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Definition

1 Qualitative behavior of dynamical systems depend on
parameters. Here we consider 1 parameter u € R

(1 Make parameter dependence explicit :
® x=F(x) — x = F(x, 1)
® x(t+1)=F(x(t)) — x(t+1)=F(x(t),un)
® F:R"*! - R" continuously differentiable (at least C")
1 The system undergoes a bifurcation at y, if there is no
neighborhood V c R of u, such that all systems with 4 € V have
the same qualitative behavior.

1 Same qualitative behavior = there is a continuous coordinate and
time transformation mapping the solutions of one system to the
solutions of the other, and vice versa.

1 Codimension of a bifurcation = number of parameters that must
be varied for the bifurcation to occur.
® Here we consider only bifurcations of codimension 1 (1 € R )



Implicit Function Theorem

Theorem 7.1 (Implicit Function Theorem). Let F: R"™™ — R"™ be a C'-function and suppose that
F(.’l?o, yO) =0 (76)

with xo € R™, yog € R™. Suppose that the n x n Jacobian matrixz of F with respect to x is

"351 (70, %0) 25; (zo,y0) - 25; (70,%0) T
OF gff (70, o) g—fj(il?o,yo) %(xo,yo))
Jo(T0,y0) = 8—33(330,90) = . (7.7)
OF, (. OF, OF,
_31;1 (70,10) 352 (z0,%0) - %(xmyo)_

is non-singular (i.e is invertible). Then there is a neighborhood U of (xg,yo) in R™"T™  a neighborhood
V of yo in R™ and a C- function g : V — R™ such that all solutions of F(x,y) =0 in U are given by

x = g(y). Moreover,

P = ~(5) ) G o) (78)

= —Jy (20, Y0)Jy (0, Yo)-



Application to Continuous Time System

3 x = F(x, n) with F: R**! > R" continuously differentiable (C")

1 Any equilibrium point x satisfies F(x,u) = 0

A Let (i, up) be such that F(xy, ug) =0

1 When can we write ¥ = g(u) in a neighborhood V of u, with g
a C' function?

A Implicit function Theorem:

If J,. (%o, o) = % (X9, 1) is NON singular (i.e., all its eigenvalues

are non-zero), then
® 1 neighborhood U c R? of (i, uo)
® 31 neighborhood V c R of y,
® 31 (unique) C' function g: V - R with X, = g(uy) and such that
F(,u)=0for(kx,up) eU=sx=gu) foru ev

) oF\ "1 _ oF ,_
® Moreover, ﬁ(uo) = —(5) (%o, o) - 5, (X0, Ho)-



Application to Discrete Time System

d x(t + 1) = F(x(t), ) with F: R**! - R" cont. different. (C)

1 Any fixed point x satisfies F(i,u) —x =0

A Let (i, up) be such that F(xy, uy) — o = 0

1 When can we write ¥ = g(u) in a neighborhood V of u, with g
a C! function?

A Implicit function Theorem:

If ], (%o, o) — I, = % (X9, Uo) — I, is non singular (i.e., all the

eigenvalues of /. (k,, 1y) are not equal to 1), then
® 1 neighborhood U c R? of (i, uo)
® 31 neighborhood V c R of y,
® 31 (unique) C' function g: V - R with X, = g(uy) and such that
FG,u) —x=0for(x,p) eU=ik=g(u) foru ev

ag OF -1 oF , _
® Moreover, = (o) = _(a_ln) (%o, o) -+ 5, (X0, Ho)-



Necessary Condition for Bifurcation

1 Implicit equation:
® (CT) Equilibrium point equation: F (i, u) = 0.
® (DT) Fixed point equation F(x,u) — x = 0.

1 If Jacobian matrix (dF/dx) does not have
® (CT) the eigenvalue 0
® (DT) the eigenvalue 1

® then in a neighborhood of (x,, i, ), the equilibrium/fixed points are given
by a continuously differentiable 1-parameter family x(u) with

Z(po) = To
and oz OF\ * OF
a—Z(Mo) = - (@) (To, po) - @(503“@

[ A local bifurcation might however still occurs, if the local
stability of the equilibrium/fixed point changes at u = .

1 If Jacobian matrix (dF/dx) is hyperbolic, i.e., does not have

® (CT) eigenvalues on the imaginary axis
® (DT) eigenvalues on the unit circle

then there is no bifurcation at ug



Simplest Bifurcations

O Bifurcations can only occur if Jacobian matrix (dF/dx) is non-
hyperbolic

1 Continuous- £ -
time system

?

. Discrete-time

e a
N Y




Theorem: Fold or Cusp Bifurcation

d x = F(x, u) with (x,, uy) such that

F(Zo, o) = 0
oF

%(xoaﬂo) = 0
O’ F

(%Q(foauo) 7z 0
OF

a(foyuo) # 0.

[ Then the system undergoes a fold bifurcation (x,, i), i.e. in a
neighborhood of (X, ug)

(i) for pu < po, there are two equilibrium/fixed points, one asymptotically stable, the other unstable,
and for p > po there is none, or vice-versa;

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the system to

its normal form, which is
E(t) = p £ 22(t) (7.21)



Fold Bifurcation: a>0,b >0
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Fold Bifurcation: a>0,b <0

> U



Fold Bifurcation: a<0,b>0
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Fold Bifurcation: a<0,b <0

M<MO - @ - — > X
\ _0
|
Xg{----- ’ W =Ug - 1 > X
|
7 %o
|
I w>Ug - | - > X
- " X0
Wo 0
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Theorem: Transcritical Bifurcation

d x = F(x, u) with (x,, 1) such that

F(EOMLLO) = 0

oF _
8_33(3307“0) = 0

OF

%(EO’HO) = 0

0’F
W(ﬂfo,ﬁbo) 7é 0

82F o 2 azF B 82F B
lauﬁmxo”uo)] B W(xo’ﬂo)a—w(ﬂfoaﬂo) > 0

1 Then the system undergoes a transcritical bifurcation at
(%o, o), i.€., in @ neighborhood of (i, tg)

(i) for p # no, there are two equilibrium/fixed points, one asymptotically stable, the other unstable.
They switch stability at p = po;

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the system to
its normal form, which is

©(t) = pa(t) £ 22 (1) (7.37)
12



Transcritical Bifurcation:a>0,b >0

13



Example: SIS Epidemics

0 2 = BS(OI(E) + yI(£) with S(&) + () = 1.
d LetR=" /y and T = yt . Then we can rewrite the state equation as
(1) =2(0) = RA—I)I(D) +I(x) = =R I*(1) + (R = DI(7)
d F(LR)=-RI?+R-1I > Z—I;(I,R) = —2RI+R -1
d F(LR)=0=1,=0o0rl, = 1—%
3 Z—I:(I,R) = 2RI+R—-1=0 =1, =0;R,=1orl, = 1—R—10;1!20 =1
Q (I, Ry) = (0,1) = F(Iy, Ry) = 0 and g—f(l‘o,Ro) —0
(1 Other conditions:
° g—Z(TO,RO) =-2+I,=0

® .. 0
® .. 0.

3 The system undergoes a transcritical bifurcation at (I, Ry) = (0,1)
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Theorem: Pitchfork Bifurcation (CT)

A x = F(x,u) with F(x,u) = —F(—x, 1) and (X, to) = (0, o) such

that OF
%(07 ILLO) = 0

0*F

0xoL

O F
%(Oyuo) # 0.

1 Then the system undergoes a pitchfork bifurcation at (0, i),
l.e., in a neighborhood of (0, i)

(i) for u < o, the origin is the only equilibrium/fized point and it is asymptotically stable, whereas for
> po the origin is an unstable equilibrium /fixed point, and in addition, there are two asymptotically
stable equilibrium /fized points, or vice-versa (this is called a supercritical pitchfork bifurcation) or for
< po, the origin is an asymptotically stable equilibrium/fixed point and in addition there are two
unstable equilibrium/fixed points, whereas for p > po the origin is the only equilibrium/fixed point and
it is unstable, or vice-versa (this is called a subcritical pitchfork bifurcation);

(07 ,LL()) # 0

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the system to
its mormal form, which is
&(t) = pa(t) £ 23(t) (7.29)
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Theorem: Pitchfork Bifurcation (DT)

A x(t+1) = F(x(t), n) with F(x,u) = —F(—x,u) and (x,, ug) =

0, such that OF
( :u'O) %(O’ﬂo) — 1
0’ F
O3F
%(07 po) # 0.

1 Then the system undergoes a pitchfork bifurcation at (0, i),
l.e., in a neighborhood of (0, i)

(i) for u < o, the origin is the only equilibrium/fized point and it is asymptotically stable, whereas for
> po the origin is an unstable equilibrium /fixed point, and in addition, there are two asymptotically
stable equilibrium /fized points, or vice-versa (this is called a supercritical pitchfork bifurcation) or for
< po, the origin is an asymptotically stable equilibrium/fixed point and in addition there are two
unstable equilibrium/fixed points, whereas for p > po the origin is the only equilibrium/fixed point and
it is unstable, or vice-versa (this is called a subcritical pitchfork bifurcation);

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the system to
its mormal form, which is

2(t+1) = (1 + p)a(t) £ 23() (7.30)
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Pitchfork Bifurcation: a > 0, b > 0 (subcritical)

AF()T, ,u)
7‘/’\'\‘J
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Pitchfork Bifurcation: a>0,b <0
(supercritical)

!

N
Y -
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Simplest Bifurcations

O Bifurcations can only occur if Jacobian matrix (dF/dx) is non-
hyperbolic.

Fold (generic)
Transcritical (symmetry)

4 s , Pitchfork (symmetry)

1 Continuous-
time system

» Fold (generic)
« Transcritical (symmetry)
1 - Pitchfork (symmetry)

. Discrete-time

system (

19



Simplest Bifurcations

O Bifurcations can only occur if Jacobian matrix (dF/dx) is non-
hyperbolic.

« Fold (generic)
« Transcritical (symmetry)
+  Pitchfork (symmetry)

d Continuous-

time system

—_—
0

1 Discrete-time /
system \ , ~ - Flip (period-doubling)

20




Flip Bifurcation

d x(t+ 1) = F(x(t), u) with F: R? - R a C3-function
d Let (i, up) be such that F(xy, uy) = xo and g—i(fo,uo) = —

d We consider directly the normal form F(x,u) = —(1 + p)x + x3

® (X, o) = (0,0)
A FAxp) = FoF)(xu) = -1 +wW[-1+wx £ 2] + [-(1 +@wx £ x°]3
= .=+’ xFA+wR+2u+u®x3 =31+ w?*x>F3(1 + ux” —x°
d Now, F® (%, u) = — F@(—%,u) is odd in ¥ and

o 20,0) = [(1+ 1?2 T3+ W2+ 2u + u)x? + 0(xH]) = 1
o 20200) = 201+ W) + 000 =2
o ZU2(00) = [F6(1 + W2 +2u + u2) + 06D g) = F12

O Therefore, the fixed point at the origin of x(t + 1) = F® (x(t), w)
undergoes a pitchfork bifurcation (subcritical if F(x, u) = —(1 + u)x — x3
and supercritical if F(x, u) = —(1 + pw)x + x3)

21



Remember: Pitchfork Bifurcation
(supercritical)

!
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Flip Bifurcation
x(t+1) = F(x(t),w) = —(1 + wx(t) £ x3(1);
F(0,0) = 0 and 3—5(0,0) — 1.

The fixed point at the origin of x(t + 1) = F®) (x(t), u) undergoes a
pitchfork bifurcation at u = 0 = in a neighborhood of 0, this system has 3
fixed points for u < 0 (or u > 0), and 1 fixed point for u > 0 (resp., u < 0).

Now, a fixed point of x(t + 1) = F® (x(t), p) is either a fixed point or a 2-
periodic solution of the original system x(t + 1) = F(x(t), ).

. . : . OF
Implicit function Theorem: Since 5(0,0) * 1,
® 3 neighborhood U c R? of (0,0)
® 3 neighborhood V c Rof 0
® 3 (unique) C' function g: V - R with g(0) = 0 such that
FGe,u) —x=0for(,p) elU=x=gu)foruev

-1 OF . -1 .
"5, 00 =-(-1-1D)7-0=0.

dg . oF
® Moreover, ey (0) =— (& (0,0) — 1)
® Hence the only fixed point of the original system in neighborhood U of (0,0) is x(u) = 0.

Therefore the other two fixed points of x(t + 1) = F® (x(t), 1) are a 2-
periodic solution of the original system x(t + 1) = F(x(t), ). 23
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Flip Bifurcation

u>0

24



Theorem: Flip Bifurcation

d x(t+ 1) = F(x(t), u) with(x,, 1) such that

OF
%(EOMLLO) = —1
82F 1 OF aQF B
lﬁuax 3 (@) (@)] (To, o) = # 0
1 83 1 82 2
6 Ox 3(:1:0 Mo)+<2a 5 (To, Mo)) =B # 0.

1 Then the system undergoes a flip bifurcation at (x,, i), i.e. in
a neighborhood of (x,, ),

(i) for u < o, there is an asymptotically stable fixed point, whereas for pu > po the fixed point
is unstable, and in addition, there is an asymptotically stable 2-cycle, or vice-versa (this is called
a supercritical flip bifurcation) or for u < pg, there is an asymptotically stable fixed point and an
unstable 2-cycle, whereas for p > o there is only the fixed point and it is unstable, or vice-versa (this
is called a subcritical flip bifurcation);

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the system to
its normal form, which is

r(t+1) = —(14 p)z(t) £ 2°(t). (7.44)

25



Example: Logistic Map

dx(t+ 1) =1— ux?()

1

N T —

v
o6t /1 Tmea.

A I Ty Pt A A AR AR
/ stable fixed point : unstable fixed point| \/ v \/ \/ \/ \/ \/ \/ \/ \/ \/
' stable pe/riod 2 cycle 1

Mo -
-0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
u
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Example: Logistic Map

3 x(t+1) = 1-ux3(t)

du=0.6

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

1t

1 o

i /\/\/\/\/\

VAR

lambda = 0.6 .

15

20

25
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Example: Logistic Map

3 x(t+1) = 1-ux3(t)
du=0.9

YTy

WY




Example: Logistic Map

A A A AL

stable fixed point unstable fixed point

A

stable period 2 cycle

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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Simplest Bifurcations

O Bifurcations can only occur if Jacobian matrix (dF/dx) is non-
hyperbolic

1 Continuous- s
time system ’
— e >
0
_j(U
« Fold (generic) * Andronov-Hopf (generic)

« Transcritical (symmetry)
« Pitchfork (symmetry)

30
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Andronov-Hopf Bifurcation

X1 = pxy — xp £ x1(xf + x3)
Xy = X1 + pxy + x5(x7 + x3)
x = (0,0) is an equilibrium point for all u € R

o= 7]

x = (0,0) is a hyperbolic equilibrium point iff u # 0.

Let (i, o) = ((0,0),0). By the implicit function theorem, x = (0,0) is the
only equilibrium point in neighborhood U of (i, ug) = ((0,0), 0).

From cartesian to polar coordinates

r=.x%+ x2

@ = arctan (Q)

X1
Equation in polar coordinates (7, ¢)
r=ur+7r3

¢ =1

31



Andronov-Hopf Bifurcation

3 X = pxg — xp +x; (6 + x3)
Xy = X1 + pxy £ x,(xf + x3)
1 Equation in polar coordinates (7, ¢)
7= pur+1r3
=1
1 Normal form of a pitchfork bifurcation for r:

® Subcritical for 7 = ur + r3
® Supercritical for 7 = ur — r3
1 Equilibrium points
® r=20
® 7 =./+u (depending on the sign of u)

32



Andronov-Hopf Bifurcation (supercritical)

33



Andronov-Hopf Bifurcation (subcritical)

A —_
r * x2 Ax2

w< w>

;
/
/
7
(]
V
Y
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Theorem: Andronov-Hopf Bifurcation

3 x = F(x, n) with (X, o) such that F(xg, ug) = 0 and (xo, Up) has

imaginary e-values tjw, . Let A(u), A*(u) be the e-values of
g—i(f(u),u) in the neighborhood of (i, ug). If

® a complex non-degeneracy condition is satisfied,
® and M(uo) £0

d Then the systgm undergoes an Andronov-Hopf bifurcation at

(o, o), i.€. in @ neighborhood of (x,, ty)

(i) for p < pg, there is an asymptotically stable equilibrium point T(u), whereas for p > po the equi-
librium point T(u) becomes unstable, and in addition, there is a stable periodic solution, or vice-versa
(this is called a supercritical Andronov-Hopf bifurcation) or for p < po, there is an asymptotically
stable equilibrium point T(u) and an unstable periodic solution, whereas for p > ug there is only the
equilibrium point T(w) and it is unstable, or vice-versa (this is called a subcritical Andronov-Hopf
bifurcation );

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the system to
its normal form, which s

T = ,uxl—afgzl:xl(x%—kxg)
Ty = x1-|—,um2:|:x2(a;%—|—w§)

(iii) the period of the periodic solution is a differentiable function T () of u, with T'(uo) = 27 /wy. 35



X, =X, 3
X, =—x, — Ax. =1)x, 2
07.=-0.3 |

Van der Pol Oscillator
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X =X :
X, =—x, — Ax. =1)x, .
a1=0.3 il

Van der Pol Oscillator
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dx, =1—(b+ Dx; + x%x,
H 5(2 = bx1 _X%XZ

4 b=1.9

Brusselator

3

b=1.9

2.5

< 1.5

0.5

XN
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1.8



Brusselator

dx, =1—(b+ Dx; + x%x,
H 5(2 = bx1 _X%XZ

b=2.1

d b=21
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