
Lightweight Techniques for Private Heavy Hitters
COM-506 Seminar Report

Tapdig Maharramli
EPFL

tapdig.maharramli@epfl.ch

Raymond Nasr
EPFL

ray.nasr@epfl.ch

12 May 2025

Abstract

This report summarizes Poplar [2], a system that
solves the private heavy-hitters problem using
lightweight cryptographic techniques. The system
allows servers to identify popular strings across
many clients without compromising individual pri-
vacy. Key contributions include malicious-secure
sketching, incremental distributed point functions,
and extractable DPFs. Using two non-colluding
servers, Poplar achieves privacy against server mis-
behavior while requiring only a single message from
each client and no public-key cryptography. Ex-
perimentally, with 400,000 clients holding 256-bit
strings, Poplar identifies the 200 most popular
strings in 54 minutes with high parallelizability, pro-
viding an efficient solution for privacy-preserving
data collection.

1 Introduction

Organizations seeking to improve their products of-
ten need to collect user data, but traditional meth-
ods risk exposing sensitive information [2]. Con-
sider browsers collecting crash-causing URLs, elec-
tric car companies tracking battery drain locations,
or app developers measuring engagement. Poplar
addresses these scenarios through the private heavy-
hitters problem: identifying strings exceeding a
popularity threshold without exposing individual
data.

Unlike approaches based on general-purpose mul-
tiparty computation [8], secure aggregation [5], or
local differential privacy [1], Poplar uses two non-
colluding servers to provide strong privacy with
concrete efficiency. The system protects privacy
against arbitrary misbehavior by one server while

ensuring correctness against malicious clients. Each
client sends only a single message.

Poplar introduces several lightweight crypto-
graphic techniques: incremental distributed point
functions, malicious-secure sketching, and ex-
tractable DPFs. These techniques not only improve
efficiency but may benefit other privacy-preserving
applications. While Poplar reveals slightly more in-
formation than just the heavy hitters, this leakage
is precisely quantified and can be mitigated through
differential privacy [6].

2 Problem Statement

Poplar operates in a setting with two data-collection
servers and C participating clients. Each client
i, for i ∈ {1, . . . , C}, holds a private input string
αi ∈ {0, 1}n. The system aims to compute use-
ful aggregate statistics over these private strings
while minimizing information leakage about indi-
vidual strings [2].

Two primary tasks are addressed:

1. Subset Histogram: The servers hold a set
S ⊆ {0, 1}n of strings and want to learn, for
each string σ ∈ S, how many clients hold that
string. This set may be public or kept secret
from clients.

2. Heavy Hitters: For a threshold t ∈ N such
that 1 ≤ t ≤ C, where C is the number of
clients, the servers want to identify all strings
that appear in the client dataset at least t times
(t-heavy hitters).

The communication pattern in Poplar consists of
three phases:

1

• Setup: Servers generate and distribute public
parameters to clients.

• Upload: Each client sends a single message to
each server (Server 0 and Server 1).

• Aggregate: The two servers run a protocol
between themselves to compute the desired ag-
gregate statistics.

Poplar provides several key security properties:

• Completeness: With honest participants,
servers correctly learn the aggregate statistics.

• Robustness to malicious clients: Mali-
cious clients cannot bias results beyond choos-
ing their own input arbitrarily.

• Privacy against a malicious server: If one
server is honest, a malicious server learns noth-
ing about client data beyond the aggregate
statistics.

For the heavy-hitters protocol, Poplar reveals
slightly more information, characterized by a leak-
age function L. This leakage depends only on
the multiset of strings held by honest clients,
without revealing associations between clients and
strings, and scales logarithmically with the number
of clients when the threshold is a fixed fraction.

3 Background
This section reviews existing techniques for pri-
vate aggregation that serve as a foundation for
Poplar. The Private Subset Histogram problem re-
quires servers holding a set S = {σ1, . . . , σm} ⊆
{0, 1}n to learn, for each σ ∈ S, the number of
clients holding σ, without revealing S or learning
about strings outside S. Distributed Point Func-
tions (DPFs) are a cryptographic tool used here; a
DPF allows secret-sharing a high-dimensional vec-
tor with a single non-zero entry at point α ∈ {0, 1}n
with value β ∈ F, using compact O(n)-size keys.

A simple protocol for Private Subset Histograms
utilizes DPFs. Clients generate keys (ki0, ki1) ←
Gen(αi, 1) for their string αi and send one key to
each server. Servers, for each σj ∈ S, compute the
sum of their respective keys evaluated at σj , valjb =∑C

i=1 Eval(kib, σj). The total count for σj is valj0 +
valj1, which equals ∑C

i=1 1{αi = σj} due to DPF
correctness.

4 Malicious-Secure Sketching

This section details methods to achieve robustness
against malicious clients and servers in private sub-
set histogram computation. Prior work attempted
to harden the simple DPF scheme by checking if
client-submitted keys were well-formed, verifying
that they expand to shares of a vector that is 0
everywhere and 1 at a single position within the
queried subset S. Servers would compute vb =
(Eval(kb, σ1), . . . , Eval(kb, σ|S|)) and check if v0+v1
was a valid weight-one vector over S.

Existing sketching protocols, however, had limi-
tations. They often lacked protection against mali-
cious servers, or required additional client interac-
tion or servers. More subtly, the check on the subset
S alone was insufficient against a malicious client
who could craft keys that evaluated to 1 on multiple
strings outside S but correctly on only one within S,
thereby gaining undue influence. This vulnerability
highlighted the need to ensure that keys represent
a sharing of a vector with at most one "1" at any
relevant position in the entire universe, addressed
by techniques like Extractable DPFs.

A new lightweight malicious-secure sketching pro-
tocol is introduced to handle malicious servers. The
client encodes their vector v as (v, κv) using a ran-
dom κ and provides additive shares of this pair to
the servers, along with correlated randomness for
a secure computation. Servers compute sketches
(zb = ⟨r, vb⟩, z∗

b = ⟨r∗, vb⟩, z∗∗
b = ⟨r, v∗

b⟩) using
jointly sampled random vectors r, r∗. They then
perform a two-round secure computation to check
if (z0 +z1)2−(z∗

0 +z∗
1)+κ(z0 +z1)−(z∗∗

0 +z∗∗
1) = 0.

Client-provided shares of derived coefficients enable
this check on public values. This protocol provides
robustness against malicious servers tampering with
the encoded vector, resulting in detection with high
probability.

Complementing this, Extractable DPFs are intro-
duced to address the weak protection against ma-
licious clients. Based on a refined analysis of the
DPF construction in the random-oracle model, Ex-
tractable DPFs make it computationally infeasible
for a malicious client to generate keys with identi-
cal public parts that evaluate to 1 at more than one
position known to the client. This allows servers to
infer that well-formed keys represent shares of a vec-
tor with at most one "1" at a relevant index across
the entire domain, preventing malicious clients from
influencing multiple counts.

2

5 Incremental Distributed Point
Functions

Incremental Distributed Point Functions (IDPFs)
are a key contribution of Poplar that significantly
improves efficiency for the heavy-hitters protocol.
Standard Distributed Point Functions (DPFs) [7, 3]
provide a way to secret-share a vector of dimension
2n that is non-zero at only a single point. IDPFs
extend this idea to efficiently share values on nodes
of a binary tree with 2n leaves, where only a single
path has non-zero values [2].

Formally, an IDPF scheme consists of:

• Gen(α, β1, ..., βn) → (k0, k1): Given a string
α ∈ {0, 1}n and values β1 ∈ G1, ..., βn ∈ Gn,
outputs two keys representing secret shares of
a tree with a single non-zero path ending at
leaf α.

• Eval(k, x) → ∪n
i=1Gi: Given an IDPF key k

and string x ∈ ∪n
i=1{0, 1}i, outputs a secret-

shared value for the node identified by x.

The correctness property ensures that when com-
bining outputs from both keys, the result is βi if x
is a prefix of α with |x| = i, and 0 otherwise. The
security property ensures that an adversary seeing
only one key learns nothing about α or the values
β1, ..., βn.

While standard DPFs could implement this func-
tionality with O(n2) key size and evaluation time,
the paper’s direct IDPF construction achieves O(n)
complexity. This optimization is crucial for the
heavy-hitters protocol’s efficiency, as it reduces
client-to-server communication from quadratic to
linear in the string length n.

The IDPF construction extends the DPF ap-
proach from [3] with additional steps to support
prefix outputs efficiently. For each level ℓ, the con-
struction incorporates an extra intermediate step to
generate an output share for that level while main-
taining security. The implementation optimizes fur-
ther using AES hardware instructions to implement
the underlying PRG operations.

6 Poplar Heavy-Hitters Protocol

The Poplar heavy-hitters protocol efficiently iden-
tifies t-heavy hitters (strings held by more than t
clients) without compromising individual privacy.

The approach uses incremental DPFs and proceeds
in two key steps:

First, the protocol implements private prefix-
count queries, which reveal how many client strings
begin with a given prefix without exposing individ-
ual strings. Using these queries, the servers can
identify heavy hitters through a breadth-first search
of the prefix tree, pruning branches that cannot con-
tain heavy hitters [4, 1].

Each client i uses incremental DPFs to create se-
cret shares of a tree that is zero everywhere except
for nodes along the path to the client’s string αi.
When the servers want to count strings with pre-
fix p, each server evaluates all client DPF keys at p
and publishes the sum. Adding these sums reveals
exactly how many client strings start with prefix p.

The protocol traverses the prefix tree level-by-
level. At each level ℓ, the servers identify prefixes
that appear in at least t strings. They then extend
these prefixes for the next level and continue. After
n iterations (for n-bit strings), the servers identify
all t-heavy hitters.

To protect against malicious clients, Poplar
uses the malicious-secure sketching and extractable
DPFs. At each level of the tree, servers verify that
client-provided values represent valid shares before
incorporating them into the aggregate [2].

For longer strings (n ≫ λ), Poplar offers a
hashing-based optimization that reduces client com-
munication from O(λn) to O(λ2 + n) bits and im-
proves round complexity from O(n) to O(λ).

The protocol’s security analysis proves that even
with a malicious server, an adversary learns only in-
formation characterized by the leakage function L,
which depends only on the multiset of honest client
strings without revealing client-string associations.

7 Leakage Mitigation and Differ-
ential Privacy

The heavy hitters output itself or intermediate pre-
fix counts can leak sensitive information. To bound
adversary inference, Poplar can optionally provide
ϵ-differential privacy.

This is achieved by adding Laplace noise to the
outputs of the prefix-count oracle queries. In Poplar
protocol, when server b computes valp,b for prefix
p, it samples noise vp,b ← Laplace(1/ϵ) and pub-
lishes val′p,b = valp,b +Round(vp,b). The noised sum
val′p,0 + val′p,1 is used.

3

Using advanced composition (q = nC/t queries),
ϵ-DP per query yields (ϵ′, δ′)-DP overall. Noise adds
error; its magnitude 2λ/ϵ is ≤ e−λ per query. If
2λ/ϵ < 0.05t, noise is unlikely to cause correctness
failures. Poplar’s noise (O(1/ϵ) error) is lower than
local DP (Ω(

√
C/ϵ)). An example setting with n =

256, δ′ = 2−40, t = 0.01C and per-query ϵ = 0.001
gives overall (1.22, 2−40)-DP with manageable noise
relative to the threshold for large C.

8 Implementation and Evalua-
tion

This section details the practical implementation
and experimental evaluation of the Poplar system.
Poplar is implemented in ≈ 3, 500 lines of Rust
code, publicly available. Sketching uses specific
field sizes for security guarantees.

Experiments were conducted on Amazon EC2
c4.8xlarge instances in N. California and N. Virginia
(61.8ms RTT), using 400,000 clients with 256-bit
strings from a Zipf distribution, finding heavy hit-
ters > 0.1%.

Client costs show linear scaling for key genera-
tion time and size (O(λn)), outperforming base-
lines. Server communication per client is tens of
kilobytes, scaling linearly with n, and is orders of
magnitude cheaper in dollar cost than a standard
DPF baseline. End-to-end time for 400k clients is
≈ 53 minutes, scaling linearly with client count.
The system is highly parallelizable, capable of pro-
cessing millions of clients efficiently with sufficient
machines per server. The evaluation robustly sup-
ports the claims of lightweightness and practical ef-
ficiency.

9 Conclusion

Poplar demonstrates that efficient privacy-
preserving data collection is achievable with
lightweight cryptographic techniques. By combin-
ing novel cryptographic primitives with careful
protocol design, the system creates a balance
between strong privacy guarantees and practical
performance. Unlike approaches requiring heavy-
weight cryptography or extensive client-server
interaction, Poplar achieves its goals with minimal
communication overhead. The significant perfor-
mance improvements over previous methods make

privacy-preserving analytics feasible at scale, open-
ing new possibilities for organizations to gather
valuable insights while respecting user privacy.

References
[1] Raef Bassily, Kobbi Nissim, Uri Stemmer, and

Abhradeep Guha Thakurta. Practical locally
private heavy hitters. In Advances in Neural In-
formation Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017.

[2] Dan Boneh, Elette Boyle, Henry Corrigan-
Gibbs, Niv Gilboa, and Yuval Ishai. Lightweight
techniques for private heavy hitters. In 2021
IEEE Symposium on Security and Privacy (SP),
pages 762–776. IEEE, 2021.

[3] Elette Boyle, Niv Gilboa, and Yuval Ishai. Func-
tion secret sharing: Improvements and exten-
sions. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications
Security, pages 1292–1303. ACM, 2016.

[4] Graham Cormode, Flip Korn, Shanmugave-
layutham Muthukrishnan, and Divesh Srivas-
tava. Finding hierarchical heavy hitters in data
streams. In Proceedings of the 29th international
conference on Very large data bases, pages 464–
475. VLDB Endowment, 2003.

[5] Henry Corrigan-Gibbs and Dan Boneh. Prio:
Private, robust, and scalable computation of ag-
gregate statistics. In 14th USENIX Symposium
on Networked Systems Design and Implementa-
tion (NSDI), pages 259–282, 2017.

[6] Cynthia Dwork, Frank McSherry, Kobbi Nissim,
and Adam Smith. Calibrating noise to sensitiv-
ity in private data analysis. In Theory of Cryp-
tography Conference, pages 265–284. Springer,
2006.

[7] Niv Gilboa and Yuval Ishai. Distributed
point functions and their applications. EURO-
CRYPT, pages 640–658, 2014.

[8] Oded Goldreich, Silvio Micali, and Avi Wigder-
son. How to play any mental game. In Proceed-
ings of the nineteenth annual ACM symposium
on Theory of computing, pages 218–229, 1987.

4

	Introduction
	Problem Statement
	Background
	Malicious-Secure Sketching
	Incremental Distributed Point Functions
	Poplar Heavy‑Hitters Protocol
	Leakage Mitigation and Differential Privacy
	Implementation and Evaluation
	Conclusion

