\}^* \rightarrow \{0,1\}^{2k}$ denote a secure cryptographic hash function; $N = pq$, where p, q be 2 primes generated by an RSA keygen routine; and $g = H_N(x) = \text{int}(H(x)) \bmod N$.

$$\text{keygen} \rightarrow (pk, sk) \quad pk = (N, H_N), sk = (p-1)(q-1)$$

$$\text{trapdoor}_{sk}(x, t) \rightarrow (y, \pi) \quad y = g^{2^t \bmod sk} \bmod N$$

$$\text{eval}_{pk}(x, \Delta) \rightarrow (y, \pi) \quad y = g^{2^t} \bmod N$$

Construction: RSA Setup – Verification

Let $\text{Primes}(2k)$ denote the set containing the first 2^{2k} prime numbers, l be a prime number sampled uniformly at random from $\text{Primes}(2k)$, and $r = 2^t \bmod l$

$$\text{trapdoor}_{sk}(x, t) \rightarrow (y, \pi) \quad \pi = g^{\lfloor 2^t/l \rfloor \bmod sk} \bmod N$$

$$\text{eval}_{pk}(x, \Delta) \rightarrow (y, \pi) \quad \pi = g^{\lfloor 2^t/l \rfloor} \bmod N$$

$$\text{verify}_{pk}(x, y, \pi, \Delta) \rightarrow \text{Boolean} \quad y == \pi^l g^r \bmod N$$

Fiat–Shamir Transformation and Optimization

The protocol can be made **non-interactive** by letting $l = H_{\text{prime}}(g, y)$, where H_{prime} is a hash function which maps the input into an element of Primes($2k$).

Typically, an evaluator would compute the output y and the proof π , and send the pair (y, π) to the verifiers. And the verifiers would compute l from g and y .

Instead, it's also possible to transmit (l, π) and compute y from g , π and l , and verify that $l == H_{\text{prime}}(g, y)$. This reduces the bandwidth and storage footprint almost by 2 ($\text{sizeof}(l) \sim 10^2$, $\text{sizeof}(y) \sim 10^3$).

Computing the Proof $\pi (\sim O(t))$

Data: an element g in a group G (with identity 1_G), a prime number ℓ and a positive integer t .

Result: $g^{\lfloor 2^t / \ell \rfloor}$.

$x \leftarrow 1_G \in G;$

$r \leftarrow 1 \in \mathbf{Z};$

for $i \leftarrow 0$ **to** $T - 1$ **do**

$b \leftarrow \lfloor 2r / \ell \rfloor \in \{0, 1\} \in \mathbf{Z};$

$r \leftarrow \text{least residue of } 2r \text{ modulo } \ell;$

$x \leftarrow x^2 g^b;$

end

return $x;$

Algorithm 4: Simple algorithm to compute $g^{\lfloor 2^t / \ell \rfloor}$, with an on-the-fly long division [5].

Computing the Proof π ($\sim O(t / \log(t))$)

Let $p = \lfloor 2^t / l \rfloor$, $B = 2^\kappa$ (where $\kappa \in [1, t]$).

$$\Rightarrow p = \sum_{i=0}^{\infty} b_i B^i = \sum_{b=0}^{B-1} b \left(\sum_{i|b_i=b} B^i \right) \quad (\text{where } b_i \in [0, B-1])$$

$$T \sim t/\kappa + \kappa 2^\kappa \stackrel{\kappa = \log(t)/2}{\sim} O(t/\log(t)), C \sim t/\kappa \sim O(t/\log(t))$$

$$= \sum_{i=0}^{\infty} \sum_{j=0}^{\gamma-1} b_{i,j} B^{j+i\gamma} \quad (\text{where } b_{i,j} \in [0, B-1], \gamma \in [1, \frac{t}{\kappa}])$$

$$= \sum_{j=0}^{\gamma-1} B^j \sum_{i=0}^{\infty} b_{i,j} B^{i\gamma} = \sum_{j=0}^{\gamma-1} B^j \left(\sum_{b=0}^{B-1} b \left(\sum_{i|b_{i,j}=b} B^{i\gamma} \right) \right)$$

$$T \sim t/\kappa + \gamma \kappa 2^\kappa \stackrel{\kappa = \log(t)/3, \gamma = \sqrt{t}}{\sim} O(t/\log(t)), C \sim \sqrt{t}$$

Proof Shortness vs Prover Efficiency

The computation of π can only start after the evaluation of the VDF output g^{2^t} is completed, which results in an inevitable overhead $\frac{T}{\omega}$.

Such an overhead can be **reduced** by computing a proof π_1 for the intermediate result $g_1 = g^{2^{t_1}}$, where $t_1 = \frac{t \omega}{\omega + 1}$, which can start earlier in parallel. In the end, we just need to complement the proof with another proof π_2 for $y = g_1^{2^{t/(\omega+1)}}$, resulting in an overhead $\sim \frac{T}{\omega^2}$.

This trick can be applied recursively.

Δ -Evaluation Race Game

Let A be a party playing the game. With $\Delta: \mathbf{Z}_{>0} \rightarrow \mathbf{R}_{>0}$ a function of the security parameter k^* , the game goes as follows:

1. keygen outputs pk ;
2. $A(pk)$ outputs an algorithm B ;
3. An x is generated randomly according to some random distribution of min-entropy at least k ;
4. $B^O(x)$ outputs y , where O is an oracle that outputs $\text{trapdoor}_{sk}(x', \Delta)$ on any input $x' \neq x$.

A wins the game if $\text{eval}_{pk}(x, \Delta)$ outputs y and $T(B, X) < \Delta$.

*Think of $\Delta(k) \sim t \delta(k)$ for some specific t and δ .

Δ -Sequentiality

A trapdoor VDF is Δ -sequential if any polynomially bounded player (with respect to the implicit security parameter) wins the Δ -evaluation race game with negligible probability.

Remark: Suppose the input x is hashed as $H(x)$ (by a secure cryptographic function) before being evaluated, i.e.

$$\text{trapdoor}_{sk}(x, \Delta) = t_{sk}(H(x), \Delta)$$

for some procedure t , and similarly for eval and verify . Then, it is unnecessary to give to B access to the oracle O , i.e. the application of H offsets any potential advantage gained from getting access to the oracle O .

Proof of $(t\delta)$ -Sequentiality

Let A be a player winning the $(t\delta)$ -evaluation race game with probability p_{win} under the random oracle model, who is limited to q oracle queries.

1. show that there is a player C for the (δ, t) -time-lock game with a winning probability of at least $(1 - q/2^k) p_{\text{win}}$. (i.e. if A can win with non-negligible probability, so can C)
2. By the time-lock assumption, C cannot win with non-negligible probability, and therefore neither can A do so.
3. Hence, p_{win} must be negligible $\Rightarrow (t\delta)$ -sequentiality holds.

Soundness

A trapdoor VDF is sound if any polynomially bounded algorithm solves the following **soundness-breaking game** with negligible probability:

given as input the public key pk , output a message x , a value y' and a proof π' such that $y' \neq \text{eval}_{pk}(x, \Delta)$, and verify $_{pk}(x, y', \pi', \Delta) = \text{true}$.

Root Finding Game

Let A be a party playing the game. The game goes as follows:

1. keygen outputs an RSA modulus N , which is given to A ;
2. A outputs a $u \in \mathbb{Z}/N\mathbb{Z}$;
3. An integer l is sampled uniformly from $\text{Primes}(2k)$ and given to A ;
4. A outputs a $v \in \mathbb{Z}/N\mathbb{Z}$.

A wins the game if $v^l = u \neq \pm 1 \pmod{N}$.

*No known reduction of this problem to standard assumptions such as factoring N or the RSA problem.

Proof of Soundness

Let A be a player winning the soundness-breaking game with probability p_{win} under the random oracle model, who is limited to q oracle queries.

1. show that there is a player D for the root finding game with a winning probability of at least $p_{\text{win}}/(q+1)$. (i.e. if A can win with non-negligible probability, so can D)
2. Since the root finding problem is (believed to be) hard, C cannot win with non-negligible probability, and therefore neither can A do so.
3. Hence, p_{win} must be negligible \Rightarrow soundness holds

Generalizations and Extensions

- Construction can be generalized to be based on other sets of finite groups, as long as the (generalized) assumptions also hold
- In particular, the paper recommends the class group of an imaginary quadratic field of discriminant d . Advantages include simpler group generation process than RSA setup.
- The proofs can be aggregated: producing a single short proof that simultaneously proves the correctness of several VDF evaluations.
- The proofs can be watermarked: tying a proof to the evaluator's identity.

Conclusion

Summary

- VDFs and Efficiency
- Applications of VDFs
- Time-lock & groups of unknown order
- Setup & Proof complexity
- Sequentiality

Thank you for
your attention!

