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1. Basic Notions

Evolution equations:

Continuous time Discrete time
@ — F(x(t),u(t)) | =(t+1) = F(z(t),u(t)) (state equation)
y(t) = G(x(t),u(t)) | y(t) = G(x(t),u(?)) (output equation)

where F: R™™ 5 R™ G : R"*™ — RP, and

u(t) e T CR™ input space (1)
z(t) e Q CR" state space (2)
y(t) e © CRP output space (3)

Definition 1.1 (solution). A solution of the system is a function x : T — Q.

Definition 1.2 (trajectory of a solution). Given a solution x(t), the set {(t,z(t)) |t € T} is
the trajectory of the solution.

Definition 1.3 (orbit of a solution). Given a solution z(t), the set {x(t) | t € T} is the orbit
of the solution.

Theorem 1.1 (Unique Solution). For each initial state x(0) € R"™, a discrete-time dynamical
system admits exactly one solution x : N — R™. If F(x(t),u(t)) is continuous and locally
Lipschitz with respect to x, then for each initial state z(0) € R"™, a continuous-time dynamical
system admits exactly one solution x : Ry — R™.

It may happen that a solution exists only up to a finite positive (resp. negative) escape time
t1, in which case
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Definition 1.4 (fixed / equilibrium point). In continuous time, a state T that satisfies %(i) =0
is called an equilibrium point of the system.
In discrete time, a state T that satisfies T = F(Z) is called a fixed point of the system.

Definition 1.5 (flow of a system). The flow of a system consists in all the solutions considered
simultaneously. It is a function ® : T x Q — Q, defined by ®(t,x2(0)) — z(t). It can be
represented graphically by drawing the trajectories of a few solutions.

Definition 1.6 (transient / asymptotic behaviors). The transient behavior is the behavior of
the system for small time t, when it strongly depends on the input signal. The asymptotic
behavior is the behavior of the system for large time t, when the system is in steady state.
Mathematically, it is the behavior for t — oco.

Definition 1.7 (unique asymptotic behavior). A system has unique asymptotic behavior if for
any two solutions x(t) and T(t) we have:

() = 2] == 0 (5)

Definition 1.8 (periodic solution). A solution is periodic if there exists a time T such that
x(t+T)=z(t) Vt.

Definition 1.9 (autonomous system). A system is autonomous if it has no input signal.

Definition 1.10 (Invariant Set). (i) A set S C R™ is forward invariant if for any solution x
such that at some time t € T z(t) € S, it follows that x(t') € S for all t’ > t.

(ii) A set S C R"™ is backward invariant if for any solution x such that at some time t € T
x(t) € S, it follows that z(t') € S for all ' < t.

(iii) A set S C R"™ is invariant if it is both forward and backward invariant.

Definition 1.11 (a- and w-limit sets). Consider a solution x(t) of an autonomous dynamical
system in R™, defined for T =R or T = Z and unique for a given x(0) .

(i) The w-limit set of the solution is the set of points £ € R™ such that there exists a sequence
of times t1 < to < ... <t; < ... witht; = co when i — oo, such that

lim z(t;) =¢&. (6)
1— 00
(ii) The a-limit set of the solution is the set of points & € R™ such that there exists a sequence
of times t1 > to > ... >t; > ... with t; — —oo when i — 00, such that (6) holds.

Theorem 1.2. Let z(t) be a solution of the discrete-time system x(t + 1) = F(xz(t)), where F
18 continuous, invertible and its inverse is also continuous. Then

(i) If the solution is bounded for t — +o0, its w-limit set is compact (bounded and closed),
non-empty and invariant.

(ii) If the solution is bounded for t — —oo , its a-limit set is compact, non-empty and
mvariant.

Theorem 1.3. Let x(t) be a solution of the continuous-time system dx/dt(t) = F(x(t)).

(i) If the solution is bounded for t > 0, its w-limit set is compact (bounded and closed),
non-empty and connected.

(i) If the solution is bounded for t < 0 , its a-limit set is compact, non-empty and connected.



Definition 1.12 (Attractor). A non-empty compact (bounded and closed) set of the state space
A C Q is an attractor of the system, if the following conditions hold:

(i) A is forward invariant.

(ii) There exists a neighborhood U of A, which is an open set U D A such that all solutions
starting in U converge to A as t — +o00.

(iii) There is no proper non-empty compact subset of A that has properties (i) and (ii).

Remark 1.1. A solution z(t) is said to converge to a set A if the distance between z(t) and A
converges to 0 as t — oco. The distance between a point £ and a set S is defined as d(§, S) =

infpes d(&,n)

2. Linear Systems

2.1. Systems and General Solutions

Discrete time:

x(t+1) = Ax(t) + Bu(t (7
y(t) = Cx(t) + Du(t) (8
Solutions:
t—1
x(t) = A'z(0) + Y A" Bu(r) (9)
7=0
t—1
y(t) = CA'z(0) + (C’ Z AtTlBu(T)> + Du(t) (10)
7=0
Continuous time:
Z—f = Ax(t) + Bu(t) (11)
y(t) = Cz(t) + Du(t) (12)
Solutions:
z(t) = ez (0) + /t A7) Bu(r)dr (13)
0
= Celly A=) By(r)dr u
y(t) = CeMa(0) + (c/o Bu(r)d > 4 Dul(t) (14)

The free solution (when u(t) = 0) can be represented as

z(t) = ¢(t)z(0)
y(t) = Co(t)x(0),

where ¢(t) = e for continuous-time systems and ¢(t) = A* for discrete-time systems.



2.2. Matrix Exponential

The matrix exponential of tA is
t2 3
etA:In+tA+§A2+§A3+...7

where I, is the nxn identity matrix. If J is the Jordan block decomposition of A, et4 = Set/ §~1

where
[ et 0 0 0 ]
0 €2 0 0
ol —
0 0 0
0 0 e
with -~ ) ) _
th; thi  t2_th il g
e te 5 € e [Cr=)]
0 €t>\i tet)\i % et)\i
tJ;
e - b
0 0 elhi telhi
0 o 0 elhi

and where )\; is an eigenvalue of A and where the columns of S are the corresponding (gener-
alised) eigenvectors.

2.3. Stability

Definition 2.1 (Stability of a linear system). (i) A linear system is asymptotically stable if
for all xg € Q we have
oty — 0. (15)
—00

(i) A linear system is stable if for all xog € Q there is a constant C' > 0 such that for all
teT
() zoll < C. (16)

(iii) A linear system is weakly unstable if it not stable and if for all zo € Q2 there exist C > 0
and n > 0 such that for all t € T
lp(t)xol| < Ct™. (17)

(iv) A linear system is strongly unstable if it neither stable nor weakly unstable.

Theorem 2.1. If \;, 1 < i < n, are the eigenvalues of its state matrix A, then a linear
autonomous continuous-time system s

o asymptotically stable if all eigenvalues \; satisfy Re(N;) < 0 for 1 <i <mn,

e stable if all eigenvalues N;, for 1 < i < n, satisfy either Re(\;) < 0, or Re(\;) = 0 and
the corresponding Jordan block J; is of dimension 1 (r; =1, J; = \;),



o weakly unstable if all eigenvalues \; satisfy Re(N;) < 0 for 1 < i < n, and if there is at
least one eigenvalue \; with Re(\;) = 0 such that the corresponding Jordan block J; is of
dimension higher than 1 (r; > 1),

o strongly unstable if Re(\;) > 0 for at least one eigenvalue \;, 1 < i <n.

Theorem 2.2. If \;, 1 < i < n, are the eigenvalues of its state matrix A, then a linear
autonomous discrete-time system is

e asymptotically stable if all eigenvalues \; satisfy |\i| <1 for 1 <i<mn,
e stable if all eigenvalues A;, for 1 < i < n, satisfy either |N;| < 1, or |\;| = 1 and the

corresponding Jordan block J; is of dimension 1 (r; =1, J; = \;),

o weakly unstable if all eigenvalues \; satisfy |N;| < 1 for 1 < i <mn, and if there is at least
one eigenvalue \; with |\;| = 1 such that the corresponding Jordan block J; is of dimension
higher than 1 (r; > 1),

o strongly unstable if |\;| > 1 for at least one eigenvalue \;, 1 < i <n.

2.4, BIBO Stability

The state and output equations in the Laplace (frequency) domain of a continuous-time system
are

X(s) = (sI,—A)'2(0) + (sI, — A)'BU(s)

Y(s) = C(sl, —A)"'x(0) + (C(sl, — A" B+ D)U(s)
where

U(s) = /000 u(t)e Stdt

is the Laplace transform of the input signal u(t) (and similarly, X(s),Y (s) are the Laplace
transforms of x(t),y(t), respectively). The transfer matrix of the zero-state system (i.e. with
2(0) =0) is H(s) = O(sl, — A)"'B + D.
The z-transforms of the state and output equations of a discrete-time system are
X(2) = (2I,— A7 '2(0) + (21, — A)T'BU(2)
Y(2) = C(zI, — A~ 'z(0) + (C(zI, — A)"'B + D)U(z)

where

n=0
is the z-transform of the input signal u(n) (and similarly, X(z),Y(z) are the z-transforms of

x(n),y(n), respectively). The transfer matrix of the zero-state system is H(z) = C(zI, —
A)7'B+D.

Definition 2.2 (B.I.B.O. stability of a linear system). A linear system is B.1.B.O. stable if
and only if for all w € T such that
[u(®)]] < unr

for some finite ups and for all t € T, there is a finite constant K such that
Iy < Kun
forallt € T.



Theorem 2.3. A linear time-invariant system with impulse response h(t) is BIBO stable if and
only if there is some finite hys such that

/OOO h()lldr < has. (18)

In the previous expressions, the norm is the infinite norm. In the multi-dimensional case, if
hi; denotes the (i, j)th entry of h, (18) can therefore be replaced by

/ max |hi; (7)|dT < hyy.
0 L

If the transfer function H(s) can be expressed as a rational fraction in s, then the roots of
its denominator are called in control theory the poles of the system, they are the values of s for
which H(s) is infinite. Poles are always natural frequencies of the system.

Theorem 2.4. A linear time-invariant system with a transfer function H(s) which is a rational
function of s is BIBO stable if and only if all the poles of every entry of H(s) have strictly
negative real parts.

3. Observability and Controllability in Linear Systems

3.1. Observability

Definition 3.1 (Observability). A system is observable if there exists a finite time T > 0 such
that the free response signal in the time interval [0,T] determines the initial state x(0).

Theorem 3.1. A linear system is observable if and only if the rank of its observability matriz
M, is n, where

C

CA
M,=| O |. (19)

CAn—l

Theorem 3.2. Suppose that all the eigenvalues of A are real and that at least one is nonzero.
A linear system is observable if and only if for all s € R, the matrix

sl, — A
No_[ . ]

has full rank (i.e. its rank is equal to n).

(20)

Theorem 3.3. A linear system is observable if and only if its observability Gramian Wy is
invertible at all times t, where the observability Gramian Wy, is given by

¢
Wt :/ exp(ATT)CTC exp(AT)dr (21)
0
for continuous-time linear time-invariant systems and by
t—1
Wor =Y (AT)TCTCAT (22)
7=0

for discrete-time linear time-invariant systems.



3.2. Controllability

Definition 3.2 (Controllability). A system is (completely) controllable if there is a finite time
T such that it can be brought from any initial state x(0) = xg to any state z(T) = z1 by applying
a suitable input signal u(t) fort € [0,T].

Theorem 3.4. A linear system is controllable if and only if the rank of its controllability matriz
M, is n, where
M.=[B AB ... A" 'B]. (23)

Theorem 3.5. Suppose that all the eigenvalues of A are real and that at least one is nonzero.
A linear system is controllable if and only if for all s € R, the matriz

Ne=[sI,—A B]. (24)
has full rank (i.e. its rank is equal to n).

Theorem 3.6. A linear system is controllable if and only if its controllability Gramian Wy is
invertible at all times t, where the controllability Gramian W is given by

t
We :/ exp(A7)BBT exp(ATr)dr (25)
0
for continuous-time linear time-invariant systems and by
t—1
We =Y A"BBT (A7)" (26)
7=0

for discrete-time linear time-invariant systems.

Theorem 3.7. The minimal energy input that transfers a linear continuous-time controllable
system from x(0) = x¢ at time 0 to x(t1) = x1 at time t1 is
u*(t) = =BT exp(AT (t1 — t))W ! (exp(At1)zo — x1) (27)

cty

for 0 <t <ty, where W, is the controllability Gramian given by (25).

3.3. Connection with Transfer Functions

Theorem 3.8. Consider a continuous-time (resp., discrete-time) linear system with an input-
output transfer function H(s) (resp., H(z)). If H(s) (resp., H(z)) has a pole-zero cancellation,
then the system is unobservable and/or uncontrollable. Conversely, if H(s) (resp., H(z)) does
not have a pole-zero cancellation, then the system is observable and controllable.

4. Stability of Nonlinear Systems

From now on, we only consider autonomous systems either in continuous time

dx
() = Fla(t) (28)
or in discrete time
z(t+1) = F(x(t)) (29)

with F': R” — R"™. We sometimes use & as a short-hand for dx/dt.



4.1. Large-scale Notions of Stability/instability

Definition 4.1 (Large-scale stability). (i) An autonomous system has bounded solutions if for
each xg € R™ there is a constant B > 0 such that for allt >0

lz@®)] < B

where x(t) is the solution with initial condition x(0) = xg.
(ii) An autonomous system has asymptotically uniformly bounded solutions if there is a
constant B > 0 such that for each xg € R™, there is a finite time T > 0 such that for allt > T

lz@®)] < B

where x(t) is the solution with initial condition x(0) = xg.

4.1.1. Lyapunov Functions

For a continuous-time system & = F(z), W is non-increasing along trajectories, if for any
solution x(t),

W(z) = VIW (2)F(x) <0, (30)
where T denotes transposition and where V,W (z) is the gradient of W at point x:
%(ml, ey Tp)
g—m(:nl, cey T)
Vo W(z) = .
g%(xl, cey Tp)

For a discrete-time system x(t + 1) = F(x(t)), (30) is replaced by
Wi(z(t+1)) —W(z(t)) = W(F(z(t)) — W(z(t)) <0. (31)

If we replace the inequality sign in (30) and (31) by a strict inequality, W is decreasing along
trajectories. In the following theorem, the Kth-level set of a function W : R® — R is Lg =
{z eR" | W(z) < K}.

Theorem 4.1. Suppose there is a function W : R®™ — R such that

e for discrete time systems, W is continuous and for continuous time systems, W 1is con-
tinuously differentiable,

o W(x) >0 for all x € R",

o the level sets Lx = {x € R" | W(x) < K} are bounded for all K > 0.
(i) Suppose in addition that

e W is non-increasing along trajectories,

then the system has bounded solutions.
(ii) Suppose in addition that there is a constant E > 0 such that

o W is decreasing along trajectories as long as W(x(t)) > E (i.e. for x(t) ¢ Lg)
e for a discrete-time system, the level set Lg is forward invariant,

then the system has asymptotically uniformly bounded solutions.



4.1.2. Hamiltonian Systems

Hamiltonian systems have an even dimension: n = 2r for some r € N, and are described by a
function H : R?" — R, the Hamilton function or Hamiltonian, from which the state equation
are derived as follows, for 1 <i <r

0OH
s 32
q; Op; ( )
OH
y, = — ) 33
The first r arguments q1, . . ., g of H are called generalized coordinates and the last r arguments
P1,--.,pr of H are called generalized momenta. Together, they constitute the 2r-dimensional

state vector. The fact that along solutions of the system (32), (33) the value of H is constant
can be seen easily by computing

H (@, aropr®sepe®) = 3 243795,

— Ogi — Op
T IS8
= = pidi+ Y dipi=0
=1 =1

4.2. Small-scale Notions of Stability/instability

Definition 4.2 (Small-scale stability). (i) A solution z* : N — R™ of a discrete-time au-
tonomous system, or a solution x* : Ry — R™ of a continuous-time system, is stable, if for any
€ > 0 there exists a § > 0 such that for any solution x with

[z(0) —z*(0)[| <&
we have for all t > 0
|(t) — ()] <e.

- A solution is unstable if it is not stable.

(i) A solution x* is asymptotically stable, or more precisely locally asymptotically stable, if
it 1s stable, i.e. if it verifies the conditions in item (i) of the definition, and if in addition

. x _
Jim () — 2 (1) = 0. (34)

The basin of attraction at time t = 0 of an asymptotically stable solution x* is the set of all
xo € R™ such that the solution x with initial condition x(0) = xo satisfies (34).

(iii) A solution x* is globally asymptotically stable if it is asymptotically stable and if its basin
of attraction is the whole space R™. In this case, actually all solutions are globally asymptotically

stable and for any two solutions (34) holds. Thus, this is a property of the system rather than
of the solution and the system is said to have a unique asymptotic behavior.

4.2.1. Stability of a fixed point in a discrete-time system

Let T be a fixed point of F', i.e. a point such that

F(z)=1=. (35)



and let J(Z) be the Jacobian matriz of F' at the fixed point Z:

oh ) Shyg) ... %Mz
go B - g

J(f) _ 8931: 0T ' OTn (36)
g%(f) %’%(i) gxiz(f)

A fixed point T of a discrete time system is hyperbolic, if no eigenvalue of the Jacobian matrix
J(Z) lies on the unit circle (i.e. has magnitude equal to 1).

Theorem 4.2. Let T be a hyperbolic fixed point of a discrete time autonomous system given by
(29).

(i) The fixed point T is asymptotically stable if and only if all eigenvalues \; of the Jacobian
matriz J(T) satisfy |N;| < 1.

(ii) The fized point T is unstable if and only if at least one eigenvalue \; of the Jacobian
matriz J(T) satisfies || > 1.

4.2.2. Stability of an equilibrium point in a continuous-time system

Let T be an equilibrium point, i.e. a point such that
F(z)=0. (37)

An equilibrium point T of a continuous-time system is hyperbolic, if no eigenvalue of the Jacobian
matrix J(Z) given by (36) lies on the imaginary axis (i.e. has a zero real part).
Theorem 4.3. Let T be a hyperbolic equilibrium point of a continuous-time autonomous system
given by (28).

(i) The equilibrium point T is asymptotically stable if and only if all eigenvalues \; of the
Jacobian matriz J(T) satisfy R{\;} < 0.

(ii) The equilibrium point T is unstable if and only if at least one eigenvalue \; of the Jacobian
matriz J(T) satisfies R{\;} > 0.

4.2.3. Nature of the flow in a neighborhood of an equilibrium/fixed point
If a fixed/equilibrium point is hyperbolic, the notions of eigenspaces known for linear systems
are extended as follows.

Definition 4.3. The stable manifold W* of an equilibrium/fixed point T is the set

wWe = {xg | z(t) is a solution starting at ©(0) = xo such that tlim x(t) = f} .
—00
The unstable manifold W*" of an equilibrium/fized point T is the set
W = {3:0 | z(t) is a solution starting at x(0) = xo such that lim xz(t) = l’} :

t——o0

Let T be an hyperbolic equilibrium/fixed point and V* (respectively, V") be the contracting
(resp., expanding) linear subspace of the linearization of the system at Z. The manifolds of T
enjoy the following properties:

e The stable manifold W*¢ of T is an invariant set. In a neighborhood of Z, W* is a surface
of the same dimension as V* and it is tangent to V* at .

e The unstable manifold W* of T is an invariant set. In a neighborhood of T, W* is a
surface of the same dimension as V* and it is tangent to V* at T.
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4.2.4. Estimation of the basins of attraction of asymptotically stable fixed/equilibrium
points

Lyapunov functions were introduced in Section 4.1.1. The strict Kth-level set of a function

W:R" = RisUg ={z e R" | W(z) < K}.

Theorem 4.4. Let T be an equilibrium/fixed point. Suppose there is a function W : R" — R
and a constant £ > 0 such that

o for discrete time systems, W is continuous and for continuous time systems, W is con-
tinuously differentiable,

W(z) >0 for all z € R™\ {z}, and W(z) =0,

the strict level set Uy = {x € R™ | W(x) < E} is bounded,

o W is non-increasing along trajectories as long as W (z(t)) < E (i.e. for xz(t) € Ug),

W is decreasing along trajectories as long as W (xz(t)) < E and x(t) # T (i.e. for x(t) €
Up \ {T}).
Then Ug is contained in the basin of attraction of T.

Corollary 4.1. Let T be an equilibrium/fized point. Suppose there is a function W : R — R
such that

o for discrete time systems, W is continuous and for continuous time systems, W is con-
tinuously differentiable,

e W(x) >0 for allx € R"\ {z}, and W(z) =0,

o the strict level sets Ux = {x € R" | W(z) < K} are bounded for all K > 0,

o W is non-increasing along trajectories,

o W is decreasing along trajectories as long as x(t) # T (i.e. for x(t) € R"\ {7}).

Then T is globally asymptotically stable.

4.2.5. Gradient Systems

Definition 4.4 (Gradient System). Let V : R™ — R be a twice continuously differentiable
function. Then the gradient system generated by V is defined by the state equation

==V, V(z). (38)
It follows from this definition that along any solution x(¢) of the system, V' is non-increasing,
yielding the following properties.

e If 7 is the unique equilibrium point of the system, if V' (x) > 0 for all z € R™ and if all strict
level sets of V' are bounded, then Corollary 4.1 yields that T is globally asymptotically
stable: all solutions converge to 7.

e Gradient systems have no periodic solutions other than equilibrium points.

e If all equilibrium points are isolated, and if all strict level sets of V' are bounded, then all
solutions converge to an equilibrium point (stable or unstable, possibly different equilib-
rium points for different solutions).

11



4.2.6. Stability of a periodic solution of a discrete-time system

Let £ be a T-periodic solution &, which is therefore such that
Et+T)=¢(@) forall teT. (39)
For discrete-time systems, 7 = N, for continuous-time systems, 7 = R™.

Theorem 4.5. Let £ be a T-periodic solution of a discrete-time autonomous system given by
(29), with T € N*. Then £(0),£(1),...&(T — 1) are fized points of the mapping G : R™ — R"
defined by

G(z) = F(F(F(.... (F(2))))) = FT) (). (40)
Conversely, to any fixed point of G corresponds a T-periodic solution of the system given by the

iterations of F'. The stability properties of the T-periodic solution & are the same as the stability
properties of the corresponding fized points of (40).

Variational Equation. Let z*(t) be a particular solution of a discrete-time autonomous
system given by (29), with initial condition 2*(0) (Here we consider a T-periodic solution, but
the variational equation can be written with respect to any such solution). If a solution = starts
at an initial condition z(0) close to 2*(0), and if we define its increment with respect to the

solution z* by
Ax =x — ¥, (41)

then
Ax(t) = ®(t,2(0)) — ®(¢, 2*(0)). (42)

The first order approximation to the increment reads
Ax(t) = M(t)Az(0) (43)

where M (t) is the Jacobian matrix of ® with respect to xo at the point 2*(0) and for a given
time ¢, which is

B (0) BB(M0) o F(20(0)
My = | PO BRI g 0D "
2u(t,2%(0) 922 (t,a*(0)) ... FEu(t,2*(0))

with M (0) = I,,. Now, because of (29), the flow ®(¢, () verifies
O(t+1,z0) = F(P(t, 20)).
If we differentiate this equation with respect to xo at z*(0), we obtain
M(t+1)=J(x*(t)) M(t) (45)

where J(z*(t)) is the Jacobian matriz of F' at xz*(t), given by

%g(x*(t)) %wm o OB (ar())
Sty = | P EO) EmE@O) - G EO)
g%(:};*(t)) 95 (2%(1)) . B (a%(1))
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Equation (45) is called the wvariational equation of the discrete-time system along the solution
x*(t). Tts solution is

M(t) = J(z"(t = 1)) J (z"(t = 2)) - J («7(1)) J («(0)) . (46)
The variational equation yields following corollary of Theorem 4.5.

Corollary 4.2. Let £ be a T-periodic solution of a discrete-time autonomous system given by
(29), with T € N*, such that the fixed point £(0) of the mapping G = FT) s hyperbolic. Then
the solution is asymptotically stable if and only if the matriz M (T) given by (46), with x* =&,
has all its eigenvalues within the unit circle.

4.2.7. Stability of a periodic solution of a continuous-time system

Variational Equation. Let 2*(¢) be a solution of an with initial condition 2*(0). In continuous-

time, the flow ®(¢,zg) verifies

%f(t,xo) = F(B(t, z0)).

If we differentiate this equation with respect to zy at £*(0), we obtain the variational equation
for the continuous time system along the solution z*

M(t) = J (2*(t)) M(t) (47)

This is a linear time-dependent differential equation for the matrix function M (). If we combine
(47) with the original system equation (28), we obtain the time-independent nonlinear system
of n + n? differential equations

it = F(z) (48)
M = J(z*) M. (49)

with the initial conditions x(0) and M (0) = I,,.

Stability and Floquet Multipliers. Suppose that the system (28) has a T-periodic solution
¢ that verifies therefore (39). Let us denote by I' the orbit of the periodic solution, which is
also called a cycle.

I'={zeR"|xz=¢&(t) for some 0 <t <T}.

Now consider the hyperplane P in R"™, which intersects I perpendicularly at the point £(0), i.e.,
which is orthogonal to the vector £(0):

P = {x eR" | £7(0)(z —&(0)) = 0}'

(Note that the exponent 7' in the above expression denotes transposition). This plane P is
called the Poincaré section at £(0).

In a neighborhood U of £(0) on P we define the first return map R, or Poincaré map, as
follows. Let z¢ € U and let x(t) be the solution with x(0) = zp. This solution will intersect P
again, after approximately time 7, at a point R(z¢). Clearly, £(0) is a fixed point of the return
map.

Theorem 4.6. Let £ be a T-periodic solution of a continuous-time autonomous system given
by (28), with T € RT, and let T be its orbit. Consider the first return map R of the Poincaré
section P through £(0). Then the periodic solution & is stable if the fized point £(0) of the first
return map R s stable. Furthermore, the w-limit set of any solution x of the system starting
sufficiently close to £(0) is T.
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Corollary 4.3. Let £ be a T-periodic solution of a continuous-time autonomous system given
by (28), with T € RT. Consider the first return map R of the Poincaré section P through
£(0). Suppose that all eigenvalues \; of the Jacobian matriz of R at £(0) satisfy |A\i| < 1 for all
1 <i<n-—1. Then the periodic solution £ is stable.

Lemma 4.1. The linearization of the first return map R is [P - M(T)|p where M(t) is the
solution of the variational equations around the periodic solution £(t), and where P is the
orthogonal projection onto the Poincaré section P, taking £(0) as the origin.

The eigenvalues of M (T") are called the Floquet multipliers. They are related to the eigenvalues
of the return map by the following theorem.

Lemma 4.2. Let £ be a T-periodic solution of a continuous-time autonomous system given by
(28), with T € RT. Consider the first return map R of the Poincaré section P through £(0)
and the solution M (t) of the variational equations (48) and (49) along £(t). The eigenvalues of
the Jacobian matriz of R at £(0) are A1, ..., Ap—1 if and only if the Floquet multipliers, i.e. the
eigenvalues of M(T'), are Ai,..., A\p—1,1 .

Theorem 4.7. Let £ be a T-periodic solution of a continuous-time autonomous system given
by (28), with T € RT, and let T be its orbit. Consider the first return map R of the Poincaré
section P through £(0) and the solution M (t) of the variational equations (48) and (49) along
&(t). If all the Floquet multipliers N\;, 1 < i < n — 1 (the eigenvalues of M(T)), except one
(which is A, = 1) satisfy |\i| < 1, the periodic solution £(t) is stable. In addition, any solution
starting sufficiently close to £(0) converges to a time-shifted version of the periodic solution £(t),
i.e. its w-limit set is T'.

5. Periodic Solutions in Planar Systems

The orbit of a non-trivial periodic solution, which we denote by I', is called a cycle. It is called
a limit cycle if it is the a-limit set or w-limit set of some solution whose initial condition is not
on the cycle. We are looking for non trivial periodic solutions of 2-dim. autonomous systems
continuous-time systems.

5.1. Absence of a periodic solution

A connected domain D, of R? is a set in which every two points in D, can be connected by a
curve lying entirely within D,.. A set D C R? is simply connected if it is connected, and if any
curve between two points can be continuously contracted, staying within D, into another curve
with the same endpoints.

The divergence of function F(x) = (Fi(x1,x2), Fo(x1,x2)) is defined as the quantity

. OF OF.
divF(z) = aT;I(““’ 7o) + 37»2(“’ ). (50)

Theorem 5.1 (Bendixson’s Theorem). Let D be a simply connected of R? such that the diver-
gence of F', given by (50), is not identically zero over any subregion of D, and does not change
stgn in D. Then D does not contain any cycle of the system.
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5.2. Existence of a periodic solution

Theorem 5.2 (Poincaré-Bendixson’s Theorem). Let z:(t) be a solution, and let S,, (respectively,
S ) denote its w-limit set (resp., a-limit set). If S, (respectively, Sy ) is contained in a compact
region M C R2?, and if M does not contain any equilibrium point of the system, then S,
(respectively, S,,) is a cycle of the system.

6. Bifurcations

To make parameters explicitly appear in the state equations, we recast them as

() = F(x(t), p) (51)
in continuous-time, and by
2t +1) = Fa(t), 1) (52)

in discrete time. Function F : R*™"! — R” is at least a C'-function, i.e. a continuously
differentiable function.

Definition 6.1. The system (51) or (52) undergoes a bifurcation at pg, if there is no neigh-
borhood V of po on the real line R such that all systems with u € V have the same qualitative
behavior.

6.1. Implicit Function Theorem

Theorem 6.1 (Implicit Function Theorem). Let F' : R™*™ — R™ be a C-function and suppose
that
F(zo,y0) =0 (53)

with xg € R™, yog € R™. Suppose that the n X n Jacobian matriz of F' with respect to  is

%(x07y0) %(%0,:{/0) s 3712(530,90)
OF 882 (xo,p0) G2 (w0, m0) .- GE2(x0,90))
Jx(z0,90) = %(woﬁyo) = ) ) (54)
OFy (- OF, OF,
en(z0,90)  Fe2(zo,90) - GE (w0, v0)

is non-singular (i.e is invertible). Then there is a neighborhood U of (xg,yo) in R™™™  a neigh-
borhood V of yo in R™ and a C*- function g : V — R™ such that all solutions of F(x,y) =0 in
U are given by x = g(y). Moreover,

—1
P = (%) w5 @ow) (55)

= —J; Hwo, y0)Jy(z0, o).

6.2. Fold bifurcation of equilibrium/fixed points in 1-dim. state-space

Theorem 6.2 (Fold Bifurcation in 1-dim systems). Let the continuous-time (respectively,
discrete-time) system given by
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respectively by
z(t+1) = F(x(t), p),

and F : R? — R be C?-function (twice continuously differentiable). Let To € R and po € R be
such that

F(f()nu(]) =0 (T’@Sp., ZEO)
oF
%(EO'}MO) = 0 ( T@Sp., = 1)
02F
ﬁ(l’o,ﬂo) # 0
oF

({Tu(fo,ﬂo) # 0.

Then the system undergoes a fold bifurcation at (To, po). That is, in a neighborhood of (T, po):
(i) for p < o, there are two equilibrium/fixed points, one asymptotically stable, the other
unstable, and for pu > ugo there is none, or vice-versa;
(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the
system to its normal form, which is

i(t) = pt a2(t) (56)
for a continuous-time system, or
o(t+1) = p+ z(t) + 22(t). (57)

for a discrete-time system.

6.3. Transcritical bifurcation of equilibrium/fixed points in 1-dim. state-space

Theorem 6.3 (Transcritical Bifurcation in 1-dim systems). Let the continuous-time (respec-
tively, discrete-time) system given by

respectively by
z(t+1) = F(x(t), p),

and let F : R? — R be a C?*-function (two times continuously differentiable). F : R? — R be
C2-function (twice continuously differentiable). Let To € R and po € R be such that

F(Zo,po) = 0 (resp., = 7o)
oOF
%(j(]’,u()) =0 ( resp., = 1)
oF
@(507/10) =0
PF
@(UCO,MO) # 0

82F - 2 82F - 82F 7
[M(xo,uo)] _@(QUO#O)W(QSO,M()) > 0.
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Then the system undergoes a transcritical (also called saddle-node) bifurcation at (To, po). That
is, in a neighborhood of (T, po):

(i) for u # o, there are two equilibrium/fixed points, one asymptotically stable, the other
unstable. They switch stability at = po;

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the
system to its normal form, which is

i(t) = pa(t) £ 2*(t) (58)
for a continuous-time system, or
z(t+1) = (14 p)a(t) £ 22(1). (59)

for a discrete-time system.

6.4. Pitchfork bifurcation of equilibrium/fixed points in 1-dim. state-space

Theorem 6.4 (Pitchfork Bifurcation in 1-dim systems). Let the continuous-time (respectively,
discrete-time) system given by

respectively by
w(t+1) = F(x(t), p),

and let F : R? — R be a C3-function (three times continuously differentiable), which is odd (i.e.
verifies F(—x,pu) = —F(x,p) for all z € R and p € R). Let 19 € R be such that

oF

%(O,Mo) =0 (7”68]9., = 1)
O*F
PF
@(O,Mo) # 0.
Then the system undergoes a pitchfork bifurcation at (0,po), that is, in a neighborhood of

(507 /J'O) ’

(i) for u < po, the origin is the only equilibrium/fixed point and it is asymptotically stable,
whereas for p > ug the origin is an unstable equilibrium/fixed point, and in addition, there are
two asymptotically stable equilibrium/fixed points, or vice-versa (this is called a supercritical
pitchfork bifurcation) or for u < ug, the origin is an asymptotically stable equilibrium/fized point
and in addition there are two unstable equilibrium/fixed points, whereas for p > pg the origin
is the only equilibrium/fized point and it is unstable, or vice-versa (this is called a subcritical
pitchfork bifurcation);

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the
system to its normal form, which is

i(t) = pa(t) £ 23(t) (60)
for a continuous-time system, or
z(t+1) = (14 p)z(t) £ 23(t) (61)

for a discrete-time system.
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6.5. Flip bifurcation of fixed points in 1-dim. state-space

Theorem 6.5 (Flip Bifurcation in 1-dim systems). Let the discrete-time system
z(t +1) = F(z(t), p),
given by the C3-function F : R? — R. Let To € R and jg € R be such that

F(Zo, o) = o
%(fo,ﬂo) = —1
;jg;ﬂ(ﬂfoyﬂo) =a # 0
2
ég($o,uo) + (;g(ww@) =6 # 0.

Then the system undergoes a flip bifurcation at (To, po), that is, in a neighborhood of (Zo, 1o),

(i) for n < po, there is an asymptotically stable fixed point, whereas for p > po the fized
point is unstable, and in addition, there is an asymptotically stable 2-cycle, or vice-versa (this
is called a supercritical flip bifurcation) or for pu < uo, there is an asymptotically stable fized
point and an unstable 2-cycle, whereas for p > g there is only the fixed point and it is unstable,
or vice-versa (this is called a subcritical flip bifurcation );

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the
system to its normal form, which is

(t+1) = —(1+ p)x(t) £ 2°(t). (62)

6.6. Andronov-Hopf bifurcation of equilibrium points in 2-dim. state-space

Theorem 6.6 (Andronov-Hopf Bifurcation in 2-dim systems). Let the continuous-time system
given by
L(t) = F(x(t), ),

and let F : R3 — R? be a C*-function. Let To € R? and pg € R be such that F(To, o) = (0,0)
and that the Jacobian matrix OF/0x(Zo, pto) has imaginary eigenvalues g = jwo and A\ =
—ij.
If
dR(A(p))
dp

and a complicated non-degeneracy condition is met, which we will not specify here (and which
therefore can always be assumed to be satisfied in the exercises and exams), then the system
undergoes an Andronov-Hopf bifurcation at (To, po), that is, in a neighborhood of (Zo, uo),

(i) for u < po, there is an asymptotically stable equilibrium point T(u), whereas for p > po
the equilibrium point T(u) becomes unstable, and in addition, there is a stable periodic solution,
or vice-versa (this is called a supercritical Andronov-Hopf bifurcation) or for p < ug, there is
an asymptotically stable equilibrium point T(p) and an unstable periodic solution, whereas for
> po there is only the equilibrium point T(p) and it is unstable, or vice-versa (this is called a
subcritical Andronov-Hopf bifurcation );

(ko) # 0 (63)
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(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the
system to its normal form, which is

T = ur;—r2Eta; (w% —I—x%)

Tg = o1+ pure Lt (x%—l—x%)

(iii) the period of the periodic solution is a differentiable function T'(u) of p, with T(uo) =
27 Jwo.
7. Chaos in 1-dim discrete-time systems
7.1. Lyapunov Exponents for 1-dim. Maps
We discuss here only 1-dimensional discrete-time systems

x(t+1) = F(x(t)) (64)

where F': R — R is continuously differentiable.

Definition 7.1. The Lyapunov exponent of a solution x(t) of the autonomous 1-dim discrete-
time system (64) is given by

1 t—1
a=limgd
T=

) (65)

if the limit exists.

Theorem 7.1. If P is an invariant measure under F(-), then for P-almost all solutions x(t),
the Lyapunov exponent (65) exists. If, in addition, P is ergodic with respect to F(-), then for
P-almost all solutions, the Lyapunov exponent (65) is the same and its value is given by

a:/ In

If the ergodic invariant measure is given by a density p(x), i.e. dP(z) = p(x)dz, then (66)

becomes
o
o= / In
— o0

A. Useful facts from Linear Algebra and Calculus

dF

%(a}) dP(zx). (66)

@
dx

()

p(x)dz. (67)

A.1l. Determinant, Inverse, Taylor Expansion, Polar Coordinates

e The determinant of a 3-by-3 matrix is given by:

=aei+bfg+ cdh —afh — bdi — ceg. (68)

Q a2
>0 o
Sk 0
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e The inverse of a 2-by-2 matrix is given by:

<i Z)_J - (fi: Zf)' (69)

The inverse of a 3-by-3 matrix is:

a c 1 A D G
Al=1ad e f| = B E H|, (70)
g hoi det A CF I
where:
A= (ei—fh) D= (ch—bi) G=(bf—ce)
B=(fg—di) E=(ai—cg) H=(cd—af)
C=(dh—eg) F = (bg—ah) K = (ae—bd)

o Let A= (Z Z) and A1, Ao denote the eigenvalues of A. We have:
Tr(A)=a+d= X+ X (71)

det(A) = Mg (72)

e Taylor expansion of a function of one variable
Expansion of the function f(x) in a neighborhood of a:

0 £(n) (g
5 )

n!

f(z) (z —a)". (73)

n=0

e Taylor expansion of a function of two variables
Second order Tayler serie of the function f(x,y) around the point (a, b):

fla) = Fah) + (2= )5 (@) + 0=, (@b
1 L0 921 L0
— |z —a)?=% 2z —a)(y — —b)2=L .
by [o— 2P an) + 2 - -5 L (@) + - 0P )
e Polar coordinates representation:
r=/x? + 23, @zarctanﬂ & xp=rcosp, xy=rsing (74)

T
A.2. Jordan Factorization

Any n x n matrix with 1 < ¢ < n linearly independent eigenvectors is similar to a matrix J in
Jordan (canonical) form with g square blocks on its diagonal, which reads

Jg 0 ... 0
J= 0 J2

N {

0 ... 0 J,;
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This means that there exists a n X n invertible matrix S such that
A=S8J5L

Each Jordan block J; corresponds to one eigenvalue A; and to one (unit-norm) eigenvector, and
has the form

(N 1 0 ... 0
N1 :

Ji=1: 0 . .0
: : . . 1

0 0 ... 0 A

In other words, the elements on the main diagonal are all equal to \;, the elements on the first
upper diagonal are all equal to 1 and all the other entries of the Jordan block are 0.

The geometric multiplicity of an eigenvalue Ay is equal to the dimension of its eigenspace, i.e.
the number of linearly independent eigenvectors with eigenvalue )\;, and thus to the number of
Jordan blocks corresponding to this eigenvalue.

The algebraic multiplicity of an eigenvalue A; is the number of times it is a root of the
characteristic polynomial of A, i.e. the number of times it appears on the diagonal of J. It is
equal to the sum of the dimensions of all Jordan blocks corresponding to the eigenvalue A;.

The canonical Jordan form of A allows to express the tth power of A as

At =5Jtst (75)
where
Jbo ... 0
Jt _ O ‘]5
o Jé,l 0
0 0 J};
and where one can compute that
gt My (;) A ]
0 A DV Gt P
0 0 AL AL
Lo ... 0 A i

The matrix S = [S1,52,...,5,] has ¢ (rectangular n x n;) blocks S; € C*"*™ each of which
contains the columns of S associated with the Jordan block J;. Let S; = [v;1vi2 ... vip,]. We
can find the columns of S; iteratively in the following way:

(A—)\Jn)vm =0
(A= Nln)viy = -1

The first column v; ; is the eigenvector of A associated to the eigenvalue \;. The other n; — 1
columns are called the generalized eigenvectors associated to the eigenvalue ;.
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A.3. Laplace and z-Transforms

Table 1: Some Laplace transforms

[0 )
o(t) 1
1 1/s
t 1/s?
t"=1/(n —1)! 1/s"
e 1/(s —a)
tnleat /(n — 1)! 1/(s—a)”
cos(at) s/(s? + a?)
sin(at) a/(s? + a?)
cos(at)e (372)%
sin(at)e? (s—b)ﬁ
af(t) +bg(t) aF'(s) + bG(s)
f(at) F(s/a)/a
f(t—a) e " F(s)
e f(t) F(s —a)
F10) sF(s) — f(0)
N f(r)dr F(s)/s
(f*9)®t) = Jo f(t=T)g(r)dr | F(s)G(s)
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Table 2: Some (unilateral) z-transforms

f(t) F(z)
d(t) 1

1 1/(1— 2zt

t 271/ (1 —271)?
at 1/(1 —az™1)
tat az7 /(1 —az"1)?

1—2"! cos(a)
cos(at) 1—2z—1 cos(a)+z—2

1—z"1sin(a)

Sin(at) 1—-22"Tcos(a)+2—2
—bz" ! cos(a
COS(CLt)bt 172b1z—b1 cos(a)J(rb)Qz_2
—bz"lsin(a
Sin(at)bt 1—2blz*l; cos(a)—(l-la)22*2
af(t)+ bg(t) aF(z) + bG(z)
f(t—a) z"F(2)
a' f(t) F(z/a)
(f *9)(t) F(2)G(z)
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