
Lightweight Techniques for Private Heavy Hitters
IEEE Security & Privacy 2021

COM-506 Student seminar: security protocols and applications

12 May 2025
Tapdig Maharramli, Raymond Nasr

https://eprint.iacr.org/2021/017.pdf

https://eprint.iacr.org/2021/017.pdf

● Problem Statement
● Lightweight Techniques

○ Incremental Distributed Point Functions
○ Malicious-Secure Sketching
○ Extractable Distributed Point Functions

● Poplar System
● Providing Differential Privacy
● Implementation and Evaluation
● Summary

Contents 2

Browser vendor wants to find out which URLs crash browser most often…

3

🍪 google.com/search?q=how+to+prove+I+didn’t+eat+last+cookie+using+ZK
🔐 lasec.epfl.ch/teaching.php
🐟 nytimes.com/2025/05/05/climate/sustainable-fish-seafood.html

.

.

.
🎓 moodle.epfl.ch/course/view.php?id=13965
📰 www.swissinfo.ch/eng

.

.

.

Non-private data collection!

Browser vendor wants to find out which URLs crash browser most often…

4

🍪 google.com/search?q=how+to+prove+I+didn’t+eat+last+cookie+using+ZK
🔐 lasec.epfl.ch/teaching.php
🐟 nytimes.com/2025/05/05/climate/sustainable-fish-seafood.html

.

.

.
🎓 moodle.epfl.ch/course/view.php?id=13965
📰 www.swissinfo.ch/eng

This paper: Browser vendor can learn most often reported URLs without
learning which client reported which URL.

• 𝐶 clients (mobile devices, browsers, etc.)
• Each client 𝑖, 𝑓𝑜𝑟 𝑖 ∈ {1, … , 𝐶} holds an n-bit string 𝛼! ∈
{0, 1}" (𝑒. 𝑔. , 𝑛 ≈ 256)

• Two non-colluding data-collection servers
• Goal: Servers learn set of all strings that ≥ 𝑡 clients hold

without revealing individual client data

Private Heavy-Hitters Problem 5

• Privacy against one malicious server, colluding with
malicious clients

• Correctness against malicious clients
• Minimal communication and computation costs
• Support 100s of submissions per second (using 100-

1000x less bandwidth than general-purpose MPC)

Private Heavy-Hitters Problem 6

• Completeness: With honest participants, servers correctly
learn the aggregate statistics.

• Robustness to malicious clients: Malicious clients cannot
bias results beyond choosing their own input arbitrarily.

• Privacy against a malicious server: If one server is honest,
a malicious server learns nothing about client data beyond the
aggregate statistics.

Poplar: Security Properties 7

Any scenario requiring private data collection and analytics

• Which URLs crash Firefox most often?
• Which phone apps consume the most battery life?
• Which passwords are most popular?
• Which programs consume the most CPU?
• Mobile companies learning popular apps without

tracking individuals
• Electric vehicle makers finding roads where batteries

run low

Other Applications 8

Lightweight
Techniques

à Incremental DPFs

à Malicious-Secure Sketching

à Extractable DPFs

• Client 𝑖 with string 𝑠! prepares a binary tree, with 1s on the path to
the 𝑠!-𝑡ℎ leaf of the tree

Warm-up Scheme 10

📱
Client 𝑖

• Each client secret-shares the labels on the tree’s nodes and sends
one share to each of the servers

Warm-up Scheme 11

📱
Client 𝑖

• Each client secret-shares the labels on the tree’s nodes and sends
one share to each of the servers

• Single message from each client to servers

Warm-up Scheme 12

📱📱… 📱
𝐶 clients

• Servers sum up shares from each client to get aggregate shares

Warm-up Scheme 13

📱📱… 📱
𝐶 clients

• Servers publish shares to perform BFS search for heavy hitters
• Servers use BFS with pruning to find all heavy hitters

Warm-up Scheme 14

📱📱… 📱
𝐶 clients

• Servers use BFS with pruning to find all heavy hitters

Warm-up Scheme 15

📱📱… 📱
𝐶 clients

• Each tree is exponentially large (e.g., when strings are URLs,
locations, passwords) è Client cannot materialize it
• Use incremental distributed point functions

• Succint secret-sharing of a tree with one non-zero path
• Communication 𝑂(𝜆𝑛) instead of 𝑂(𝜆𝑛") with normal DPF

• Client can send malformed secret shares è Data corruption
• Use malicious-secure sketching

• Servers can test whether a secret-shared vector is non-zero
in a single coordinate

• Extractable distributed point functions

Technical Challenges 16

Incremental
Distributed
Point
Functions

• A DPF is a cryptographic primitive for secret-sharing a vector that is non-zero
at a single point.

𝑫𝑷𝑭 𝑺𝒄𝒉𝒆𝒎𝒆 = (𝐺𝑒𝑛, 𝐸𝑣𝑎𝑙) with:
• 𝐺𝑒𝑛 𝛼, 𝛽 → 𝑘!, 𝑘"

• Given point 𝛼 ∈ {0,1}ⁿ and value 𝛽 ∈ 𝐹, output two DPF keys
• 𝐸𝑣𝑎𝑙 𝑘, 𝑥 → 𝐹

• Given 𝐷𝑃𝐹 𝑘𝑒𝑦 𝑘 and 𝑖𝑛𝑑𝑒𝑥 𝑥 ∈ {0,1}ⁿ, output a secret share

Correctness Property
For all 𝛼 ∈ 0,1 ⁿ, 𝛽 ∈ 𝐹, (𝑘₀, 𝑘₁) ← 𝐺𝑒𝑛(𝛼, 𝛽), and 𝑥 ∈ {0,1}ⁿ:

• 𝐸𝑣𝑎𝑙(𝑘₀, 𝑥) + 𝐸𝑣𝑎𝑙(𝑘₁, 𝑥) = 𝛽 𝑖𝑓 𝑥 = 𝛼
• 𝐸𝑣𝑎𝑙(𝑘₀, 𝑥) + 𝐸𝑣𝑎𝑙(𝑘₁, 𝑥) = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Efficiency: Key size is 𝑂(𝜆𝑛) bits, not 2ⁿ (where 𝜆 is security parameter)
• Security: A server with only one key learns nothing about 𝛼 or 𝛽

Standard DPFs 18

• Standard DPF secret shares a sparse vector with one non-zero
entry.

• Incremental DPF instead secret shares values along a single non-
zero path in a binary tree with 2# leaves.

Incremental DPFs 19

An incremental DPF scheme, parameterized by finite groups 𝐺$, … , 𝐺#,

consists of two routines:

Incremental DPF correctness property:

Incremental DPFs 20

• Each client secret-shares the labels on a tree with one non-zero path
and sends one share to each server. Communication ≈ 𝟐#

• With incremental DPFs, client only sends each server a short key
• For a tree of depth 𝑛 and security parameter 𝜆 ≈ 128, the keys have

size 𝑂(𝜆𝑛).
• Using standard DPFs would give keys of size 𝑂(𝜆𝑛").

Incremental DPFs 21

• The servers expand the key into shares of a tree, one node at a time
• Evaluating the keys on a path takes 𝑂(𝑛) AES ops.
• Standard DPFs would require 𝑂(𝑛") AES ops.

Incremental DPFs 22

Malicious-
secure
sketching

• Purpose: Allows servers to verify validity of client input, without
leaking client data to a malicious server.

• Client-Side Encoding
• Client wants to share a vector 𝑣
• Generates a random secret key 𝑘 ∈ 𝐹
• Encodes 𝑣 as a pair (𝑣, 𝑘𝑣)
• Sends additive shares:

• (𝑣%, 𝑘𝑣%) → 𝑆𝑒𝑟𝑣𝑒𝑟 0
• (𝑣$, 𝑘𝑣$) → 𝑆𝑒𝑟𝑣𝑒𝑟 1

• Provides correlated randomness (shares of 𝑎, 𝑏, 𝑐, 𝐴, 𝐵) to enable
secure 2𝑃𝐶

Malicious-Secure Sketching 24

• Server-Side Verification
• Servers jointly sample random public sketch vectors 𝑟, 𝑟 ∗
• Each server 𝑏 ∈ {0,1} computes local sketch values:

• Servers run a secure 2PC (using client-provided randomness) to
check:

• Where:

Malicious-Secure Sketching 25

• Problem: Server-side sketching only validates a client’s DPF on the
queried input set 𝑆

• Solution: Design DPFs with a public part 𝑝𝑝 and two private
keys 𝑘%, 𝑘$

• Key Property: It is computationally infeasible for a malicious client to
construct keys such that:

• holds for more than one value of 𝑥 known to the client across the
domain.

Extractable DPFs 26

• Extractor: Efficiently identifies the unique 𝑥 encoded by the client.

• Server Check: Servers verify that both client keys use the same

public part 𝑝𝑝.

• Defence: Prevents the client from targeting multiple points - only one

valid string is possible.

Extractable DPFs 27

Poplar System

Poplar System 29

Poplar System 30

Leakage
Mitigation
with
Differential
Privacy

The heavy-hitters algorithm reveals:
• The set of heavy strings or prefixes
• For each heavy prefix 𝑝, the number of strings starting with 𝑝

This can leak information about individual client inputs.

à Goal: Ensure 𝜺 − 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐭𝐢𝐚𝐥 𝐩𝐫𝐢𝐯𝐚𝐜𝐲 to limit what an adversary
can infer from the system’s output.

à Poplar’s Mechanism for Differential Privacy:
à Add noise sampled from a Laplace distribution to the prefix-

count oracle responses.
à The added noise can cause false positives or false negatives:

balance privacy and correctness.

Providing Differential Privacy 32

Implementation
and
Evaluation

• ≈ 3500 lines of Rust
• Open-source implementation

• http://github.com/henrycg/heavyhitters
• Google’s C++ implementation of incremental DPF

• https://github.com/google/distributed_point_functions

Experimental setup:
• Servers on opposite sides of US

• Amazon EC2 us-east-1 (VA) and us-west-1 (CA)
• Simulated clients in us-east-1
• Each server is one c4.8xlarge (36 vCPU, 60 GiB RAM)

Implementation and Evaluation 34

http://github.com/henrycg/heavyhitters
https://github.com/google/distributed_point_functions

35Implementation and Evaluation

• Using Poplar saves computation and communication

• End-to-end evaluation of Poplar collecting 256-bit strings (long
enough to hold a 40-character domain name)

• Client data sampled from Zipf distribution (parameter 1.03, support
10,000)

• Heavy-hitters threshold set to 0.1% of clients

36Implementation and Evaluation

Completely
parallelizable

• With 400,000 clients, server-side computation takes less than one
hour over WAN.

• Privacy against malicious server, correctness against malicious
clients

• New techniques introduced
• More powerful distributed point functions: incremental &

extractable
• Malicious-secure sketching

• Application to other private data-collection problems
• Future directions:

• Extend to finding heavy clusters rather than exact matches
• Multi-server setting with more than 2 servers

Summary 37

Thanks!

38

