COM-506 Report : Atomic and Fair Data Exchange via
Blockchain

Brandy Nogales - 275195
Engjell Ismaili - 344534
Louis Giraud - 334749

March 14, 2025

1 Introduction

In this report, we begin by introducing the con-
cept of Fair Data Exchange (FDE) and detailing
its operational mechanisms. We then explore
Smart Contracts and discuss how they can re-
place a trusted third party to facilitate a fair
exchange. Next, we introduce the cryptographic
primitive known as Verifiable Encryption under
Committed Key (VECK), which, in our context,
enables a client to store data on a server and
later retrieve exactly the same data. The client
commits to the data upfront, ensuring that the
received data can be verified against the orig-
inal commitment. We also present the math-
ematical foundations of the underlying commit-
ment scheme, which is based on KZG Polynomial
Commitments. Furthermore, we describe vari-
ous VECK constructions, including those based
on ElGamal and Paillier encryption schemes, and
explain how the protocol operates with each vari-
ant. Performance evaluation of the FDE proto-
col under both the ElGamal and Paillier con-
structions is provided, followed by an analysis of
how the protocol can be extended to a multi-
client setting.

2 Fair Data Exchange

In general, the Fair Data Exchange (FDE) proto-
col involves two parties—typically a client and a
server—each possessing something that the other
requires. For the exchange to be considered fair,
the following conditions must be met:

e A fair exchange occurs when both parties
receive exactly what the other offers; if the

process is interrupted, neither party should
obtain any information about the other’s
data.

e An exchange is deemed unfair if one party
obtains information about the other’s data
without reciprocating with their own.

In our example, a client intends to store poten-
tially large data on a cloud provider’s server.
Because the server is responsible for data stor-
age, the client must pay for the service when
retrieving the data. One common approach is a
subscription-based model, where the client pays
in advance and relies on the server’s reputa-
tion to deliver the data. However, a truly fair
exchange would ensure that the client receives
the data only if the server obtains the payment.
To achieve this fairness without depending on
a trusted third party, blockchain technology and
smart contracts can be employed to securely me-
diate the exchange.

3 Example protocol

overview

We will see an example of how we could use
VECK in an Ethereum Based protocol as illus-
trated in Figure 1, which unfolds in six steps:

(Step 1) The server sends a public key that
serves as a commitment to its secret key. (Step
2) The server sends the encrypted data along
with a proof that it correctly possesses the secret
key needed to decrypt the data. (Step 3) The
client locks funds in the smart contract. (Step
4) The server submits its secret key to the smart
contract. (Step 5) The smart contract verifies

2) Sends encrypted data with proofs

g B

Clienl(@)

Payment

Decrypt(Y . @F ﬁ

6) Obtaining the data

Figure 1: The blueprint of FDE protocols on
Ethereum that relies on a smart contract for
achieving fairness

that the server’s public key is a valid commit-
ment to the secret key. If the verification suc-
ceeds, it transfers the funds to the server and
the secret key to the client. (Step 6) The client
uses the secret key to decrypt the data.

With this overview of Fair Data Exchange, smart
contracts, and the protocol in place, we now pro-
ceed to introduce the concept of Verifiable En-
cryption under Committed Key (VECK).

4 Verifiable
under

(VECK)

encryption
committed key

Before presenting the formal definition for
VECK, let’s recall what polynomial commit-
ments are and their properties. As said in the
name, these schemes allow us to commit to uni-
variate polynomials of degree at most [over I,
and are comprised of the algorithms in Figure 2.
A secure polynomial commitment scheme should
also satisfy the following properties : Correct-
ness, Polynomial Binding and Evaluation
Binding.

Veck allows the encryptor to encrypt some data
that will output : a verification key, the cipher-
text and a zero-knowledge proof of correct en-
cryption. It satisfies correctness, soundness and
zero-knowledge. For each of them, here are the
guarantees they provide :

e Correctness guarantees that decryption
key corresponding to the verification key
correctly decrypts the original data.

e Soudness guarantees that a polynomial

Setup(14,n) — crs: generates public parameters for com-
mitting to polynomials of degree at most n.

CommiT(crs, $(X)) — C: deterministically computes the
commitment C to the polynomial ¢ (X) € F;EH[X] of degree
not greater than n.

VERIFYPOLY (crs, ¢(X),C) — 0/1: outputs 1 if it holds that
ComMIT(crs, (X)) = C, and outputs 0 otherwise.
OpEN(crs, i, (X)) — 7 : outputs a proof z for the fact that
¢ (X) evaluates to ¢ (i) at index i.

. VERIFYEVAL(crs, C, i, (i), :r) — 0/1: verifies the proof.

e BarcuOren(crs,S = (iy,..., i), (X)) — m :outputs a
proof for multiple evaluations of ¢ (X) at indices S.
e BarcaVEriFy(crs, C, (m;, ...,mi), (i1,..., i), 1) — 0/1

verifies the batch proof.

Figure 2: Algorithms from the paper

time adversary can’t generate a valid proof
about an incorrect encryption (the server
can’t cheat)

e Zero-Knowledge guarantees that the ver-
ification key, the proof and the ciphertext
don’t leak information that could recover
the data (the client can’t cheat).

In the paper, they defined VECK as shown in
Figure 3, which satisfies the above properties.
Finally, note that VECK can also use symmet-
ric key encryption, opening a prospect for using
more efficient schemes. For the FDE application,
we will introduce a commitment scheme where
the VECK function F' will be the evaluation of
a given degree-I polynomial : F(¢) = {¢(i) }iep,
where ¢(X) is a polynomial of degree I.

5 VECK Constructions

The paper presents two instantiations of the
VECK primitive. The first one based on the De-
cisional Diffie-Hellman problem, while the sec-
ond one uses the Decisional Composite Residu-
osity problem, based on the Paillier encryption
scheme. Both use KZG Polynomial Commit-
ments as a Commitment primitive, which we will
explain in Section [5.1

5.1 KZG Polynomial Commit-

ments

It is one of the most widely used polynomial com-
mitment schemes. The goal here is to commit to
a polynomial P(x) of degree < [with coefficients

DEFINITION 3.1 (VERIFIABLE ENCRYPTION UNDER COMMITTED
KEY (VECK)). Let (SETrup, CoMmIT) be a non-interactive binding
commitment scheme, where SETuP(1Y) — crs generates a public
common-reference string, and Commir(crs,w € W) — C,, € C
generates a commitment. A non-interactive VECK scheme for a class
functions ¥ = {F : ‘W — V} is a tuple of algorithms Iy =
(GEN, ENC, VERct, VERey, DEC):

e GEN(crs) — pp: Probabilistic polynomial-time algorithm
that takes as input the crs generated by the setup of the com-
mitment scheme and outputs parameters for the system, as
well as the description of appropriate spaces. The parameters
pp are implicitly taken by all the following algorithms, we
omit them where it is clear from the context.

Enc(pp, F, Cyy, w) = (vk, sk, ct, 7): Probabilistic polynomial-
time algorithm, run by the server, It takes in the function F,

the commitment C., to w and the w itself, and outputs a

verification key vk, a decryption key sk, an encryption ct of

F(w) and a proof =.

VERct (pp, F, Cu, VK, ct,) — 1/0: A deterministic polynomial-

time algorithm run by the client that outputs accept or reject.

VERyey (pp, vk, sk) — 1/0°: A deterministic polynomial-time

algorithm run by the blockchain or a trusted third party that

checks the validity of the secret key.

e Dec(pp, sk, ct) — v/L: A deterministic polynomial-time
algorithm run by the client, it outputs a value (such as an
evaluation of F onw) or L.

Figure 3: Definition of VECK from the original
paper

in F,. The scheme is based on the pairing of el-
liptic curves, using a nontrivial bilinear mapping
e: G XGo — Gr. A prover can generate a proof
that P(a) = b without revealing P(x). The veri-
fier can verify the proof without having the coef-
ficients of P(x) using a pairing-based equation.
The prover can then reveal P(x), which he had
committed to beforehand.

5.2 ElGamal VECK and Paillier
VECK

The first instantiation of the protocol bases its
security on the hardness of the DDH problem
and is proven secure in the Algebraic Group
Model (AGM). The AGM is an abstraction of
an adversary that can only use algebraic algo-
rithms in its attack, i.e., generate an output only
algebraically based on the inputs provided in the
game definition of the problem. We will not go
into the mathematical details of the instantiation
in this summary, but all details can be found in
the original paper.

The main issue with ElGamal VECK is the size
of the ciphertext. With the described protocol,
there is a non-constant bloat up when encrypt-
ing that can be reduced when using this second

solution. This solution is based on the Paillier
encryption scheme, and has a constant bloat-up
factor. This second protocol also comes with its
downsides, which will be explained in more de-
tails in the performance part. The mathematical
details of these instantiations will not be men-
tioned here, but they can be found in the original

paper.

6 Performance Evaluation

The protocols introduced in this paper, includ-
ing FDE-ElGamal and FDE-Paillier, offer signif-
icant improvements over previous methods like
FairSwap, FileBounty, and FairDownload by em-
ploying KZG polynomial commitments instead
of traditional Merkle trees. This change re-
duces the complexity to three rounds and min-
imizes on-chain communication. Additionally,
the server amortizes costs by consolidating funds
from multiple exchanges, enabling single with-
drawals to cover various payments. Performance
tests were conducted on an AMD Ryzen 5 3600
(6-core) CPU with 8GB RAM.

6.0.1 Off-Chain Costs

Prover Time: In the Exponential ElGamal
scheme, we set £k = 8, which involves divid-
ing each BLS12-381 scalar into k& smaller plain-
texts. This approach improves decryption effi-
ciency but results in an increase in ciphertext
size by a factor of k. Encrypting and generating
consistency proofs for 4,096 BLS12-381 points
(=~ 128 KiB) requires 89 seconds. In contrast,
the Paillier-based protocol scales linearly with
the number of elements and takes only about
5.09 seconds.

Verifier Time: Verifying 4,096 ElGamal
ciphertexts against a KZG commitment takes
34.15 seconds, primarily due to computationally
expensive multi-scalar multiplications (MSMs).
On the other hand, verification for the Paillier
protocol takes 19.45 seconds, with decryption re-
quiring only 9.54 seconds.

Proof Size: The Exponential ElGamal pro-
tocol requires 1.56 MB of bandwidth to transmit
ciphertexts and proofs for 0.13 MB of raw data
to the client, representing an 11.95 times band-
width overhead. In contrast, the Paillier protocol
has even higher bandwidth demands : 6.55 MB

for the same volume of raw data (50.18 times
bandwidth overhead).

Despite its computational advantages, the
Paillier protocol does not effectively reduce
bandwidth costs compared to the Exponential
ElGamal protocol.

Metric Data Size ElGamal Paillier
Prov. Time 0.13 MB 89 sec 5 sec
1 GB 194 hrs 11 hrs
Verif. Time 0.13 MB 34.15 sec 19.45 sec
1 GB 74 hrs 42 hrs
||ctxt 4+ proofs|| 0.13 MB 1.56 MB 6.55 MB
1 GB 12 GB 50 GB

Table 1: Performance metrics for ElGamal and
Paillier schemes for 0.13 MB and 1 GB of data,
chosen to illustrate a realistic application sce-
nario.

6.0.2 On-Chain Costs

On-chain operations are managed by smart con-
tract logic on either Bitcoin or Ethereum to sup-
port the transaction processes.

Bitcoin: The fee for the bonding contract is
expected to be below $10 for a 1-hour confirma-
tion time, regardless of the data size. This con-
tract includes two conditional executions: one
utilizes a timelock allowing client access post-
timeout, and the other allows the release of funds
with the appropriate signatures.

Ethereum: Smart contracts on the Ethereum
Virtual Machine (EVM) use four critical func-
tions, as detailed in Figure 4. The server is al-
lowed to withdraw funds once it provides the de-
cryption key, whereas clients can reclaim their
payments if the decryption key is retained. The
costs listed in the table are based on the ETH
exchange rate as of February 3, 2024. Since that
time, the Ethereum prices have dropped to ap-
proximately 1’678.42 USD/ETH as of March 14,
2025, lowering transaction costs.

7 Multi-Client Model

In situations where a server needs to send the
same data to many clients, running a separate
exchange for each one can be inefficient and ex-
pensive. The Multi-Client-VECK protocol helps
by letting the server preprocess the encryption

Transaction Gas cost USD cost
ElGamal Paillier EIG. Pail.
serverSendsPubKey 158, 449 176,296 5.11$% 5.68$
clientLocksPayment 30,521 30,521 0.98$ 0.98%
serverSendsSecKey 73,692 82,475 2.37$% 2.65%
withdrawPayment 43,836 43,836 1.41$ 1.41$%

Figure 4: EVM gas costs for smart contract func-
tions in Exponential ElGamal and Paillier-based
FDE schemes. Exchange rate on February 3,
2024. 2,302.35 USD/ETH

and proofs once and use it for all clients, reduc-
ing costs significantly.

However, a problem arises if clients start shar-
ing the decryption keys among themselves with-
out paying. To prevent this, the MC-VECK pro-
tocol makes sure each client must get their de-
cryption key directly from the server.

8 Conclusion

This paper demonstrates that while FDE proto-
col implementations can reduce on-chain trans-
action sizes, they pose significant practical chal-
lenges. Notably, off-chain costs are high due
to intensive computation and data transmis-
sion overheads. For example, processing a 1GB
file with these protocols significantly increases
bandwidth usage and processing time, limiting
their practical application in real-world scenar-
ios. The MC-VECK setting attempts to amor-
tize computation costs across multiple clients by
preprocessing encryption and proofs. However,
this introduces security challenges, as clients
might share decryption keys to avoid payments.
Future developments need to focus on minimiz-
ing the size of encrypted data and proofs and
reducing computation and verification times to
enhance the feasibility of FDE protocols for real-
world adoption.

	Introduction
	Fair Data Exchange
	Example protocol overview
	Verifiable encryption under committed key (VECK)
	VECK Constructions
	KZG Polynomial Commitments
	ElGamal VECK and Paillier VECK

	Performance Evaluation
	Off-Chain Costs
	On-Chain Costs

	Multi-Client Model
	Conclusion

