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1. Basic Notions

Evolution equations:

Continuous time Discrete time

dx
dt = F (x(t), u(t)) x(t+ 1) = F (x(t), u(t)) (state equation)

y(t) = G(x(t), u(t)) y(t) = G(x(t), u(t)) (output equation)

where F : Rn+m → Rn, G : Rn+m → Rp, and

u(t) ∈ T ⊆ Rm input space (1)

x(t) ∈ Ω ⊆ Rn state space (2)

y(t) ∈ Θ ⊆ Rp output space (3)

Definition 1.1 (solution). A solution of the system is a function x : T → Ω.

Definition 1.2 (trajectory of a solution). Given a solution x(t), the set {(t, x(t)) | t ∈ T } is
the trajectory of the solution.

Definition 1.3 (orbit of a solution). Given a solution x(t), the set {x(t) | t ∈ T } is the orbit
of the solution.

Theorem 1.1 (Unique Solution). For each initial state x(0) ∈ Rn, a discrete-time dynamical
system admits exactly one solution x : N → Rn. If F (x(t), u(t)) is continuous and locally
Lipschitz with respect to x, then for each initial state x(0) ∈ Rn, a continuous-time dynamical
system admits exactly one solution x : R+ → Rn.

It may happen that a solution exists only up to a finite positive (resp. negative) escape time
t1, in which case

‖x(t)‖ −−−→
t→t1

∞ (4)
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Definition 1.4 (fixed / equilibrium point). In continuous time, a state x̄ that satisfies df
dx(x̄) = 0

is called an equilibrium point of the system.
In discrete time, a state x̄ that satisfies x̄ = F (x̄) is called a fixed point of the system.

Definition 1.5 (flow of a system). The flow of a system consists in all the solutions considered
simultaneously. It is a function Φ : T × Ω → Ω, defined by Φ(t, x(0)) 7→ x(t). It can be
represented graphically by drawing the trajectories of a few solutions.

Definition 1.6 (transient / asymptotic behaviors). The transient behavior is the behavior of
the system for small time t, when it strongly depends on the input signal. The asymptotic
behavior is the behavior of the system for large time t, when the system is in steady state.
Mathematically, it is the behavior for t→∞.

Definition 1.7 (unique asymptotic behavior). A system has unique asymptotic behavior if for
any two solutions x(t) and x̃(t) we have:

‖x(t)− x̃(t)‖ −−−→
t→∞

0. (5)

Definition 1.8 (periodic solution). A solution is periodic if there exists a time T such that
x(t+ T ) = x(t) ∀t.

Definition 1.9 (autonomous system). A system is autonomous if it has no input signal.

Definition 1.10 (Invariant Set). (i) A set S ⊆ Rn is forward invariant if for any solution x
such that at some time t ∈ T x(t) ∈ S, it follows that x(t′) ∈ S for all t′ ≥ t.

(ii) A set S ⊆ Rn is backward invariant if for any solution x such that at some time t ∈ T
x(t) ∈ S, it follows that x(t′) ∈ S for all t′ ≤ t.

(iii) A set S ⊆ Rn is invariant if it is both forward and backward invariant.

Definition 1.11 (α- and ω-limit sets). Consider a solution x(t) of an autonomous dynamical
system in Rn, defined for T = R or T = Z and unique for a given x(0) .

(i) The ω-limit set of the solution is the set of points ξ ∈ Rn such that there exists a sequence
of times t1 < t2 < . . . < ti < . . . with ti →∞ when i→∞, such that

lim
i→∞

x(ti) = ξ. (6)

(ii) The α-limit set of the solution is the set of points ξ ∈ Rn such that there exists a sequence
of times t1 > t2 > . . . > ti > . . . with ti → −∞ when i→∞, such that (6) holds.

Theorem 1.2. Let x(t) be a solution of the discrete-time system x(t+ 1) = F (x(t)), where F
is continuous, invertible and its inverse is also continuous. Then

(i) If the solution is bounded for t → +∞, its ω-limit set is compact (bounded and closed),
non-empty and invariant.

(ii) If the solution is bounded for t → −∞ , its α-limit set is compact, non-empty and
invariant.

Theorem 1.3. Let x(t) be a solution of the continuous-time system dx/dt(t) = F (x(t)).
(i) If the solution is bounded for t > 0, its ω-limit set is compact (bounded and closed),

non-empty and connected.
(ii) If the solution is bounded for t < 0 , its α-limit set is compact, non-empty and connected.

2



Definition 1.12 (Attractor). A non-empty compact (bounded and closed) set of the state space
A ⊆ Ω is an attractor of the system, if the following conditions hold:

(i) A is forward invariant.
(ii) There exists a neighborhood U of A, which is an open set U ⊃ A such that all solutions

starting in U converge to A as t→ +∞.
(iii) There is no proper non-empty compact subset of A that has properties (i) and (ii).

Remark 1.1. A solution x(t) is said to converge to a set A if the distance between x(t) and A
converges to 0 as t → ∞. The distance between a point ξ and a set S is defined as d(ξ, S) =
infη∈S d(ξ, η)

2. Linear Systems

2.1. Systems and General Solutions

Discrete time:

x(t+ 1) = Ax(t) +Bu(t) (7)

y(t) = Cx(t) +Du(t) (8)

Solutions:

x(t) = Atx(0) +
t−1∑
τ=0

At−τ−1Bu(τ) (9)

y(t) = CAtx(0) +

(
C

t−1∑
τ=0

At−τ−1Bu(τ)

)
+Du(t) (10)

Continuous time:

dx

dt
= Ax(t) +Bu(t) (11)

y(t) = Cx(t) +Du(t) (12)

Solutions:

x(t) = eAtx(0) +

∫ t

0
eA(t−τ)Bu(τ)dτ (13)

y(t) = CeAtx(0) +

(
C

∫ t

0
eA(t−τ)Bu(τ)dτ

)
+Du(t) (14)

The free solution (when u(t) = 0) can be represented as

x(t) = φ(t)x(0)

y(t) = Cφ(t)x(0),

where φ(t) = eAt for continuous-time systems and φ(t) = At for discret time for discrete-time
systems.
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2.2. Matrix Exponential

The matrix exponential of tA is

etA = In + tA+
t2

2!
A2 +

t3

3!
A3 + . . . ,

where In is the n×n identity matrix. If J is the Jordan block decomposition of A, etA = SetJS−1

where

etJ =


etJ1 0 0 . . . 0
0 etJ2 0 . . . 0
...

. . .
...

0 . . . 0
. . . 0

0 . . . 0 etJq


with

etJi =



etλi tetλi t2

2 e
tλi . . . tni−1

(ni−1)!e
tλi

0 etλi tetλi t2

2 e
tλi

...
. . .

. . .
...

0 0 etλi tetλi

0 . . . 0 etλi


,

and where λi is an eigenvalue of A and where the columns of S are the corresponding (gener-
alised) eigenvectors.

2.3. Stability

Definition 2.1 (Stability of a linear system). (i) A linear system is asymptotically stable if
for all x0 ∈ Ω we have

‖φ(t)x0‖ −−−→
t→∞

0. (15)

(ii) A linear system is stable if for all x0 ∈ Ω there is a constant C > 0 such that for all
t ∈ T

‖φ(t)x0‖ ≤ C. (16)

(iii) A linear system is weakly unstable if it not stable and if for all x0 ∈ Ω there exist C > 0
and n > 0 such that for all t ∈ T

‖φ(t)x0‖ ≤ Ctn. (17)

(iv) A linear system is strongly unstable if it neither stable nor weakly unstable.

Theorem 2.1. If λi, 1 ≤ i ≤ n, are the eigenvalues of its state matrix A, then a linear
autonomous continuous-time system is

• asymptotically stable if all eigenvalues λi satisfy Re(λi) < 0 for 1 ≤ i ≤ n,

• stable if all eigenvalues λi, for 1 ≤ i ≤ n, satisfy either Re(λi) < 0, or Re(λi) = 0 and
the corresponding Jordan block Ji is of dimension 1 (ri = 1, Ji = λi),
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• weakly unstable if all eigenvalues λi satisfy Re(λi) ≤ 0 for 1 ≤ i ≤ n, and if there is at
least one eigenvalue λi with Re(λi) = 0 such that the corresponding Jordan block Ji is of
dimension higher than 1 (ri > 1),

• strongly unstable if Re(λi) > 0 for at least one eigenvalue λi, 1 ≤ i ≤ n.

Theorem 2.2. If λi, 1 ≤ i ≤ n, are the eigenvalues of its state matrix A, then a linear
autonomous discrete-time system is

• asymptotically stable if all eigenvalues λi satisfy |λi| < 1 for 1 ≤ i ≤ n,

• stable if all eigenvalues λi, for 1 ≤ i ≤ n, satisfy either |λi| < 1, or |λi| = 1 and the
corresponding Jordan block Ji is of dimension 1 (ri = 1, Ji = λi),

• weakly unstable if all eigenvalues λi satisfy |λi| ≤ 1 for 1 ≤ i ≤ n, and if there is at least
one eigenvalue λi with |λi| = 1 such that the corresponding Jordan block Ji is of dimension
higher than 1 (ri > 1),

• strongly unstable if |λi| > 1 for at least one eigenvalue λi, 1 ≤ i ≤ n.

2.4. BIBO Stability

The state and output equations in the Laplace (frequency) domain of a continuous-time system
are

X(s) = (sIn −A)−1x(0) + (sIn −A)−1BU(s)

Y (s) = C(sIn −A)−1x(0) + (C(sIn −A)−1B +D)U(s)

where

U(s) =

∫ ∞
0

u(t)e−stdt

is the Laplace transform of the input signal u(t) (and similarly, X(s), Y (s) are the Laplace
transforms of x(t), y(t), respectively). The transfer matrix of the zero-state system (i.e. with
x(0) = 0) is H(s) = C(sIn −A)−1B +D.

The z-transforms of the state and output equations of a discrete-time system are

X(z) = (zIn −A)−1x(0) + (zIn −A)−1BU(z)

Y (z) = C(zIn −A)−1x(0) + (C(zIn −A)−1B +D)U(z)

where

U(z) =

∞∑
n=0

u(n)z−n

is the z-transform of the input signal u(n) (and similarly, X(z), Y (z) are the z-transforms of
x(n), y(n), respectively). The transfer matrix of the zero-state system is H(z) = C(zIn −
A)−1B +D.

Definition 2.2 (B.I.B.O. stability of a linear system). A linear system is B.I.B.O. stable if
and only if for all u ∈ Γ such that

‖u(t)‖ ≤ uM
for some finite uM and for all t ∈ T , there is a finite constant K such that

‖y(t)‖ ≤ KuM
for all t ∈ T .
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Theorem 2.3. A linear time-invariant system with impulse response h(t) is BIBO stable if and
only if there is some finite hM such that∫ ∞

0
‖h(τ)‖dτ ≤ hM . (18)

In the previous expressions, the norm is the infinite norm. In the multi-dimensional case, if
hij denotes the (i, j)th entry of h, (18) can therefore be replaced by∫ ∞

0
max
ij
|hij(τ)|dτ ≤ hM .

If the transfer function H(s) can be expressed as a rational fraction in s, then the roots of
its denominator are called in control theory the poles of the system, they are the values of s for
which H(s) is infinite. Poles are always natural frequencies of the system.

Theorem 2.4. A linear time-invariant system with a transfer function H(s) which is a rational
function of s is BIBO stable if and only if all the poles of every entry of H(s) have strictly
negative real parts.

3. Stability of Nonlinear Systems

From now on, we only consider autonomous systems either in continuous time

dx

dt
(t) = F (x(t)) (19)

or in discrete time
x(t+ 1) = F (x(t)) (20)

with F : Rn → Rn. We sometimes use ẋ as a short-hand for dx/dt.

3.1. Large-scale Notions of Stability/instability

Definition 3.1 (Large-scale stability). (i) An autonomous system has bounded solutions if for
each x0 ∈ Rn there is a constant B > 0 such that for all t ≥ 0

‖x(t)‖ ≤ B

where x(t) is the solution with initial condition x(0) = x0.
(ii) An autonomous system has asymptotically uniformly bounded solutions if there is a

constant B > 0 such that for each x0 ∈ Rn, there is a finite time T ≥ 0 such that for all t ≥ T

‖x(t)‖ ≤ B

where x(t) is the solution with initial condition x(0) = x0.
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3.1.1. Lyapunov Functions

For a continuous-time system ẋ = F (x), W is non-increasing along trajectories, if for any
solution x(t),

Ẇ (x) = ∇TxW (x)F (x) ≤ 0, (21)

where T denotes transposition and where ∇xW (x) is the gradient of W at point x:

∇xW (x) =


∂W
∂x1

(x1, . . . , xn)
∂W
∂x2

(x1, . . . , xn)
...

∂W
∂xn

(x1, . . . , xn)

 .
For a discrete-time system x(t+ 1) = F (x(t)), (21) is replaced by

W (x(t+ 1))−W (x(t)) = W (F (x(t))−W (x(t)) ≤ 0. (22)

If we replace the inequality sign in (21) and (22) by a strict inequality, W is decreasing along
trajectories. In the following theorem, the Kth-level set of a function W : Rn → R is LK =
{x ∈ Rn |W (x) ≤ K}.

Theorem 3.1. Suppose there is a function W : Rn → R such that

• for discrete time systems, W is continuous and for continuous time systems, W is con-
tinuously differentiable,

• W (x) ≥ 0 for all x ∈ Rn,

• the level sets LK = {x ∈ Rn |W (x) ≤ K} are bounded for all K > 0.

(i) Suppose in addition that

• W is non-increasing along trajectories,

then the system has bounded solutions.
(ii) Suppose in addition that there is a constant E > 0 such that

• W is decreasing along trajectories as long as W (x(t)) ≥ E (i.e. for x(t) /∈ LE)

• for a discrete-time system, the level set LE is forward invariant,

then the system has asymptotically uniformly bounded solutions.

3.1.2. Hamiltonian Systems

Hamiltonian systems have an even dimension: n = 2r for some r ∈ N, andare described by a
function H : R2r → R, the Hamilton function or Hamiltonian, from which the state equation
are derived as follows, for 1 ≤ i ≤ r

q̇i =
∂H

∂pi
(23)

ṗi = −∂H
∂qi

. (24)
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The first r arguments q1, . . . , qr of H are called generalized coordinates and the last r arguments
p1, . . . , pr of H are called generalized momenta. Together, they constitute the 2r-dimensional
state vector. The fact that along solutions of the system (23), (24) the value of H is constant
can be seen easily by computing

Ḣ (q1(t), . . . , qr(t), p1(t), . . . , pr(t)) =

r∑
i=1

∂H

∂qi
q̇i +

r∑
i=1

∂H

∂pi
ṗi

= −
r∑
i=1

ṗiq̇i +
r∑
i=1

q̇iṗi = 0.

3.2. Small-scale Notions of Stability/instability

Definition 3.2 (Small-scale stability). (i) A solution x? : N → Rn of a discrete-time au-
tonomous system, or a solution x? : R+ → Rn of a continuous-time system, is stable, if for any
ε > 0 there exists a δ > 0 such that for any solution x with

‖x(0)− x?(0)‖ ≤ δ

we have for all t ≥ 0
‖x(t)− x?(t)‖ ≤ ε.

- A solution is unstable if it is not stable.
(ii) A solution x? is asymptotically stable, or more precisely locally asymptotically stable, if

it is stable, i.e. if it verifies the conditions in item (i) of the definition, and if in addition

lim
t→+∞

‖x(t)− x?(t)‖ = 0. (25)

The basin of attraction at time t = 0 of an asymptotically stable solution x? is the set of all
x0 ∈ Rn such that the solution x with initial condition x(0) = x0 satisfies (25).

(iii) A solution x? is globally asymptotically stable if it is asymptotically stable and if its basin
of attraction is the whole space Rn. In this case, actually all solutions are globally asymptotically
stable and for any two solutions (25) holds. Thus, this is a property of the system rather than
of the solution and the system is said to have a unique asymptotic behavior.

3.2.1. Stability of a fixed point in a discrete-time system

Let x be a fixed point of F , i.e. a point such that

F (x) = x. (26)

and let J(x) be the Jacobian matrix of F at the fixed point x:

J(x) =


∂F1
∂x1

(x) ∂F1
∂x2

(x) . . . ∂F1
∂xn

(x)
∂F2
∂x1

(x) ∂F2
∂x2

(x) . . . ∂F2
∂xn

(x)
...

. . .
∂Fn
∂x1

(x) ∂Fn
∂x2

(x) . . . ∂Fn
∂xn

(x)

 (27)

A fixed point x of a discrete time system is hyperbolic, if no eigenvalue of the Jacobian matrix
J(x) lies on the unit circle (i.e. has magnitude equal to 1).
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Theorem 3.2. Let x be a hyperbolic fixed point of a discrete time autonomous system given by
(20).

(i) The fixed point x is asymptotically stable if and only if all eigenvalues λi of the Jacobian
matrix J(x) satisfy |λi| < 1.

(ii) The fixed point x is unstable if and only if at least one eigenvalue λi of the Jacobian
matrix J(x) satisfies |λi| > 1.

3.2.2. Stability of an equilibrium point in a conitnuous-time system

Let x be an equilibrium point, i.e. a point such that

F (x) = 0. (28)

An equilibrium point x of a continuous-time system is hyperbolic, if no eigenvalue of the Jacobian
matrix J(x) given by (27) lies on the imaginary axis (i.e. has a zero real part).

Theorem 3.3. Let x be a hyperbolic equilibrium point of a continuous-time autonomous system
given by (19).

(i) The equilibrium point x is asymptotically stable if and only if all eigenvalues λi of the
Jacobian matrix J(x) satisfy <{λi} < 0.

(ii) The equilibrium point x is unstable if and only if at least one eigenvalue λi of the Jacobian
matrix J(x) satisfies <{λi} > 0.

3.2.3. Nature of the flow in a neighborhood of an equilibrium/fixed point

If a fixed/equilibrium point is hyperbolic, the notions of eigenspaces known for linear systems
are extended as follows.

Definition 3.3. The stable manifold W s of an equilibrium/fixed point x is the set

W s =
{
x0 | x(t) is a solution starting at x(0) = x0 such that lim

t→∞
x(t) = x

}
.

The unstable manifold W u of an equilibrium/fixed point x is the set

W u =

{
x0 | x(t) is a solution starting at x(0) = x0 such that lim

t→−∞
x(t) = x

}
.

Let x be an hyperbolic equilibrium/fixed point and V s (respectively, V u) be the contracting
(resp., expanding) linear subspace of the linearization of the system at x. The manifolds of x
enjoy the following properties:

• The stable manifold W s of x is an invariant set. In a neighborhood of x, W s is a surface
of the same dimension as V s and it is tangent to V s at x.

• The unstable manifold W u of x is an invariant set. In a neighborhood of x, W u is a
surface of the same dimension as V u and it is tangent to V u at x.
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3.2.4. Estimation of the basins of attraction of asymptotically stable fixed/equilibrium
points

Lyapunov functions were introduced in Section 3.1.1. The strict Kth-level set of a function
W : Rn → R is UK = {x ∈ Rn |W (x) < K}.

Theorem 3.4. Let x be an equilibrium/fixed point. Suppose there is a function W : Rn → R
and a constant E > 0 such that

• for discrete time systems, W is continuous and for continuous time systems, W is con-
tinuously differentiable,

• W (x) > 0 for all x ∈ Rn \ {x}, and W (x) = 0,

• the strict level set UE = {x ∈ Rn |W (x) < E} is bounded,

• W is non-increasing along trajectories as long as W (x(t)) < E (i.e. for x(t) ∈ UE),

• W is decreasing along trajectories as long as W (x(t)) < E and x(t) 6= x (i.e. for x(t) ∈
UE \ {x}).

Then UE is contained in the basin of attraction of x.

Corollary 3.1. Let x be an equilibrium/fixed point. Suppose there is a function W : Rn → R
such that

• for discrete time systems, W is continuous and for continuous time systems, W is con-
tinuously differentiable,

• W (x) > 0 for all x ∈ Rn \ {x}, and W (x) = 0,

• the strict level sets UK = {x ∈ Rn |W (x) < K} are bounded for all K > 0,

• W is non-increasing along trajectories,

• W is decreasing along trajectories as long as x(t) 6= x (i.e. for x(t) ∈ Rn \ {x}).

Then x is globally asymptotically stable.

3.2.5. Gradient Systems

Definition 3.4 (Gradient System). Let V : Rn → R be a twice continuously differentiable
function. Then the gradient system generated by V is defined by the state equation

ẋ = −∇xV (x). (29)

It follows from this definition that along any solution x(t) of the system, V is non-increasing,
yielding the following properties.

• If x is the unique equilibrium point of the system, if V (x) ≥ 0 for all x ∈ Rn and if all strict
level sets of V are bounded, then Corollary 3.1 yields that x is globally asymptotically
stable: all solutions converge to x.

• Gradient systems have no periodic solutions other than equilibrium points.

• If all equilibrium points are isolated, and if all strict level sets of V are bounded, then all
solutions converge to an equilibrium point (stable or unstable, possibly different equilib-
rium points for different solutions).
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3.2.6. Stability of a periodic solution of a discrete-time system

Let ξ be a T -periodic solution ξ, which is therefore such that

ξ(t+ T ) = ξ(t) for all t ∈ T . (30)

For discrete-time systems, T = N, for continuous-time systems, T = R+.

Theorem 3.5. Let ξ be a T -periodic solution of a discrete-time autonomous system given by
(20), with T ∈ N∗. Then ξ(0), ξ(1), . . . ξ(T − 1) are fixed points of the mapping G : Rn → Rn
defined by

G(x) = F (F (F (. . . (F (x))))) = F (T )(x). (31)

Conversely, to any fixed point of G corresponds a T -periodic solution of the system given by the
iterations of F . The stability properties of the T -periodic solution ξ are the same as the stability
properties of the corresponding fixed points of (31).

Variational Equation. Let x?(t) be a particular solution of a discrete-time autonomous
system given by (20), with initial condition x?(0) (Here we consider a T -periodic solution, but
the variational equation can be written with respect to any such solution). If a solution x starts
at an initial condition x(0) close to x?(0), and if we define its increment with respect to the
solution x? by

∆x = x− x?, (32)

then
∆x(t) = Φ(t, x(0))− Φ(t, x?(0)). (33)

The first order approximation to the increment reads

∆x(t) = M(t)∆x(0) (34)

where M(t) is the Jacobian matrix of Φ with respect to x0 at the point x?(0) and for a given
time t, which is

M(t) =


∂Φ1
∂x01

(t, x?(0)) ∂Φ1
∂x02

(t, x?(0)) . . . ∂Φ1
∂x0n

(t, x?(0))
∂Φ2
∂x01

(t, x?(0)) ∂Φ2
∂x02

(t, x?(0)) . . . ∂Φ2
∂x0n

(t, x?(0))
...

. . .
∂Φn
∂x01

(t, x?(0)) ∂Φn
∂x02

(t, x?(0)) . . . ∂Φn
∂x0n

(t, x?(0))

 , (35)

with M(0) = In. Now, because of (20), the flow Φ(t, x0) verifies

Φ(t+ 1, x0) = F (Φ(t, x0)).

If we differentiate this equation with respect to x0 at x?(0), we obtain

M(t+ 1) = J (x?(t))M(t) (36)

where J(x?(t)) is the Jacobian matrix of F at x?(t), given by

J (x?(t)) =


∂F1
∂x1

(x?(t)) ∂F1
∂x2

(x?(t)) . . . ∂F1
∂xn

(x?(t))
∂F2
∂x1

(x?(t)) ∂F2
∂x2

(x?(t)) . . . ∂F2
∂xn

(x?(t))
...

. . .
∂Fn
∂x1

(x?(t)) ∂Fn
∂x2

(x?(t)) . . . ∂Fn
∂xn

(x?(t))


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Equation (36) is called the variational equation of the discrete-time system along the solution
x?(t). Its solution is

M(t) = J (x?(t− 1)) J (x?(t− 2)) · · · J (x?(1)) J (x?(0)) . (37)

The variational equation yields following corollary of Theorem 3.5.

Corollary 3.2. Let ξ be a T -periodic solution of a discrete-time autonomous system given by
(20), with T ∈ N∗, such that the fixed point ξ(0) of the mapping G = F (T ) is hyperbolic. Then
the solution is asymptotically stable if and only if the matrix M(T ) given by (37), with x? = ξ,
has all its eigenvalues within the unit circle.

3.2.7. Stability of a periodic solution of a continuous-time system

Variational Equation. Let x?(t) be a solution of an with initial condition x?(0). In continuous-
time, the flow Φ(t, x0) verifies

∂Φ

∂t
(t, x0) = F (Φ(t, x0)).

If we differentiate this equation with respect to x0 at x?(0), we obtain the variational equation
for the continuous time system along the solution x?

Ṁ(t) = J (x?(t))M(t) (38)

This is a linear time-dependent differential equation for the matrix function M(t). If we combine
(38) with the original system equation (19), we obtain the time-independent nonlinear system
of n+ n2 differential equations

ẋ? = F (x?) (39)

Ṁ = J (x?)M. (40)

with the initial conditions x(0) and M(0) = In.
Stability and Floquet Multipliers. Suppose that the system (19) has a T -periodic solution

ξ that verifies therefore (30). Let us denote by Γ the orbit of the periodic solution, which is
also called a cycle.

Γ = {x ∈ Rn | x = ξ(t) for some 0 ≤ t ≤ T} .
Now consider the hyperplane P in Rn, which intersects Γ perpendicularly at the point ξ(0), i.e.,
which is orthogonal to the vector ξ̇(0):

P =
{
x ∈ Rn | ξ̇T (0)(x− ξ(0)) = 0

}
.

(Note that the exponent T in the above expression denotes transposition). This plane P is
called the Poincaré section at ξ(0).

In a neighborhood U of ξ(0) on P we define the first return map R, or Poincaré map, as
follows. Let x0 ∈ U and let x(t) be the solution with x(0) = x0. This solution will intersect P
again, after approximately time T , at a point R(x0). Clearly, ξ(0) is a fixed point of the return
map.

Theorem 3.6. Let ξ be a T -periodic solution of a continuous-time autonomous system given
by (19), with T ∈ R+, and let Γ be its orbit. Consider the first return map R of the Poincaré
section P through ξ(0). Then the periodic solution ξ is stable if the fixed point ξ(0) of the first
return map R is stable. Furthermore, the ω-limit set of any solution x of the system starting
sufficiently close to ξ(0) is Γ.
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Corollary 3.3. Let ξ be a T -periodic solution of a continuous-time autonomous system given
by (19), with T ∈ R+. Consider the first return map R of the Poincaré section P through
ξ(0). Suppose that all eigenvalues λi of the Jacobian matrix of R at ξ(0) satisfy |λi| < 1 for all
1 ≤ i ≤ n− 1. Then the periodic solution ξ is stable.

Lemma 3.1. The linearization of the first return map R is [P ·M(T )]P where M(t) is the
solution of the variational equations around the periodic solution ξ(t), and where P is the
orthogonal projection onto the Poincaré section P, taking ξ(0) as the origin.

The eigenvalues ofM(T ) are called the Floquet multipliers. They are related to the eigenvalues
of the return map by the following theorem.

Lemma 3.2. Let ξ be a T -periodic solution of a continuous-time autonomous system given by
(19), with T ∈ R+. Consider the first return map R of the Poincaré section P through ξ(0)
and the solution M(t) of the variational equations (39) and (40) along ξ(t). The eigenvalues of
the Jacobian matrix of R at ξ(0) are λ1, . . . , λn−1 if and only if the Floquet multipliers, i.e. the
eigenvalues of M(T ), are λ1, . . . , λn−1, 1 .

Theorem 3.7. Let ξ be a T -periodic solution of a continuous-time autonomous system given
by (19), with T ∈ R+, and let Γ be its orbit. Consider the first return map R of the Poincaré
section P through ξ(0) and the solution M(t) of the variational equations (39) and (40) along
ξ(t). If all the Floquet multipliers λi, 1 ≤ i ≤ n − 1 (the eigenvalues of M(T )), except one
(which is λn = 1) satisfy |λi| < 1, the periodic solution ξ(t) is stable. In addition, any solution
starting sufficiently close to ξ(0) converges to a time-shifted version of the periodic solution ξ(t),
i.e. its ω-limit set is Γ.

4. Periodic Solutions in Planar Systems

The orbit of a non-trivial periodic solution, which we denote by Γ, is called a cycle. It is called
a limit cycle if it is the α-limit set or ω-limit set of some solution whose initial condition is not
on the cycle. We are looking for non trivial periodic solutions of 2-dim. autonomous systems
continuous-time systems.

4.1. Absence of a periodic solution

A connected domain Dc of R2 is a set in which every two points in Dc can be connected by a
curve lying entirely within Dc. A set D ⊆ R2 is simply connected if it is connected, and if any
curve between two points can be continuously contracted, staying within D, into another curve
with the same endpoints.

The divergence of function F (x) = (F1(x1, x2), F2(x1, x2)) is defined as the quantity

divF (x) =
∂F1

∂x1
(x1, x2) +

∂F2

∂x2
(x1, x2). (41)

Theorem 4.1 (Bendixson’s Theorem). Let D be a simply connected of R2 such that the diver-
gence of F , given by (41), is not identically zero over any subregion of D, and does not change
sign in D. Then D does not contain any cycle of the system.
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4.2. Existence of a periodic solution

Theorem 4.2 (Poincaré-Bendixson’s Theorem). Let x(t) be a solution, and let Sω (respectively,
Sα) denote its ω-limit set (resp., α-limit set). If Sω (respectively, Sα) is contained in a compact
region M ⊂ R2, and if M does not contain any equilibrium point of the system, then Sω
(respectively, Sα) is a cycle of the system.

5. Bifurcations

To make parameters explicitly appear in the state equations, we recast them as

ẋ(t) = F (x(t), µ) (42)

in continuous-time, and by
x(t+ 1) = F (x(t), µ) (43)

in discrete time. Function F : Rn+1 → Rn is at least a C1-function, i.e. a continuously
differentiable function.

Definition 5.1. The system (42) or (43) undergoes a bifurcation at µ0, if there is no neigh-
borhood V of µ0 on the real line R such that all systems with µ ∈ V have the same qualitative
behavior.

5.1. Implicit Function Theorem

Theorem 5.1 (Implicit Function Theorem). Let F : Rn+m → Rn be a C1-function and suppose
that

F (x0, y0) = 0 (44)

with x0 ∈ Rn, y0 ∈ Rm. Suppose that the n× n Jacobian matrix of F with respect to x is

Jx(x0, y0) =
∂F

∂x
(x0, y0) =


∂F1
∂x1

(x0, y0) ∂F1
∂x2

(x0, y0) . . . ∂F1
∂xn

(x0, y0)
∂F2
∂x1

(x0, y0) ∂F2
∂x2

(x0, y0) . . . ∂F2
∂xn

(x0, y0))
...

. . .
∂Fn
∂x1

(x0, y0) ∂Fn
∂x2

(x0, y0) . . . ∂Fn
∂xn

(x0, y0)

 (45)

is non-singular (i.e is invertible). Then there is a neighborhood U of (x0, y0) in Rn+m, a neigh-
borhood V of y0 in Rm and a C1- function g : V → Rn such that all solutions of F (x, y) = 0 in
U are given by x = g(y). Moreover,

∂g

∂y
(y0) = −

(
∂F

∂x

)−1

(x0, y0) · ∂F
∂y

(x0, y0) (46)

= −J−1
x (x0, y0)Jy(x0, y0).

5.2. Fold bifurcation of equilibrium/fixed points in 1-dim. state-space

Theorem 5.2 (Fold Bifurcation in 1-dim systems). Let the continuous-time (respectively,
discrete-time) system given by

ẋ(t) = F (x(t), µ),
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respectively by
x(t+ 1) = F (x(t), µ),

and F : R2 → R be C2-function (twice continuously differentiable). Let x0 ∈ R and µ0 ∈ R be
such that

F (x0, µ0) = 0 ( resp., = x0)

∂F

∂x
(x0, µ0) = 0 ( resp., = 1)

∂2F

∂x2
(x0, µ0) 6= 0

∂F

∂µ
(x0, µ0) 6= 0.

Then the system undergoes a fold bifurcation at (x0, µ0). That is, in a neighborhood of (x0, µ0):
(i) for µ < µ0, there are two equilibrium/fixed points, one asymptotically stable, the other

unstable, and for µ > µ0 there is none, or vice-versa;
(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the

system to its normal form, which is

ẋ(t) = µ± x2(t) (47)

for a continuous-time system, or

x(t+ 1) = µ+ x(t)± x2(t). (48)

for a discrete-time system.

5.3. Transcritical bifurcation of equilibrium/fixed points in 1-dim. state-space

Theorem 5.3 (Transcritical Bifurcation in 1-dim systems). Let the continuous-time (respec-
tively, discrete-time) system given by

ẋ(t) = F (x(t), µ),

respectively by
x(t+ 1) = F (x(t), µ),

and let F : R2 → R be a C2-function (two times continuously differentiable). F : R2 → R be
C2-function (twice continuously differentiable). Let x0 ∈ R and µ0 ∈ R be such that

F (x0, µ0) = 0 ( resp., = x0)

∂F

∂x
(x0, µ0) = 0 ( resp., = 1)

∂F

∂µ
(x0, µ0) = 0

∂2F

∂x2
(x0, µ0) 6= 0[

∂2F

∂µ∂x
(x0, µ0)

]2

− ∂2F

∂x2
(x0, µ0)

∂2F

∂µ2
(x0, µ0) > 0.
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Then the system undergoes a transcritical (also called saddle-node) bifurcation at (x0, µ0). That
is, in a neighborhood of (x0, µ0):

(i) for µ 6= µ0, there are two equilibrium/fixed points, one asymptotically stable, the other
unstable. They switch stability at µ = µ0;

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the
system to its normal form, which is

ẋ(t) = µx(t)± x2(t) (49)

for a continuous-time system, or

x(t+ 1) = (1 + µ)x(t)± x2(t). (50)

for a discrete-time system.

5.4. Pitchfork bifurcation of equilibrium/fixed points in 1-dim. state-space

Theorem 5.4 (Pitchfork Bifurcation in 1-dim systems). Let the continuous-time (respectively,
discrete-time) system given by

ẋ(t) = F (x(t), µ),

respectively by
x(t+ 1) = F (x(t), µ),

and let F : R2 → R be a C3-function (three times continuously differentiable), which is odd (i.e.
verifies F (−x, µ) = −F (x, µ) for all x ∈ R and µ ∈ R). Let µ0 ∈ R be such that

∂F

∂x
(0, µ0) = 0 ( resp., = 1)

∂2F

∂x∂µ
(0, µ0) 6= 0

∂3F

∂x3
(0, µ0) 6= 0.

Then the system undergoes a pitchfork bifurcation at (0, µ0), that is, in a neighborhood of
(x0, µ0),

(i) for µ < µ0, the origin is the only equilibrium/fixed point and it is asymptotically stable,
whereas for µ > µ0 the origin is an unstable equilibrium/fixed point, and in addition, there are
two asymptotically stable equilibrium/fixed points, or vice-versa (this is called a supercritical
pitchfork bifurcation) or for µ < µ0, the origin is an asymptotically stable equilibrium/fixed point
and in addition there are two unstable equilibrium/fixed points, whereas for µ > µ0 the origin
is the only equilibrium/fixed point and it is unstable, or vice-versa (this is called a subcritical
pitchfork bifurcation);

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the
system to its normal form, which is

ẋ(t) = µx(t)± x3(t) (51)

for a continuous-time system, or

x(t+ 1) = (1 + µ)x(t)± x3(t) (52)

for a discrete-time system.
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5.5. Flip bifurcation of fixed points in 1-dim. state-space

Theorem 5.5 (Flip Bifurcation in 1-dim systems). Let the discrete-time system

x(t+ 1) = F (x(t), µ),

given by the C3-function F : R2 → R. Let x0 ∈ R and µ0 ∈ R be such that

F (x0, µ0) = x0

∂F

∂x
(x0, µ0) = −1[

∂2F

∂µ∂x
+

1

2

(
∂F

∂µ

)(
∂2F

∂x2

)]
(x0, µ0) = α 6= 0

1

6

∂3F

∂x3
(x0, µ0) +

(
1

2

∂2F

∂x2
(x0, µ0)

)2

= β 6= 0.

Then the system undergoes a flip bifurcation at (x0, µ0), that is, in a neighborhood of (x0, µ0),
(i) for µ < µ0, there is an asymptotically stable fixed point, whereas for µ > µ0 the fixed

point is unstable, and in addition, there is an asymptotically stable 2-cycle, or vice-versa (this
is called a supercritical flip bifurcation) or for µ < µ0, there is an asymptotically stable fixed
point and an unstable 2-cycle, whereas for µ > µ0 there is only the fixed point and it is unstable,
or vice-versa (this is called a subcritical flip bifurcation);

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the
system to its normal form, which is

x(t+ 1) = −(1 + µ)x(t)± x3(t). (53)

5.6. Andronov-Hopf bifurcation of equilibrium points in 2-dim. state-space

Theorem 5.6 (Andronov-Hopf Bifurcation in 2-dim systems). Let the continuous-time system
given by

ẋ(t) = F (x(t), µ),

and let F : R3 → R2 be a C4-function. Let x0 ∈ R2 and µ0 ∈ R be such that F (x0, µ0) = (0, 0)
and that the Jacobian matrix ∂F/∂x(x0, µ0) has imaginary eigenvalues λ0 = jω0 and λ∗0 =
−jω0.

If
d<(λ(µ))

dµ
(µ0) 6= 0 (54)

and a complicated non-degeneracy condition is met, which we will not specify here (and which
therefore can always be assumed to be satisfied in the exercises and exams), then the system
undergoes an Andronov-Hopf bifurcation at (x0, µ0), that is, in a neighborhood of (x0, µ0),

(i) for µ < µ0, there is an asymptotically stable equilibrium point x(µ), whereas for µ > µ0

the equilibrium point x(µ) becomes unstable, and in addition, there is a stable periodic solution,
or vice-versa (this is called a supercritical Andronov-Hopf bifurcation) or for µ < µ0, there is
an asymptotically stable equilibrium point x(µ) and an unstable periodic solution, whereas for
µ > µ0 there is only the equilibrium point x(µ) and it is unstable, or vice-versa (this is called a
subcritical Andronov-Hopf bifurcation);
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(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the
system to its normal form, which is

ẋ1 = µx1 − x2 ± x1

(
x2

1 + x2
2

)
ẋ2 = x1 − µx2 ± x2

(
x2

1 + x2
2

)
.

(iii) the period of the periodic solution is a differentiable function T (µ) of µ, with T (µ0) =
2π/ω0.

6. Chaos in 1-dim discrete-time systems

6.1. Lyapunov Exponents for 1-dim. Maps

We discuss here only 1-dimensional discrete-time systems

x(t+ 1) = F (x(t)) (55)

where F : R→ R is continuously differentiable.

Definition 6.1. The Lyapunov exponent of a solution x(t) of the autonomous 1-dim discrete-
time system (55) is given by

α = lim
t→∞

1

t

t−1∑
τ=0

ln

∣∣∣∣dFdx (x(τ))

∣∣∣∣ (56)

if the limit exists.

Theorem 6.1. If P is an invariant measure under F (·), then for P -almost all solutions x(t),
the Lyapunov exponent (56) exists. If, in addition, P is ergodic with respect to F (·), then for
P -almost all solutions, the Lyapunov exponent (56) is the same and its value is given by

α =

∫ ∞
−∞

ln

∣∣∣∣dFdx (x)

∣∣∣∣ dP (x). (57)

If the ergodic invariant measure is given by a density ρ(x), i.e. dP (x) = ρ(x)dx, then (57)
becomes

α =

∫ ∞
−∞

ln

∣∣∣∣dFdx (x)

∣∣∣∣ ρ(x)dx. (58)

A. Useful facts from Linear Algebra and Calculus

A.1. Determinant, Inverse, Taylor Expansion, Polar Coordinates

• The determinant of a 3-by-3 matrix is given by:∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = aei+ bfg + cdh− afh− bdi− ceg. (59)
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• The inverse of a 2-by-2 matrix is given by:(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
. (60)

The inverse of a 3-by-3 matrix is:

A−1 =

a b c
d e f
g h i

−1

=
1

detA

A D G
B E H
C F I

 , (61)

where:
A = (ei− fh) D = (ch− bi) G = (bf − ce)
B = (fg − di) E = (ai− cg) H = (cd− af)
C = (dh− eg) F = (bg − ah) K = (ae− bd).

• Let A =

(
a b
c d

)
and λ1, λ2 denote the eigenvalues of A. We have:

Tr(A) = a+ d = λ1 + λ2 (62)

det(A) = λ1λ2 (63)

• Taylor expansion of a function of one variable
Expansion of the function f(x) in a neighborhood of a:

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n. (64)

• Taylor expansion of a function of two variables
Second order Tayler serie of the function f(x, y) around the point (a, b):

f(x, y) ≈ f(a, b) + (x− a)
∂f

∂x
(a, b) + (y − b)∂f

∂y
(a, b)

+
1

2!

[
(x− a)2∂

2f

∂x2
(a, b) + 2(x− a)(y − b) ∂

2f

∂x∂y
(a, b) + (y − b)2∂

2f

∂y2
(a, b)

]
.

• Polar coordinates representation:

r =
√
x2

1 + x2
2, ϕ = arctan

x2

x1
⇔ x1 = r cosϕ, x2 = r sinϕ (65)

A.2. Jordan Factorization

Any n× n matrix with 1 ≤ q ≤ n linearly independent eigenvectors is similar to a matrix J in
Jordan (canonical) form with q square blocks on its diagonal, which reads

J =


J1 0 . . . 0

0 J2
. . .

...
...

. . .
. . . 0

0 . . . 0 Jq

 .
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This means that there exists a n× n invertible matrix S such that

A = SJS−1.

Each Jordan block Ji corresponds to one eigenvalue λi and to one (unit-norm) eigenvector, and
has the form

Ji =



λi 1 0 . . . 0

0 λi 1
. . .

...
... 0

. . .
. . . 0

...
...

. . .
. . . 1

0 0 . . . 0 λi


.

In other words, the elements on the main diagonal are all equal to λi, the elements on the first
upper diagonal are all equal to 1 and all the other entries of the Jordan block are 0.

The geometric multiplicity of an eigenvalue λk is equal to the dimension of its eigenspace, i.e.
the number of linearly independent eigenvectors with eigenvalue λi, and thus to the number of
Jordan blocks corresponding to this eigenvalue.

The algebraic multiplicity of an eigenvalue λi is the number of times it is a root of the
characteristic polynomial of A, i.e. the number of times it appears on the diagonal of J . It is
equal to the sum of the dimensions of all Jordan blocks corresponding to the eigenvalue λi.

The canonical Jordan form of A allows to express the tth power of A as

At = SJ tS−1 (66)

where

J t =


J t1 0 . . . 0

0 J t2
. . .

...
...

. . . J tq−1 0

0 . . . 0 J tq

 ,
and where one can compute that

J ti =



λti tλt−1
i

t(t−1)
2 λt−2

i . . .

(
t
ni

)
λt−ni
i

0 λti tλt−1
i

t(t−1)
2 λt−2

i . . .
...

. . .
. . .

0 0 λti tλt−1
i

0 . . . 0 λti


.

The matrix S = [S1, S2, . . . , Sq] has q (rectangular n × ni) blocks Si ∈ Cn×ni , each of which
contains the columns of S associated with the Jordan block Ji. Let Si = [vi,1 vi,2 . . . vi,ni ]. We
can find the columns of Si iteratively in the following way:

(A− λiIn)vi,1 = 0

(A− λiIn)vi,j = vi,(j−1).

The first column vi,1 is the eigenvector of A associated to the eigenvalue λi. The other ni − 1
columns are called the generalized eigenvectors associated to the eigenvalue λi.
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A.3. Laplace and z-Transforms

Table 1: Some Laplace transforms

f(t) F (s)

δ(t) 1
1 1/s
t 1/s2

tn−1/(n− 1)! 1/sn

eat 1/(s− a)
tn−1eat/(n− 1)! 1/(s− a)n

cos(at) s/(s2 + a2)
sin(at) a/(s2 + a2)

cos(at)ebt s−b
(s−b)2+a2

sin(at)ebt a
(s−b)2+a2

af(t) + bg(t) aF (s) + bG(s)
f(at) F (s/a)/a
f(t− a) e−asF (s)
eatf(t) F (s− a)
df
dt (t) sF (s)− f(0)∫ t

0 f(τ)dτ F (s)/s

(f ? g)(t) =
∫ t

0 f(t− τ)g(τ)dτ F (s)G(s)
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Table 2: Some (unilateral) z-transforms

f(t) F (z)

δ(t) 1
1 1/(1− z−1)
t z−1/(1− z−1)2

at 1/(1− az−1)
tat az−1/(1− az−1)2

cos(at) 1−z−1 cos(a)
1−2z−1 cos(a)+z−2

sin(at) 1−z−1 sin(a)
1−2z−1 cos(a)+z−2

cos(at)bt 1−bz−1 cos(a)
1−2bz−1 cos(a)+b2z−2

sin(at)bt 1−bz−1 sin(a)
1−2bz−1 cos(a)+b2z−2

af(t) + bg(t) aF (z) + bG(z)
f(t− a) z−aF (z)
atf(t) F (z/a)

(f ? g)(t) F (z)G(z)

22


