Efficient Verifiable Delay Functions

Benjamin Wesolowski — EUROCRYPT 2019

VDF

VDF

A verifiable delay function

VDF

A verifiable delay function
- N
Evaluation requires at least some given time

VDF

A verifiable delay function

Result easily verifiable

VDF

A verifiable delay function

Alice Bob

“Give me f(x) please”
© Oz

Time T later

“Sure! Here’s y and 1"

VDF

A verifiable delay function

Alice Bob

“Give me f(x) please”
© Ox

1] | 2 ”
Sure! Here's y and 1t Time T later

‘7

f — function taking time T to compute
X — The input of Alice

y — The output of the function

1T — Proof that y is the correct output

Efficient VDF

An efficient verifiable delay function

1)Size of proof 1t
2)Evaluation time of f
3) Verification time of result y

Why VDF?

Randomness beacons

But! They don’t trust @

So they propose a scheme to generate a random outcome, trusted by all parties!

commit-and-reveal

© © @

Step1l Random . Random r Random r
Step2 Send H(ra) Send H(ry) Send H(r.)
Step3 Revealr; Reveal r,

Reveal r.

Step 4 Combine all values to get trusted random

commit-and-reveal

o O O,

Stepl Randomra, Random ry Random r
Step2 Send H(ra) Send H(ry) Send H(r.)
Step3 Revealr; Reveal 1, Observe raand rp

Reveal rconly if
good outcome

VDF based
© S) @&

Stepl Randomr, Random r;

Random r;
Step2 Sendr, Send r, Send r.

Time limitatmostg < T

Step 3 Run VDF (takes time T) on ra, r» and rc

i

Trusted random value

Related Work

Background & Related work

Time locks — Rivest, Shamir, Wagner — 1996

Slow-timed hash functions — Lenstra, Wesolowski — 2016

VDFs — Boneh et al — 2018

Simple VDFs — Pietrzak — 2018

Foundations

What is time?

Amount of sequential work in a given model M

Attacker’s model not exactly specified

N, T,

All operations an Cost function ¢ Time-cost function t
attacker could
perform

Measuring an algorithm: C(A,x) T(A,x)

2 Constructions

Need: group of unknown order

RSA vs Class Group of Imaginary Quadratic Field

!

* Simpler to work with * Tricky to work with
* Tricky to achieve unknown order + Simpler to achieve unknown
order

RSA Setup

Basic Idea

Given group G of unknown order, a timing parameter t,

t

for a random x€G, compute y= X

Given a random prime [, compute the proof 7 = X2,

With r=2"'mod !, verify by checking that y=x'g'.

For RSA setup, G=(Z/N Z)*/{+1} for an RSA modulus N,
with N of unknown factorization.

(0,t)-Time-Lock Game

Let keZ,,be a difficulty parameter (entropy), and A be an algorithm
playing the game. With t€Z_,, 6:Z_,2 R,, (J(k) gives the time-cost
of computing a single squaring in the group). The game goes as follows:

1. An RSA modulus N is generated randomly, for the security parameter k;
2. A(N) outputs an algorithm B;

3. An element geZ/N Z is uniformly randomly generated,;
4. B(g) outputs h€Z/N Z.

A wins the game if h=¢*> mod N and T(B,g)<td(k), where T(B,g)
is the time for B(g) to output h.

Time-Lock Assumption

Proposed by Rivest, Shamir and Wagner. Can be expressed as follows:

Thereisa 0:Z_,- R_, such that:

1. dan algorithm S, s.t. V. RSA modulus N generated with security
parameter k, and any g€Z/NZ, S(N,g)=g” mod N, and the
time-cost T(S,(N,g))<d(k); and

2. VteZ,,, no algorithm A of pelynomial cost * wins the (0,t)-time-
lock game with non-negligible probability (w.r.t k).

* One can define the cost as the size of the circuit used for computation.

Trapdoor VDF
keygen - (pk, sk) Generate a public-private key pair

trapdoor,, (x,A)>(y,7) Compute y using the secret key
(cheating), along with a proof

eval , (x,A)>(y,7) Compute y using the public key,
along with a proof

verify ,(x,y,7,A)>Boolean Check if y is the correct output for x,
possibly with the help of 7

Construction: RSA Setup — Evaluation

Let H:{0,1}"{0,1}* denote a secure cryptographic hash function;
N =pq, where p, g be 2 primes generated by an RSA keygen routine;
and g=H ,(x)=int(H (x)) mod N.

keygen - (pk, sk) pk=(N,H,),sk=(p—1)(q—1)
trapdoor, (x,t)2(y,7z) y=g¢> ™ * mod N

eval , (x,A)>(y,7) y=g°> mod N

Construction: RSA Setup — Verification

Let Primes(2k) denote the set containing the first 2° prime numbers,
| be a prime number sampled uniformly at random from Primes (2k),

and r=2" mod I

[2t/lJ mod sk

trapdoor,, (x,t)=>(y,n) T=g mod N

evalpk(x,A)é(y,n) glzt”J mod N

verify ,(x,y,m,A)»>Boolean y==n'g" mod N

Fiat—Shamir Transformation and Optimization

The protocol can be made non-interactive by letting I=H ; . (g,y),
where H ;. is ahash function which maps the input into an element
of Primes (2k).

Typically, an evaluator would compute the output y and the proof 7,
and send the pair (y,) to the verifiers. And the verifiers would com-
pute | from g and y.

Instead, it's also possible to transmit (1,7) and compute y from g, 7
and I, and verify that [==H ; .(g,y). This reduces the bandwidth and

storage footprint almost by 2 (sizeof (1)~10°, sizeof (y)~107).

Computing the Proof 1t (~ O(t))

Data: an element g in a group G (with identity 1¢), a prime number ¢ and a
positive integer t.

Result: gtzt/ ¢,

r ¢+ 1lg € G;

r<1¢€Z;

fori <+ 0toT —1do
b« |2r/t| € {0,1} € Z;
r < least residue of 2r modulo /;
r — x2g°;

end

return z;

Algorithm 4: Simple algorithm to compute gl2tf ‘]| with an on-the-fly long
division [5].

Computing the Proof 1t (~ O(t / log(t)))
Let p=|2'/1|, B=2"(where x€[1,t]).

:p:Z b, B :Z_: b(Y. B') (where b,€[0,B—1])

b=0 1|bb

T~ t//(+/(2KK €2 0 (thog (1)), C~t/x ~O(t/og(t))

j+1i l'
:Z Z b, ;B (where b, ,€[0,B—1],y€[1,%])

i= 0 j=0
EoEne SrEuE e

T~t//(+g//(2 et /By O(t/log(t)), C~t

Proof Shortness vs Prover Efficiency

The computation of sz can only start after the evaluation of the VDF

e : : L T
output g° is completed, which results in an inevitable overhead o -

Such an overhead can be reduced by computing a proof sz, for the

: - ‘ t w : :
intermidiate result g,=g° , where t,= , which can start earlier

w+1
in parallel. In the end, we just need to complement the proof with

tH{w+1)

.. T
another proof 77, for y=g; , resulting in an overhead ~—.

w

This trick can be applied recursively.

A-Evaluation Race Game

Let A be a party playing the game. With A:Z_,- R, a function of the
security parameter k *, the game goes as follows:

1. keygen outputs pk;

2. A(pk) outputs an algorithm B;

3. An x is generated randomly according to some random distribution of
min-entropy at least k;

4. B®(x) outputs y, where O is an oracle that outputs trapdoor, (x',A)
on any input x'#x.

A wins the game if eval , (x,A) outputs y and T (B, X)<A.
*Think of A(k)~td(k) for some specific t and &.

A-Sequentiality

A trapdoor VDF is A-sequential if any polynomially bounded player
(with respect to the implicit security parameter) wins the A-evaluation
race game with negligible probability.

Remark: Suppose the input x is hashed as H(x) (by a secure crypto-
graphic function) before being evaluated, i.e.

trapdoor, (x,A)=t_ (H(x),A)
for some procedure t, and similarly for eval and verify. Then, it is
unnecessary to give to B access to the oracle O, i.e. the application
of H offsets any potential advantage gained from getting access to
the oracle O.

Proof of (td)-Sequentiality

Let A be a player winning the (t 0)-evaluation race game with
probability p . under the random oracle model, who is limited

to g oracle queries.

1. show that there is a player C for the (0,t)-time-lock game
with a winning probability of at least (1—q/2") p... . (i.e. if
A can win with non-negligible probability, so can C)

2. By the time-lock assumption, C cannot win with non-negli-

gible probability, and therefore neither can A do so.
3. Hence, p .. must be negligible= (t 0)-sequentiality holds.

Soundness

A trapdoor VDF is sound if any polynomially bounded algorithm solves
the following soundness-breaking game with negligible probability:

given as input the public key pk, output a message x, a value y 'and a
proof 7' such that y ';éevalpk(x,A), and Verifypk(x,y "I ',A):true.

Root Finding Game

Let A be a party playing the game. The game goes as follows:

1. keygen outputs an RSA modulus N, which is givento A;

2. A outputsa ueZ/N Z;

3. An integer | is sampled uniformly from Primes(2k) and givento A;
4. A outputsa veZ/N Z.

A wins the game if v'=u#+1modN .

*No known reduction of this problem to standard assumptions such as
factoring N or the RSA problem.

Proof of Soundness

Let A be a player winning the soundness-breaking game with
probability p . under the random oracle model, who is limited

to g oracle queries.

1. show that there is a player D for the root finding game with
a winning probability of at least p,,. /(g+1). (i.e. if A can
win with non-negligible probability, so can D)

2. Since the root finding problem is (believed to be) hard, C
cannot win with non-negligible probability, and therefore
neither can A do so.

3. Hence, p .. must be negligible = soundness holds

Generalizations and Extensions

* Construction can be generalized to be based on other sets of finite groups, as
long as the (generalized) assumptions also hold

* In particular, the paper recommends the class group of an imaginary quadratic
field of discriminant d. Advantages include simpler group generation process
than RSA setup.

« The proofs can be aggregated: producing a single short proof that
simultaneously proves the correctness of several VDF evaluations.

* The proofs can be watermarked: tying a proof to the evaluator’s identity.

Conclusion

Summary

VDFs and Efficiency
Applications of VDFs

Time-lock & groups of unknown order

Setup & Proof complexity

Sequentiality

Thank you for
your attention!

	Slide 1
	Motivation
	Intro
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	RSA Setup
	Basic Idea _clipboard0
	Basic Idea
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

