Lightweight Techniques for Private Heavy Hitters
IEEE Security & Privacy 2021

COM-506 Student seminar: security protocols and applications

12 May 2025
Tapdig Maharramli, Raymond Nasr

https://eprint.iacr.org/2021/017.pdf

=PFL Contents

e Problem Statement
e Lightweight Techniques

o Incremental Distributed Point Functions
o Malicious-Secure Sketching
o Extractable Distributed Point Functions

Poplar System

Providing Differential Privacy
Implementation and Evaluation
Summary

EPFL :

Browser vendor wants to find out which URLs crash browser most often...

0 google.com/search?q=how+to+prove+|+didn’t+eat+last+cookie+using+ZK
4 lasec.epfl.ch/teaching.php
@ nytimes.com/2025/05/05/climate/sustainable-fish-seafood.html

Q’ ////}

3 moodle.epfl.ch/course/view.php?id=13965

22 www.swissinfo.ch/eng /

Non-private data collection!

=PrL "

Browser vendor wants to find out which URLs crash browser most often...

@ google.com/search?q=how+to+prove+l+didn’t+eat+last+cookie+using+ZK
4 lasec.epfl.ch/teaching.php
@ nytimes.com/2025/05/05/climate/sustainable-fish-seafood.html

1 moodle.epfl.ch/course/view.php?id=13965
2= www.swissinfo.ch/eng

This paper: Browser vendor can learn most often reported URLs without
learning which client reported which URL.

=P*L - Private Heavy-Hitters Problem

- C clients (mobile devices, browsers, etc.)

- Eachclient i, fori € {1,...,C} holds an n-bit string «; €
{0,1}" (e.g.,n = 256)

- Two non-colluding data-collection servers

- Goal: Servers learn set of all strings that > t clients hold
without revealing individual client data

=P*L - Private Heavy-Hitters Problem

Privacy against one malicious server, colluding with
malicious clients

Correctness against malicious clients
Minimal communication and computation costs

Support 100s of submissions per second (using 100-
1000x less bandwidth than general-purpose MPC)

=7l Poplar: Security Properties

Completeness: With honest participants, servers correctly
learn the aggregate statistics.

Robustness to malicious clients: Malicious clients cannot
bias results beyond choosing their own input arbitrarily.

Privacy against a malicious server: If one server is honest,
a malicious server learns nothing about client data beyond the
aggregate statistics.

=PFL Other Applications

Any scenario requiring private data collection and analytics

Which URLs crash Firefox most often?

Which phone apps consume the most battery life?
Which passwords are most popular?

Which programs consume the most CPU?

Mobile companies learning popular apps without
tracking individuals

Electric vehicle makers finding roads where batteries
run low

=PrL

- Incremental DPFs

Lightweight

- Malicious-Secure Sketching

Techniques

- Extractable DPFs

=PrL

Warm-up Scheme

Client i with string s; prepares a binary tree, with 1s on the path to
the s;-th leaf of the tree

Clienti Stringsi= 011

10

=PrL

Warm-up Scheme

Each client secret-shares the labels on the tree’s nodes and sends
one share to each of the servers

Clienti Stringsi= 011

11

=Pl Warm-up Scheme

Each client secret-shares the labels on the tree’s nodes and sends
one share to each of the servers

Single message from each client to servers

~
Iients) \ Eﬁ]

=PrL

Warm-up Scheme

- Servers sum up shares from each client to get aggregate shares

C clients

13

=Pl Warm-up Scheme "

Servers publish shares to perform BFS search for heavy hitters
Servers use BFS with pruning to find all heavy hitters

()

d

C clients

=Pl Warm-up Scheme

- Servers use BFS with pruning to find all heavy hitters

~
)

Ay
J &

0/l4

-

C clients Heavy hitter: m%

N |

i&

EPFL

Technical Challenges

Each tree is exponentially large (e.g., when strings are URLs,
locations, passwords) = Client cannot materialize it

« Use incremental distributed point functions
Succint secret-sharing of a tree with one non-zero path
Communication 0(An) instead of 0(An?) with normal DPF

Client can send malformed secret shares =» Data corruption
« Use malicious-secure sketching

Servers can test whether a secret-shared vector is non-zero
in a single coordinate

Extractable distributed point functions

16

=PrL

Incremental
Distributed

Point
Functions

=PFL - Standard DPFs

A DPF is a cryptographic primitive for secret-sharing a vector that is non-zero
at a single point.

DPF Scheme = (Gen, Eval) with:
* Gen(a,B) — (ko, k1)
« Given pointa € {0,1}" and value § € F, output two DPF keys
e Evallk,x) > F
« Given DPF key k and index x € {0,1}", output a secret share

Correctness Property
Foralla € {0,1}",8 € F,(ko, k1) < Gen(a,B),and x € {0,1}":
* Eval(ko,x) + Eval(ky,x) = ifx = «
* Eval(ko,x) + Eval(k,,x) = 0otherwise
- Efficiency: Key size is 0(An) bits, not 2" (where A is security parameter)

- Security: A server with only one key learns nothing about a or 8

18

EPFL

Incremental DPFs

Standard DPF secret shares a sparse vector with one non-zero
entry.

Incremental DPF instead secret shares values along a single non-
zero path in a binary tree with 2™ leaves.

19

=PFL lncremental DPFs

An incremental DPF scheme, parameterized by finite groups G4, ..., G,

consists of two routines:

e Gen(a, B1, ..., 3,) — (ko, k1). Given ac{0,1}" and 8, €Gy, ..., 8, € G,,, output two keys.

n

o Eval(k, z) — | JG¢. Given kand ze | J{0,1}/, output a secret-shared value.
(=1 (=1

Incremental DPF correctness property:

Be if |x| =€ and
Eval(ko, x) + Eval(ky, x) = x 1s a prefix of &
0 otherwise

20

21

=PFL lncremental DPFs

Each client secret-shares the labels on a tree with one non-zero path
and sends one share to each server. Communication ~ 2"

With incremental DPFs, client only sends each server a short key

For a tree of depth n and security parameter 4 = 128, the keys have
size O(An).

Using standard DPFs would give keys of size 0(An?). ?

[KeyGen }

L)

Stringi= 011 € {0,1}"

=PFL lncremental DPFs

The servers expand the key into shares of a tree, one node at a time

Evaluating the keys on a path takes 0(n) AES ops.

Standard DPFs would require 0(n?) AES ops.

(

a:f—”ﬁg
o

~ |
8

1/

22

=PrL

Malicious-
secure

sketching

EPFL

Malicious-Secure Sketching

Purpose: Allows servers to verify validity of client input, without
leaking client data to a malicious server.

Client-Side Encoding

Client wants to share a vector v
Generates a random secret key k € F
Encodes v as a pair (v, kv)

Sends additive shares:

« (vy,kvy) — Server(

« (v, kvy) = Server1

Provides correlated randomness (shares of a, b, c, A, B) to enable
secure 2PC

24

=PFL - Malicious-Secure Sketching

Server-Side Verification
« Servers jointly sample random public sketch vectors r, r *
« Each server b € {0,1} computes local sketch values:
Zb:<7_“,’l_)b>, Zb* :<F*7ﬁb>7 Z;)k* :<7_47’5[;k>

« Servers run a secure 2PC (using client-provided randomness) to
check:

(22 —2")+(k-2—2"*)=0

« Where:

2=zy+ 2, 2=z +z, ZF=z"+2"

25

EPFL

Extractable DPFs

Problem: Server-side sketching only validates a client’'s DPF on the
queried input set S

Solution: Design DPFs with a public part pp and two private
keys ky, k4

Key Property: It is computationally infeasible for a malicious client to
construct keys such that:

Eval(ky ,pp*,x) + Eval(k;",pp*,x)=1

holds for more than one value of x known to the client across the
domain.

26

EPFL

Extractable DPFs

Extractor: Efficiently identifies the unique x encoded by the client.

Server Check: Servers verify that both client keys use the same

public part pp.

Defence: Prevents the client from targeting multiple points - only one

valid string is possible.

27

=PrL

Poplar System

EPFL

Poplar System i

Protocol 5: Private t-Heavy Hitters (Semi-Honest Secure Version)

There are two servers and C' clients. Each client ¢ € [C] holds a string o; € {0,1}". The goal is to
identify all t-heavy hitters in (aq,...,ac). The incremental DPF uses a finite field F with |F| > C.

1. Client Key Generation: Each client ¢ sets f; =--- = 8, =1 € F and computes
(k(()Z)v k§2)) A Gen(aiv /317 e 7/371)'

The client sends k(()i) to Server 0 and kgi) to Server 1, then can go offline.

2. Server Query Computation: Servers jointly execute Algorithm 3. When a prefix-count
oracle query on a prefix string p € {0,1}* is issued:

C
val, p < ZEval(k,()z),p), be{0,1},
i=1
val, < val, o + val, ; € F.

3. Output: Servers return the result from Algorithm 3.

EPFL

30

Poplar System

Algorithm 3: t-Heavy Hitters from Prefix-Count Queries

Input: Oracle O,, ... o (p) returning number of strings with prefix p.
Output: The set of all t-heavy hitters in (aq,...,ac).

1. Initialize Hy < {¢}, and set w, < C.
2. For £ =1 ton:

e Set Hy + 0.
e For each p € Hy_1:
— Wy|lo <~ O(pHO)
— Wp||1 = Wp — Wp|jo
— If Wpl|o > t, add pHO to Hg
— If wp;1 > t, add pl||1 to H,

3. Return H,,.

=PrL

Leakage
Mitigation
with

Differential
Privacy

EPFL

Providing Differential Privacy

The heavy-hitters algorithm reveals:
« The set of heavy strings or prefixes
* For each heavy prefix p, the number of strings starting with p

This can leak information about individual client inputs.

- Goal: Ensure € — differential privacy to limit what an adversary
can infer from the system’s output.

- Poplar’'s Mechanism for Differential Privacy:

- Add noise sampled from a Laplace distribution to the prefix-
count oracle responses.

- The added noise can cause false positives or false negatives:
balance privacy and correctness.

32

=PrL

Implementation
and

Evaluation

=Pl Implementation and Evaluation)

=~ 3500 lines of Rust

Open-source implementation
http://github.com/henrycg/heavyhitters

Google’s C++ implementation of incremental DPF
https://qithub.com/google/distributed point functions

Experimental setup:
- Servers on opposite sides of US J P
- Amazon EC2 us-east-1 (VA) and us-west-1 (CA)

Simulated clients in us-east-1
Each server is one c4.8xlarge (36 vCPU, 60 GiB RAM)

http://github.com/henrycg/heavyhitters
https://github.com/google/distributed_point_functions

=PrL

Key-gen.time (sec.)

Implementation and Evaluation

- Using Poplar saves computation and communication

128 256 384 512
String length (n)

Key size (bytes)

20MiB
16MiB
12MiB
8MiB
4MiB
0B

=@ Count-min y 4
=== Standard DPF
== Poplar (this work)

128 256 384 512
String length (n)

2 10MiB V4

O . =@ Standard DPF
S E 8MiB == Poplar (this work)
52 6MiB

Lo

S 5 4MiB

52 y

£~ MB|

o A

)] OB [F——i—l—l

128 256 384 512
Client string length (n)

100000
10000
1000

10

Communication cost
(total USD, log scale)

100 [~

1M 10M100M 1B
Number of clients

=L Implementation and Evaluation

End-to-end evaluation of Poplar collecting 256-bit strings (long
enough to hold a 40-character domain name)

Client data sampled from Zipf distribution (parameter 1.03, support
10,000)

Heavy-hitters threshold set to 0.1% of clients

. . Completely
Running time (sec.) parallelizable
Clients DPF Sketching Total Clients/Sec.
100k 107.3 704.5 828.1 120.8
200k 211.0 1,404.1 1,633.5 122.4

400k 433.5 2,771.4 3,226.0 124.0

L=
=

PFL

Summary

With 400,000 clients, server-side computation takes less than one
hour over WAN.

Privacy against malicious server, correctness against malicious
clients

New techniques introduced

- More powerful distributed point functions: incremental &
extractable

- Malicious-secure sketching
Application to other private data-collection problems
Future directions:

- Extend to finding heavy clusters rather than exact matches
- Multi-server setting with more than 2 servers

37

