
Review of RFC 9497: Oblivious Pseudorandom
Functions Using Prime-Order Groups

Leonard Wilhelm Lorenz Gerk Srividya Subramanian

Abstract—The RFC 9497 documents a cryptographic protocol
named Oblivious Pseudorandom Function (OPRF) that is used to
compute a Pseudorandom Function (PRF) between two parties.
During a run of the protocol, the client sends an input and
the server processes it using a private key. The client receives
the computed result, but never sees the key, while the server
does not learn the input or output. This protocol is implemented
using standard prime-order groups, such as groups over elliptic
curves. The RFC also proposes an extension to the OPRF called
a Verifiable OPRF (VOPRF) which allows a client to ensure that
the server utilized a designated private key while carrying out
the protocol. A VOPRF can be further extended to a partially
oblivious form, known as a POPRF, which allows the client and
server to include public inputs in the computation.

I. INTRODUCTION

Password managers are commonly used today to store
passwords that are otherwise hard to remember by users.
Although this is convenient, they also pose a security risk if
the password manager is compromised by an attacker. With
the use of Oblivious Pseudorandom Functions (OPRFs), it
is possible to create a password manager which effectively
has no knowledge of the passwords by generating them
on the fly. This was done by Shirvanian et al. [1] and is
one of the multiple practical applications of OPRFs. Other
applications are password-protected secret sharing schemes [2]
and password-authenticated key exchanges [3].

OPRFs are an extension of Pseudorandom Functions
(PRFs). A PRF is a function F (k, i) = o that accepts a
secret value k (later equal to the server’s secret key) and
an input value i and returns a pseudorandom value o. F is
pseudorandom if given a fixed k its output is indistinguishable
from the output of a true random function. In opposition to
PRFs, OPRFs require interaction between two parties, a client
and a server, in order to compute the output of the PRF. The
protocol between the client and the server ensures that the
client never learns k and the server never learns i or o.

When using a Verifiable OPRF (VOPRF), the server creates
an asymmetric key pair. It announces the public key (pkS) to
the client and uses the private key (skS) as k for the PRF. The
client receives a zero-knowledge proof along with the response
of the server which enables it to verify that the k used by the
server for the PRF corresponds to the pkS without the server
revealing k itself. VOPRFs have also been used in practice,
for example, for privacy-preserving CAPTCHAs [4].

To extend a VOPRF to a Partially Oblivious PRF (POPRF),
a public input p is added to the PRF input. As with a VOPRF
the client can verify that the k used by the server corresponds

to the pkS without the knowledge of k. If p is fixed, a POPRF
is functionally equivalent to a VOPRF.

In the RFC 9497 [5] protocols, application considerations
and security properties for OPRF, VOPRF and POPRF are
specified with prime-order groups as their basis. The RFC was
written by the Crypto Forum Research Group of the Internet
Research Task Force and is not yet an IETF standard.

II. BACKGROUND

In order to fully understand the content of the RFC, this
section summarizes the mathematical background.

• Prime Order Groups: An OPRF uses prime order
groups for its keys, computations, and zero-knowledge
proofs. Such a group contains a prime number of el-
ements, and an operation + called addition. Adding
an element k times to itself is referred to as scalar
multiplication with k. One of the elements in the set is
defined as the group generator gen and together with
scalar multiplication, it can generate all elements of the
group. In the RFC, the OPRFs are intended to be used
with prime order groups instantiated over elliptic curves,
so + would be the point addition of two points of the
curve.

• Discrete Logarithm Problem: The discrete logarithm on
a prime order group is the inversion of scalar multiplica-
tion: given elements A and B, find the scalar k so that
k · A = B. The hardness of the (elliptic curve) discrete
logarithm problem depends on the chosen group. With
an appropriate prime order group, it is computationally
infeasible to derive the skS from pkS.

• Discrete Logarithm Equivalence Proof (DLEQ): In
VOPRF and POPRF, in order to provide verifiability of
its computation, the server wants to prove to the client
that it used the same k = skS for the evaluation that
was used to generate pkS. Naturally, this proof should
not reveal k itself, thus a non-interactive, zero-knowledge
proof for discrete logarithm equivalence (DLEQ) is used.
Using this, the server can prove to the client that for two
pairs of elements A,B and C,D, (k·A = B)∧(k·C = D)
without revealing k.

III. RELATED WORK

OPRFs have been studied in various contexts, leading to
many efficient and secure designs. The paper ”SoK: Obliv-
ious Pseudorandom Functions” [7] surveys existing OPRF



constructions, classifies them based on their cryptographic as-
sumptions, efficiency, and security models, and discusses their
use in applications like private set intersection and password-
authenticated key exchange. Classically secure OPRF variants
are primarily built on the (Gap) One-More Diffie-Hellman
(OMDH) assumption. For example, the TOPPSS protocol
[8] uses a threshold OPRF which is instantiated using a
Diffie–Hellman-style function with an additively shared key.

In addition to these, there are also several post-quantum
OPRF variants which are based on primitives like isogenies,
lattices, symmetric cryptography and oblivious transfer for
example, [9].

IV. PROTOCOL

The RFC defines three protocol variants: OPRF, VOPRF
and POPRF. All variants exchange two messages between
the client and the server and perform an offline setup phase
followed by an online phase. Fig. 1 shows the interfaces
exposed by the ORPF protocol variant as an example.

Client :

SetupOPRFClient(identifier) → context

Blind(input) → blind,blindedElement

Finalize(input,blind,evaluatedElement) → output

Server :

SetupOPRFServer(identifier,skS) → context

BlindEvaluate(skS,blindedElement) → evaluatedElement

Fig. 1. ORPF protocol interfaces

During the offline phase, the server performs the key
generation. The server key pair can be generated randomly or
deterministically derived from a given seed value and some
public information. If the former is chosen, the skS is a
random scalar selected from {1, ..., p−1}, where p is the order
of the chosen prime-order group. The public key is a group
element and is calculated by scalar-multiplying the group’s
generator with the secret key.

In addition, the client and server set up their contexts
for the protocol using SetupOPRFClient and SetupOPRF-
Server, respectively. For the VOPRF and POPRF variants,
the function signature for the client must be extended by
the pkS, which is required for verifying the zero-knowledge
proof. The identifier describes the selected ciphersuite.
Finally, the setup functions return a context object, which is
implementation dependent and stores all relevant information
for the online phase.

For the online phase, the RFC defines four functions (Blind,
BlindEvaluate, Finalize and Evaluate) for each protocol
mode. If an entity knows all private values of the client and the
server, it can use the Evaluate function to compute the PRF
result. However, we will not discuss this function in detail, as
it voids all privacy and security guarantees that the protocol
is supposed to provide. Additionally, all protocol variants also

support a batch mode in which multiple PRF computations can
be performed with a single request to the server. The following
sections describe how the Blind, BlindEvaluate and Finalize
functions work in non-batch mode during the online phase of
each protocol variant.

A. OPRF

The online phase of the OPRF mode is shown in Fig. 2. It
executes the following functions to compute the output of the
OPRF.

Fig. 2. Online Phase of OPRF Mode

• Blind: At the start of the protocol, the client blinds
its input to ensure that the server does not learn
it. The blind is a random scalar of the chosen
prime order group. It is then scalar-multiplied with the
inputElement that is derived from the input using
a hash function. The blind is stored by the client and
the blindedElement is sent to the server.

blind = randomScalar()
inputElement = toGroupElement(input)

blindedElement = blind · inputElement

• BlindEvaluate: The function takes the skS and
the blindedElement as the input and returns an
evaluatedElement to the client which is the scalar-
product of skS with the blindedElement in the
prime-order group.

evaluatedElement = skS · blindedElement

• Finalize: The client unblinds the evaluatedElement
by multiplying it with the inverse of the stored blind.
The Finalize function returns the result of a hash function
that takes a string that contains the private client input
and the unblindedElement as its input.

unblindedElement = scalarInverse(blind)·
evaluatedElement



B. VOPRF

VOPRF differs from OPRF in its BlindEvaluate function.
In addition to the computation of the evaluated element, it
also generates a DLEQ proof to show that the secret key
corresponding to its public key has been used in the evaluation.
The client then only accepts the evaluatedElement if the
proof is verifiable.

Fig. 3. Online Phase of VOPRF and POPRF Mode

In detail, during the evaluation, the server gener-
ates a DLEQ proof for the group generator, pkS,
blindedElement, and evaluatedElement. First, after
computing the evaluatedElement, the server pseudoran-
domly generates two group elements M and Z using pkS,
blindedElement, evaluatedElement and additional
context like the ciphersuite. This is done by generating a
pseudorandom scalar di and then computing M = di ·
blindedElement and Z = di · evaluatedElement.
After that, the server chooses a private random value r and
uses it to compute t2 = r · gen and t3 = r · M . The proof
that is then sent to the client consists of two scalars c and s.
c is pseudorandomly generated from B,M,Z, t2 and t3 using
a hash function, and s is the result of s = r − c · skS.

To verify the proof, the client can recompute M and
Z, as it has access to pkS, blindedElement and
evaluatedElement. With M and Z, as well as the proof
of the server, the client can recompute t2 and t3, even without
knowledge of r using the following equation:

t2 = (s · gen) + (c · pkS)
= ((r − c · skS) · gen) + (c · (skS · gen)) = r · gen

t3 = (s ·M) + (c · Z)

= ((r − c · skS) ·M) + (c · (di · evaluatedElement))
= ((r − c · skS) ·M) + (c · (di · (skS · blindedElement)))
= ((r − c · skS) ·M) + (c · (skS ·M)) = r ·M

Using these values, the client recomputes c using
B,M,Z, t2 and t3 and compares it to the one sent by the
server. If they match, the proof is verified successfully.

If the server tried to use a different key for the evaluation,
the recomputed t3 would not match the one used to compute

c so c′ ̸= c. In order to trick the client, the server would have
to manipulate t3 and t2 so that the client obtains the same
result. However, this is hard due to the preimage-resistance of
the used hash function.

This addition provides verifiability that allows a client to
detect if a malicious server outputs faulty results, thus ensuring
that the evaluatedElement has been computed according
to the protocol.

C. POPRF
Unlike the VOPRF protocol, POPRF uses a modified Blind

function where the client also includes an info value. As
shown in Fig. 3, this generates a tweakedKey which is
stored locally by the client and used later in the Finalize
function. The tweakedKey is derived by adding a value T
to the server’s public key. T is the scalar product between
the group generator and another scalar value derived from a
formatted version of info.

In the BlindEvaluate function on the server side, the skS is
adjusted by adding a scalar derived from the formatted info
to get a new value t. The evaluatedElement is calculated
as the scalar inverse of t times the blindedElement. Un-
like OPRF and VOPRF where the evaluatedElement is
simply skS * blindedElement, this change is introduced
to ensure that the same security properties still hold. The
tweakedKey is then computed as the scalar product between
the group generator and t. Therefore, unlike VOPRF the new
values t and tweakedKey are used for proof generation
instead of skS and pkS.

Correspondingly, the Finalize and Evaluate functions incor-
porate the additional public value. They use the tweakedKey
to verify the proof or compute the PRF result, and include
info in the final hashed output.

V. APPLICATION AND SECURITY CONSIDERATIONS

A. Application Considerations
The RFC defines several application constraints for the

protocols such as input constraints, interface design, error
handling, and public input usage in POPRF. Inputs, whether
private or public, must not exceed 216 − 1 bytes, and longer
inputs should be hashed to a fixed size, taking into account the
input size limit of the hash function. While protocol functions
internally operate on group elements and scalars, implementa-
tions can expose simpler, application-specific interfaces. Error
handling is essential, as functions like Finalize and BlindE-
valuate may fail due to invalid inputs, requiring explicit error
management for verification failures, de-serialization issues,
and invalid key adjustments. For POPRF, since public input is
shared at the start of the protocol, it should incorporate domain
separation techniques to prevent cross-protocol attacks. This
is also important for OPRF and VOPRF when systems run
multiple instances of the protocol.

B. Security Considerations and Assumptions
An OPRF protocol ensures several security properties, in-

cluding those of a standard PRF. These are further extended
with additional properties in the VOPRF and POPRF variants.



• Pseudorandomness (all protocols): The function
F (k, x) behaves like a truly random function when the
key k is randomly sampled. An adversary without knowl-
edge of k cannot distinguish its output from a uniformly
random value. This ensures non-malleability, meaning an
attacker cannot derive new function evaluations from ob-
served ones. The pseudorandomness property is extended
in POPRF to hold for all private and public input pairs
(x, info).

• Unconditional Input Secrecy (all protocols): The server
learns nothing about the client’s private input x, even with
unlimited computational power. This guarantees unlink-
ability, preventing the server from correlating different
PRF evaluations to the same client input. Furthermore,
neither party gains knowledge of the other’s secret values.

• Verifiability (VOPRF and POPRF): Clients must be
able to confirm that the server correctly used its commit-
ted private key in computing the function output. This
ensures integrity by requiring the server to prove it is
following the protocol honestly. The VOPRF protocol and
its security considerations are described in [6].

• Partial Obliviousness (POPRF): The POPRF variant
allows both private and public inputs while maintaining
the same security guarantees. The server learns nothing
about the client’s private input or function output, and the
client still does not gain any knowledge of the server’s
private key. Public input is known to both parties, but
does not compromise security.

The OPRF and VOPRF protocols are based on the One-
More Gap Computational Diffie-Hellman (1MG-CDH) as-
sumption. 1MG-CDH states that even if an efficient adversary
can compute Diffie-Hellman (DH) values for several chosen
group elements and has access to a Decisional Diffie Hellman
oracle, they still cannot compute the DH value for one more
new element that they did not query. 1MG-CDH ensures
pseudorandomness, input secrecy and verifiability in OPRF
and VOPRF. These guarantees hold in a single-key setting
but lack formal analysis for multiple keys or batched evalu-
ations. The POPRF variant builds upon this, leveraging the
One-More Gap Strong Diffie-Hellman Inversion (1MG-SDHI)
assumption, which strengthens security by reducing to the q-
Discrete Logarithm (q-DL) assumption under the algebraic
group model. In addition to the security properties offered
by 1MG-CDH, 1MG-SDHI also offers partial obliviousness
in POPRF.

A known limitation of OPRF-based protocols is their sus-
ceptibility to static Diffie-Hellman key recovery attacks, where
repeated queries can gradually expose bits of the server’s
private key. The security loss follows a logarithmic reduction,
so with sufficient queries, an adversary could marginally
weaken security. To mitigate this, applications should enforce
query rate limits or periodically rotate private keys. Despite
these attacks, breaking a 128-bit security level remains com-
putationally impractical in most cases. Finally, all operations
involving sensitive data, including group computations and

Group Hash Scalar Size Hash Output Size

ristretto255 SHA-512 32 64
decaf448 SHAKE-256 56 64
P-256 SHA-256 32 32
P-384 SHA-384 48 48
P-521 SHA-512 66 64

TABLE I
INITIALLY PROPOSED CIPHERSUITES

proof generation, must execute in constant time to prevent
timing-based side-channel attacks.

C. Supported Ciphersuites

The ciphersuites used in the protocols define the crypto-
graphic components necessary for secure execution. Each ci-
phersuite consists of a prime-order group and a hash function;
where the former determines the security level and the latter is
responsible for mapping inputs securely within the protocol.
Tab. I summarizes the initial set of ciphersuites proposed by
the RFC.

VI. CONCLUSION

OPRFs are already used in practice, for example, for privacy
friendly CAPTCHAs. The RFC provides a valuable contribu-
tion towards standardizing their usage which might lead to a
more widespread adoption and prevent the spread of insecure
deployments. However, it has the limitation of not offering
a quantum secure OPRF protocol which will become more
relevant in the future and some protocol variants still lack
formal analysis.

REFERENCES

[1] M. Shirvanian, S. Jareckiy, H. Krawczykz, and N. Saxena, “SPHINX:
A Password Store that Perfectly Hides Passwords from Itself,” 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), Jun. 2017.

[2] S. Jarecki, Aggelos Kiayias, H. Krawczyk, and J. Xu, “Highly-Efficient
and Composable Password-Protected Secret Sharing (Or: How to Protect
Your Bitcoin Wallet Online),” Mar. 2016.

[3] S. Jarecki, H. Krawczyk, and J. Xu, “OPAQUE: An Asymmetric PAKE
Protocol Secure Against Pre-computation Attacks,” Lecture Notes in
Computer Science, pp. 456–486, Jan. 2018.

[4] S. Celi, A. Davidson, S. Valdez, and C. A. Wood, “Privacy Pass Issuance
Protocols,” Jun. 2024.

[5] A. Davidson, A. Faz-Hernandez, N. Sullivan, and C. A. Wood, “RFC
9497: Oblivious Pseudorandom Functions (OPRFs) Using Prime-Order
Groups,” IETF Datatracker, 2023.

[6] S. Jarecki, A. Kiayias, and H. Krawczyk, “Round-Optimal Password-
Protected Secret Sharing and T-PAKE in the Password-Only Model,”
Lecture Notes in Computer Science, pp. 233–253, 2014.

[7] S. Casacuberta, J. Hesse, and A. Lehmann, “SoK: Oblivious Pseudoran-
dom Functions,” 2022 IEEE 7th European Symposium on Security and
Privacy (EuroS&P), Jun. 2022.

[8] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu, “TOPPSS: Cost-Minimal
Password-Protected Secret Sharing Based on Threshold OPRF,” Lecture
Notes in Computer Science, pp. 39–58, 2017.

[9] L. Heimberger, D. Kales, Riccardo Lolato, O. Mir, S. Ramacher, and
C. Rechberger, “Leap: A Fast, Lattice-based OPRF With Application to
Private Set Intersection,” Cryptology ePrint Archive, 2025.


