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VDF

A verifiable delay function

Alice Bob“Give me f(x) please”

“Sure! Here’s y and π” Time T later

● f – function taking time T to compute
● x – The input of Alice
● y – The output of the function
● π – Proof that y is the correct output



Efficient VDF

An efficient verifiable delay function

1)Size of proof π

2)Evaluation time of f

3)Verification time of result y



Why VDF?



Randomness beacons
and went to the casino

To play

But! They don’t trust

So they propose a scheme to generate a random outcome, trusted by all parties!



commit-and-reveal

Step 1 Random ra Random rb Random rc

Step 2 Send H(ra) Send H(rb) Send H(rc)

Step 3 Reveal ra Reveal rb Reveal rc

Step 4 Combine all values to get  trusted random



commit-and-reveal

Step 1 Random ra Random rb Random rc

Step 2 Send H(ra) Send H(rb) Send H(rc)

Step 3 Reveal ra Reveal rb Observe ra and rb

!

Reveal rc only if 
good outcome



VDF based

Step 1 Random ra Random rb Random rc

Step 2 Send ra Send rb Send rc

Step 3

Time limit at most q < T

Run VDF (takes time T) on ra, rb and rc

Trusted random value



Related Work



Background & Related work

Time locks – Rivest, Shamir, Wagner – 1996

Slow-timed hash functions – Lenstra, Wesolowski – 2016

Simple VDFs – Pietrzak – 2018

VDFs – Boneh et al – 2018



Foundations



What is time?
Amount of sequential work in a given model M

Attacker’s model not exactly specified

All operations an 
attacker could 
perform

Cost function c Time-cost function t

Measuring an algorithm: C(A,x) T(A,x)



2 Constructions
Need: group of unknown order

RSA vs Class Group of Imaginary Quadratic Field

● Simpler to work with
● Tricky to achieve unknown order

● Tricky to work with
● Simpler to achieve unknown 

order



RSA Setup



Basic Idea

 Given group G  of unknown  order, a timing parameter t ,

for a random x∈G , compute y=x2t

.

Given a random prime l , compute the proof π =x⌊2
t / l ⌋ .

With r=2t mod l , verify by checking that y=π l gr .

For RSA setup, G=(Z /N Z)× /{±1} for an RSA modulus N ,
with N  of unknown factorization .



 Let k∈Z>0 be a difficulty parameter (entropy), and A  be an algorithm
playing the game. With t∈Z>0 , δ :Z>0→R>0  (δ (k )  gives the time-cost
of computing a single squaring in the group). The game goes as follows:

1. An RSA modulus N  is generated randomly, for the security parameter k ;
2. A (N )  outputs an algorithm B ;
3. An element g∈Z /N Z  is uniformly randomly generated;
4. B(g)  outputs h∈Z /N Z .

A  wins the game if h=g2t

 mod N  and T (B , g)<t δ (k ), where T (B , g)
is the time for B(g)  to output h .

(δ,t)-Time-Lock Game



 Proposed by Rivest, Shamir and Wagner. Can be expressed as follows:

There is a δ :Z>0→R>0  such that:
1. ∃an algorithm S , s.t. ∀  RSA modulus N  generated with security
     parameter k , and any g∈Z /N Z , S(N , g)=g2  mod N , and the 
     time-cost T (S ,(N , g))<δ (k ); and
2. ∀ t∈Z>0 , no algorithm A  of polynomial cost * wins the (δ , t )-time-
     lock game with non-negligible probability (w.r.t k ).

* One can define the cost as the size of the circuit  used for computation.

Time-Lock Assumption



 keygen→( pk , sk ) Generate a public-private key pair

trapdoor sk(x ,Δ)→( y ,π ) Compute y  using the secret key
(cheating), along with a proof

eval pk(x ,Δ)→( y ,π ) Compute y  using the public key,
along with a proof

verify pk(x , y ,π ,Δ)→Boolean Check if y is the correct output for x,
possibly with the help of π

Trapdoor VDF



 Let H :{0 ,1}*→{0 ,1 }2k  denote a secure cryptographic hash function;
N=pq , where p , q  be 2 primes generated by an RSA keygen routine;
and g=H N (x)=int (H (x))  mod N .

Construction: RSA Setup – Evaluation

keygen→( pk , sk) pk=(N , H N ), sk=( p−1)(q−1)

trapdoor sk(x , t )→( y ,π ) y=g2t  mod sk  mod N

evalpk (x ,Δ)→( y ,π ) y=g2t

 mod N



 Let Primes(2 k )  denote the set containing the first 22 k  prime numbers,
l  be a prime number sampled uniformly at random from Primes(2 k ),
and r=2t  mod l

Construction: RSA Setup – Verification 

trapdoorsk (x , t)→( y , π) π=g⌊2
t /l⌋  mod sk  mod N

eval pk (x ,Δ)→( y , π) π=g⌊2
t /l⌋  mod N

verify pk (x , y , π ,Δ)→Boolean y==π l gr  mod N



 The protocol can be made non-interactive  by letting l=H prime(g , y ),
where H prime  is a hash function which maps the input into an element
of Primes(2 k ).

Typically, an evaluator would compute the output y  and the proof π ,
and send the pair ( y ,π )  to the verifiers. And the verifiers would com-
pute l  from g  and y .
Instead, it's also possible to transmit (l ,π )  and compute y  from g , π
and l , and verify that l == H prime(g , y). This reduces the bandwidth and 

storage footprint almost by 2 (sizeof (l)∼102 , sizeof ( y)∼103 ).

Fiat–Shamir Transformation and Optimization



 

Computing the Proof π (~ O(t))



 

Computing the Proof π (~ O(t / log(t)))

Let p=⌊2t /l ⌋, B=2κ (where κ ∈[1 , t ] ).

⇒ p=∑
i=0

..

bi Bi    =∑
b=0

B−1

b(∑
i |bi=b

Bi)    (where bi∈[0 , B−1] )

      T∼t /κ +κ 2κ ∼
κ=log(t )/2

O(t / log (t )), C∼t /κ ∼O(t / log (t ))

      =∑
i=0

..

∑
j=0

γ −1

bi , j B j+iγ     (where bi , j∈[0 , B−1] ,γ ∈[1 ,
t
κ ] )

      =∑
j=0

γ −1

B j∑
i=0

..

bi , j Biγ     =∑
j=0

γ−1

B j (∑
b=0

B−1

b( ∑
i | bi , j=b

Biγ ))

      T∼t /κ +γ κ 2κ ∼
κ =log (t)/3 ,γ=√t

O(t / log(t )) , C∼√t



 The computation of π  can only start after the evaluation of the VDF 

output g2t

 is completed, which results in an inevitable overhead 
T
ω .

Such an overhead can be reduced  by computing a proof π 1  for the

intermidiate result g1=g2t 1

, where t1=
tω
ω+1

, which can start earlier

in parallel. In the end, we just need to complement the proof with

another proof π 2  for y=g1
2t /(ω+1)

, resulting in an overhead ∼T

ω 2 .

This trick can be applied recursively.

Proof Shortness vs Prover Efficiency



 Let A  be a party playing the game. With Δ :Z>0→R>0  a function of the
security parameter k *, the game goes as follows:

1. keygen outputs pk ;
2. A ( pk )  outputs an algorithm B ;
3. An x  is generated randomly according to some random distribution of
    min-entropy at least k ;
4. BO(x)  outputs y , where O  is an oracle that outputs trapdoor sk(x ' ,Δ)
    on any input x '≠x .

A  wins the game if eval pk (x ,Δ)  outputs y  and T (B , X )<Δ .

*Think of Δ(k )∼t δ (k )  for some specific t  and δ .

∆-Evaluation Race Game



 A trapdoor VDF is ∆-sequential if any polynomially bounded player
(with respect to the implicit security parameter) wins the ∆-evaluation
race game with negligible probability.

Remark: Suppose the input x  is hashed as H (x)  (by a secure crypto-
graphic function) before being evaluated, i.e.

trapdoor sk(x ,Δ)=t sk (H (x) ,Δ)
for some procedure t , and similarly for eval  and verify . Then, it is 
unnecessary to give to B  access to the oracle O , i.e. the application
of H  offsets any potential advantage gained from getting access to 
the oracle O .

∆-Sequentiality



 Let A  be a player winning the ( tδ )-evaluation race game with
probability pwin under the random oracle model, who is limited 
to q  oracle queries.

1. show that there is a player C  for the (δ , t )-time-lock game
    with a winning probability of at least (1−q /2k) pwin . (i.e. if 
    A  can win with non-negligible probability, so can C )
2. By the time-lock assumption, C  cannot win with non-negli-
    gible probability, and therefore neither can A  do so.
3. Hence, pwin  must be negligible⇒ ( tδ )-sequentiality holds.

Proof of (tδ)-Sequentiality



 A trapdoor VDF is sound if any polynomially bounded algorithm solves
the following soundness-breaking game  with negligible probability:

given as input the public key pk , output a message x, a value y ' and a
proof π '  such that y ′≠evalpk (x ,Δ) , and verify pk (x , y ′ ,π ′ ,Δ)=true.

Soundness



 Let A  be a party playing the game. The game goes as follows:

1. keygen outputs an RSA modulus N , which is given to A ;
2. A  outputs a u∈Z /N Z ;
3. An integer l  is sampled uniformly from Primes(2k )  and given to A ;
4. A  outputs a v∈Z /N Z .

A wins the game if vl=u≠±1 mod N .

*No known reduction of this problem to standard assumptions such as
  factoring N or the RSA problem.

Root Finding Game



 Let A  be a player winning the soundness-breaking game with
probability pwin under the random oracle model, who is limited 
to q  oracle queries.

1. show that there is a player D  for the root finding game with
    a winning probability of at least pwin/(q+1). (i.e. if A  can
    win with non-negligible probability, so can D )
2. Since the root finding problem is (believed to be) hard, C
    cannot win with non-negligible probability, and therefore
    neither can A  do so.
3. Hence, pwin  must be negligible⇒ soundness holds

Proof of Soundness



● Construction can be generalized to be based on other sets of finite groups, as 
long as the (generalized) assumptions also hold

● In particular, the paper recommends the class group of an imaginary quadratic 
field of discriminant d. Advantages include simpler group generation process 
than RSA setup.

● The proofs can be aggregated: producing a single short proof that 
simultaneously proves the correctness of several VDF evaluations.

● The proofs can be watermarked: tying a proof to the evaluator’s identity.

Generalizations and Extensions



Conclusion



Summary

● VDFs and Efficiency

● Applications of VDFs

● Time-lock & groups of unknown order

● Setup & Proof complexity

● Sequentiality



Thank you for 
your attention!
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