

Bifurcations

Patrick Thiran (with Martin Hasler)
EPFL

CH-1015 Lausanne

Patrick.Thiran@epfl.ch

<http://lcawww.epfl.ch>

Definition

- Qualitative behavior of dynamical systems depend on parameters. Here we consider 1 parameter $\mu \in \mathbb{R}$
- Make parameter dependence explicit :
 - $\dot{x} = F(x) \rightarrow \dot{x} = F(x, \mu)$
 - $x(t+1) = F(x(t)) \rightarrow x(t+1) = F(x(t), \mu)$
 - $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^n$ continuously differentiable (at least C^1)
- The system undergoes a bifurcation at μ_0 if there is no neighborhood $\mathcal{V} \subset \mathbb{R}$ of μ_0 such that all systems with $\mu \in \mathcal{V}$ have the same qualitative behavior.
- Same qualitative behavior \equiv there is a continuous coordinate and time transformation mapping the solutions of one system to the solutions of the other, and vice versa.
- Codimension of a bifurcation = number of parameters that must be varied for the bifurcation to occur.
 - Here we consider only bifurcations of codimension 1 ($\mu \in \mathbb{R}$)

Implicit Function Theorem

Theorem 7.1 (Implicit Function Theorem). *Let $F : \mathbb{R}^{n+m} \rightarrow \mathbb{R}^n$ be a C^1 -function and suppose that*

$$F(x_0, y_0) = 0 \quad (7.6)$$

with $x_0 \in \mathbb{R}^n$, $y_0 \in \mathbb{R}^m$. Suppose that the $n \times n$ Jacobian matrix of F with respect to x is

$$J_x(x_0, y_0) = \frac{\partial F}{\partial x}(x_0, y_0) = \begin{bmatrix} \frac{\partial F_1}{\partial x_1}(x_0, y_0) & \frac{\partial F_1}{\partial x_2}(x_0, y_0) & \dots & \frac{\partial F_1}{\partial x_n}(x_0, y_0) \\ \frac{\partial F_2}{\partial x_1}(x_0, y_0) & \frac{\partial F_2}{\partial x_2}(x_0, y_0) & \dots & \frac{\partial F_2}{\partial x_n}(x_0, y_0) \\ \vdots & & \ddots & \\ \frac{\partial F_n}{\partial x_1}(x_0, y_0) & \frac{\partial F_n}{\partial x_2}(x_0, y_0) & \dots & \frac{\partial F_n}{\partial x_n}(x_0, y_0) \end{bmatrix} \quad (7.7)$$

is non-singular (i.e is invertible). Then there is a neighborhood \mathcal{U} of (x_0, y_0) in \mathbb{R}^{n+m} , a neighborhood \mathcal{V} of y_0 in \mathbb{R}^m and a C^1 -function $g : \mathcal{V} \rightarrow \mathbb{R}^n$ such that all solutions of $F(x, y) = 0$ in \mathcal{U} are given by $x = g(y)$. Moreover,

$$\begin{aligned} \frac{\partial g}{\partial y}(y_0) &= - \left(\frac{\partial F}{\partial x} \right)^{-1}(x_0, y_0) \cdot \frac{\partial F}{\partial y}(x_0, y_0) \\ &= -J_x^{-1}(x_0, y_0)J_y(x_0, y_0). \end{aligned} \quad (7.8)$$

Application to Continuous Time System

- ◻ $\dot{x} = F(x, \mu)$ with $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^n$ continuously differentiable (C^1)
- ◻ Any equilibrium point \bar{x} satisfies $F(\bar{x}, \mu) = 0$
- ◻ Let (\bar{x}_0, μ_0) be such that $F(\bar{x}_0, \mu_0) = 0$
- ◻ When can we write $\bar{x} = g(\mu)$ in a neighborhood \mathcal{V} of μ_0 with g a C^1 function?
- ◻ Implicit function Theorem:

If $J_x(\bar{x}_0, \mu_0) = \frac{\partial F}{\partial x}(\bar{x}_0, \mu_0)$ is non singular (i.e., all its eigenvalues are non-zero), then

- \exists neighborhood $\mathcal{U} \subset \mathbb{R}^2$ of (\bar{x}_0, μ_0)
- \exists neighborhood $\mathcal{V} \subset \mathbb{R}$ of μ_0
- \exists (unique) C^1 function $g: \mathcal{V} \rightarrow \mathbb{R}$ with $\bar{x}_0 = g(\mu_0)$ and such that

$$F(\bar{x}, \mu) = 0 \text{ for } (\bar{x}, \mu) \in \mathcal{U} \Leftrightarrow \bar{x} = g(\mu) \text{ for } \mu \in \mathcal{V}$$

- Moreover, $\frac{\partial g}{\partial \mu}(\mu_0) = - \left(\frac{\partial F}{\partial x} \right)^{-1}(\bar{x}_0, \mu_0) \cdot \frac{\partial F}{\partial \mu}(\bar{x}_0, \mu_0)$.

Application to Discrete Time System

- $x(t + 1) = F(x(t), \mu)$ with $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^n$ cont. different. (C^1)
- Any fixed point \bar{x} satisfies $F(\bar{x}, \mu) - \bar{x} = 0$
- Let (\bar{x}_0, μ_0) be such that $F(\bar{x}_0, \mu_0) - \bar{x}_0 = 0$
- When can we write $\bar{x} = g(\mu)$ in a neighborhood \mathcal{V} of μ_0 with g a C^1 function?
- Implicit function Theorem:

If $J_x(\bar{x}_0, \mu_0) - I_n = \frac{\partial F}{\partial x}(\bar{x}_0, \mu_0) - I_n$ is non singular (i.e., all the eigenvalues of $J_x(\bar{x}_0, \mu_0)$ are not equal to 1), then

- \exists neighborhood $\mathcal{U} \subset \mathbb{R}^2$ of (\bar{x}_0, μ_0)
- \exists neighborhood $\mathcal{V} \subset \mathbb{R}$ of μ_0
- \exists (unique) C^1 function $g: \mathcal{V} \rightarrow \mathbb{R}$ with $\bar{x}_0 = g(\mu_0)$ and such that

$$F(\bar{x}, \mu) - \bar{x} = 0 \text{ for } (\bar{x}, \mu) \in \mathcal{U} \Leftrightarrow \bar{x} = g(\mu) \text{ for } \mu \in \mathcal{V}$$

- Moreover, $\frac{\partial g}{\partial \mu}(\mu_0) = - \left(\frac{\partial F}{\partial x}(\bar{x}_0, \mu_0) - I_n \right)^{-1} \cdot \frac{\partial F}{\partial \mu}(\bar{x}_0, \mu_0)$.

Necessary Condition for Bifurcation

◻ Implicit equation:

- (CT) Equilibrium point equation: $F(\bar{x}, \mu) = 0$.
- (DT) Fixed point equation $F(\bar{x}, \mu) - \bar{x} = 0$.

◻ If Jacobian matrix $(\partial F / \partial x)$ does not have

- (CT) the eigenvalue 0
- (DT) the eigenvalue 1
- then in a neighborhood of (\bar{x}_0, μ_0) , the equilibrium/fixed points are given by a continuously differentiable 1-parameter family $\bar{x}(\mu)$ with

$$\bar{x}(\mu_0) = \bar{x}_0$$

and
$$\frac{\partial \bar{x}}{\partial \mu}(\mu_0) = - \left(\frac{\partial F}{\partial x} \right)^{-1}(\bar{x}_0, \mu_0) \cdot \frac{\partial F}{\partial \mu}(\bar{x}_0, \mu_0).$$

◻ A local bifurcation might however still occurs, if the local stability of the equilibrium/fixed point changes at $\mu = \mu_0$.

◻ If Jacobian matrix $(\partial F / \partial x)$ is hyperbolic, i.e., does not have

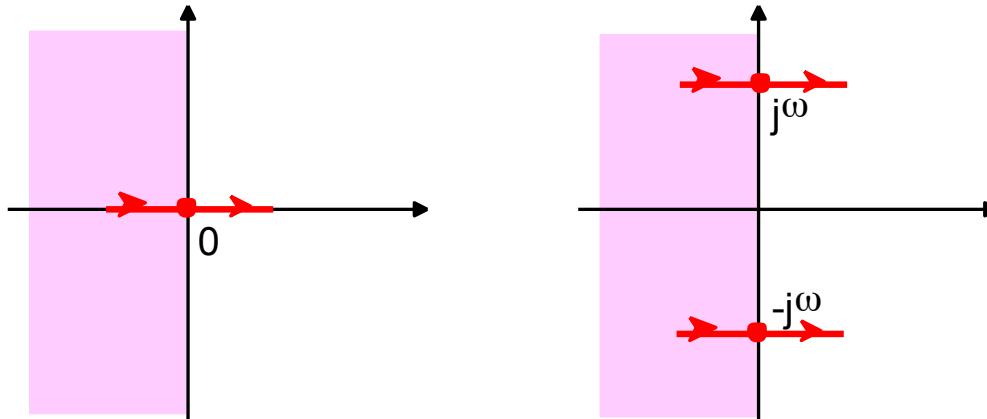
- (CT) eigenvalues on the imaginary axis
- (DT) eigenvalues on the unit circle

then there is no bifurcation at μ_0 .

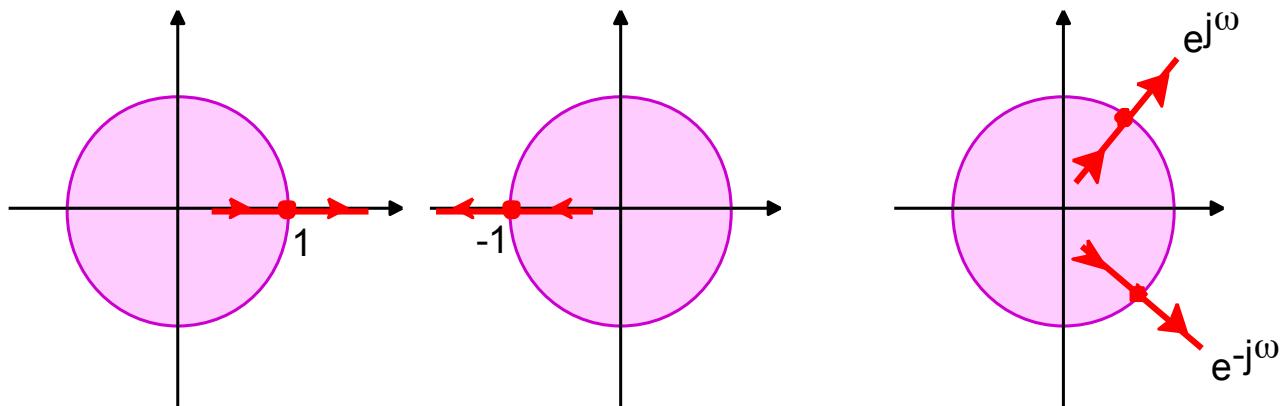
Simplest Bifurcations

- ❑ Bifurcations can only occur if Jacobian matrix ($\partial F/\partial x$) is non-hyperbolic

- ❑ Continuous-time system



- ❑ Discrete-time system



Theorem: Fold or Cusp Bifurcation

□ $\dot{x} = F(x, \mu)$ with (\bar{x}_0, μ_0) such that

$$\begin{aligned} F(\bar{x}_0, \mu_0) &= 0 \\ \frac{\partial F}{\partial x}(\bar{x}_0, \mu_0) &= 0 \\ \frac{\partial^2 F}{\partial x^2}(\bar{x}_0, \mu_0) &\neq 0 \\ \frac{\partial F}{\partial \mu}(\bar{x}_0, \mu_0) &\neq 0. \end{aligned}$$

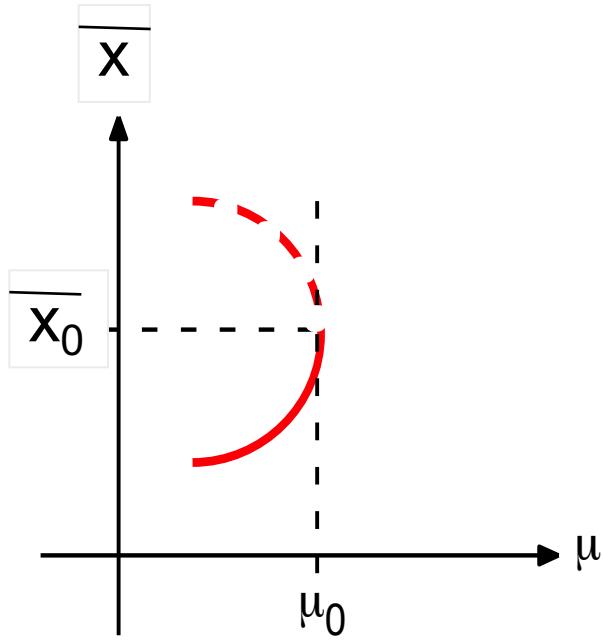
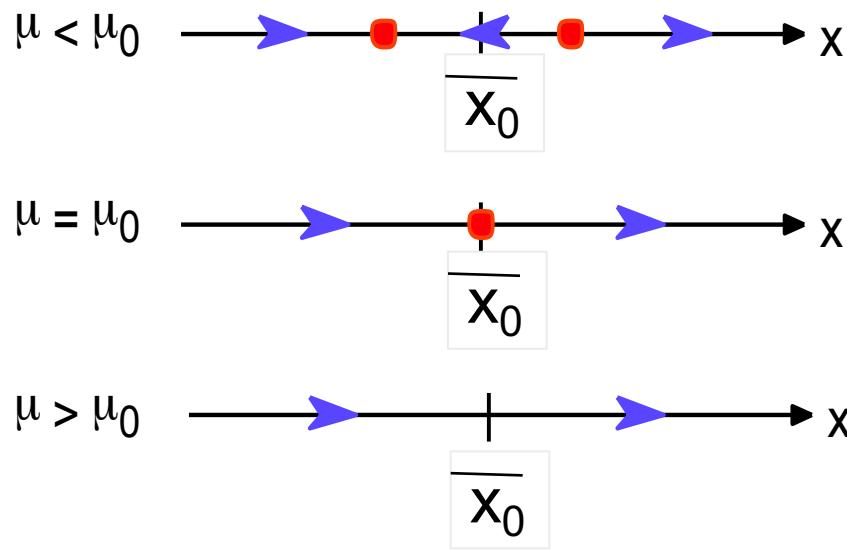
□ Then the system undergoes a fold bifurcation (\bar{x}_0, μ_0) , i.e. in a neighborhood of (\bar{x}_0, μ_0)

(i) for $\mu < \mu_0$, there are two equilibrium/fixed points, one asymptotically stable, the other unstable, and for $\mu > \mu_0$ there is none, or vice-versa;

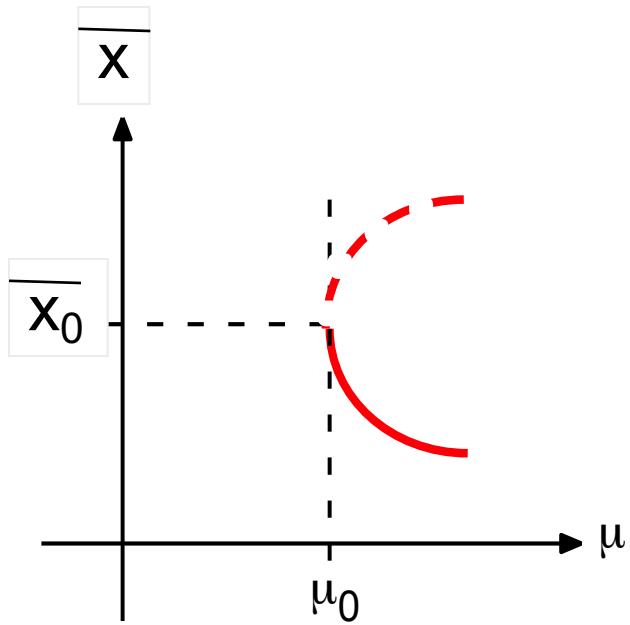
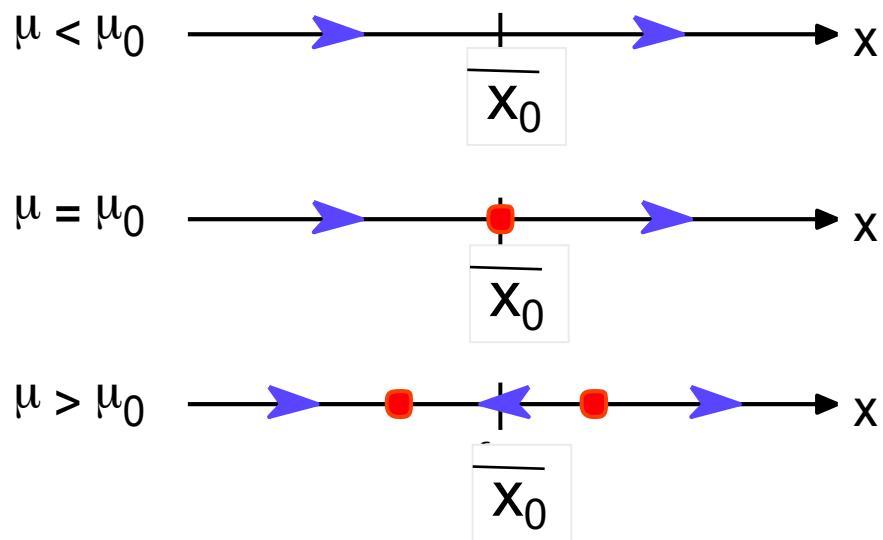
(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the system to its normal form, which is

$$\dot{x}(t) = \mu \pm x^2(t) \tag{7.21}$$

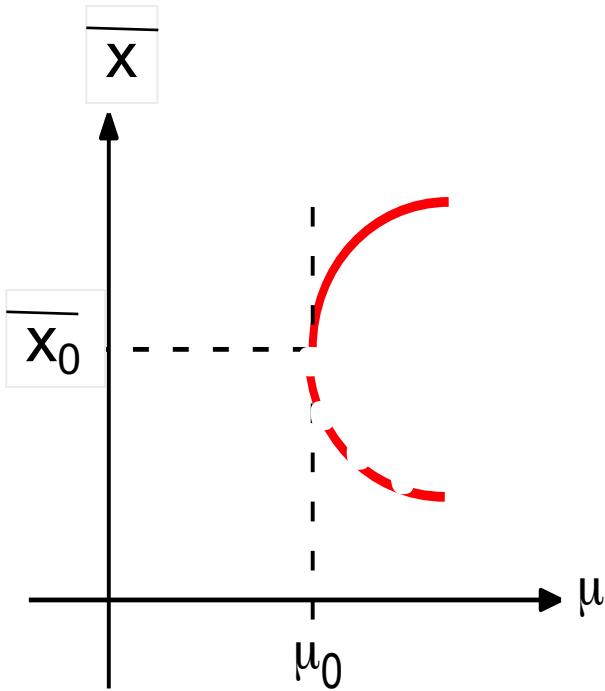
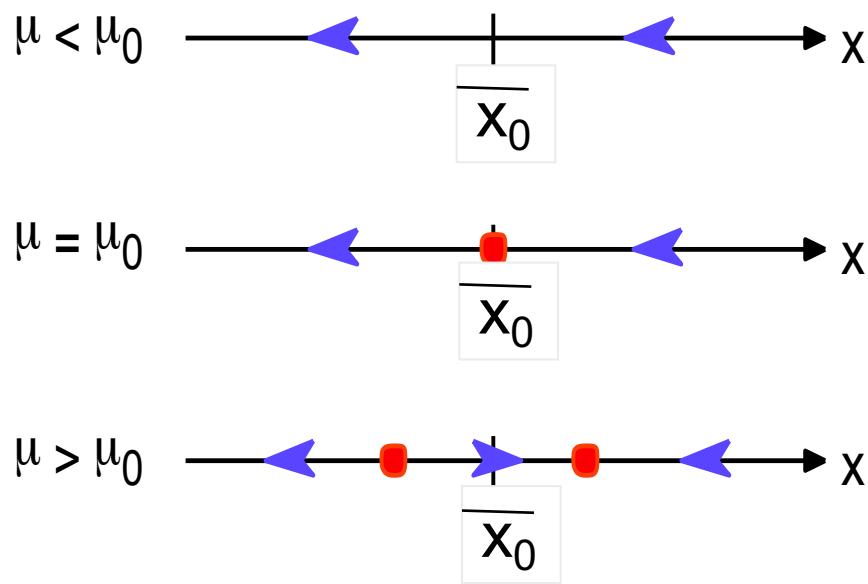
Fold Bifurcation: $a > 0, b > 0$



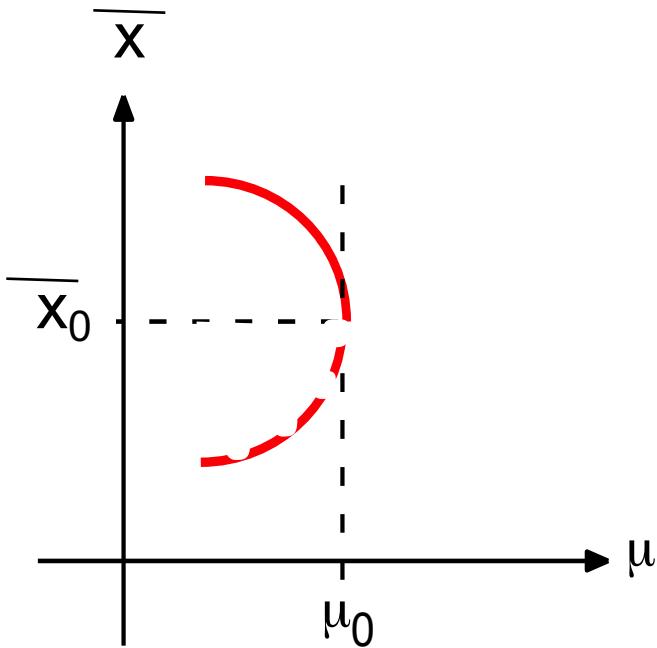
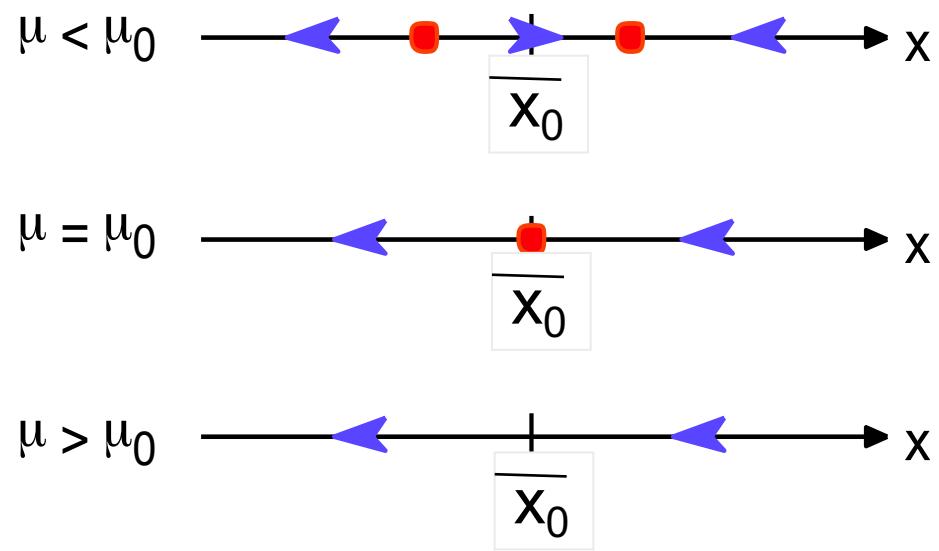
Fold Bifurcation: $a > 0, b < 0$



Fold Bifurcation: $a < 0, b > 0$



Fold Bifurcation: $a < 0, b < 0$



Theorem: Transcritical Bifurcation

□ $\dot{x} = F(x, \mu)$ with (\bar{x}_0, μ_0) such that

$$\begin{aligned} F(\bar{x}_0, \mu_0) &= 0 \\ \frac{\partial F}{\partial x}(\bar{x}_0, \mu_0) &= 0 \\ \frac{\partial F}{\partial \mu}(\bar{x}_0, \mu_0) &= 0 \\ \frac{\partial^2 F}{\partial x^2}(\bar{x}_0, \mu_0) &\neq 0 \\ \left[\frac{\partial^2 F}{\partial \mu \partial x} \bar{x}_0, \mu_0 \right]^2 - \frac{\partial^2 F}{\partial x^2}(\bar{x}_0, \mu_0) \frac{\partial^2 F}{\partial \mu^2}(\bar{x}_0, \mu_0) &> 0 \end{aligned}$$

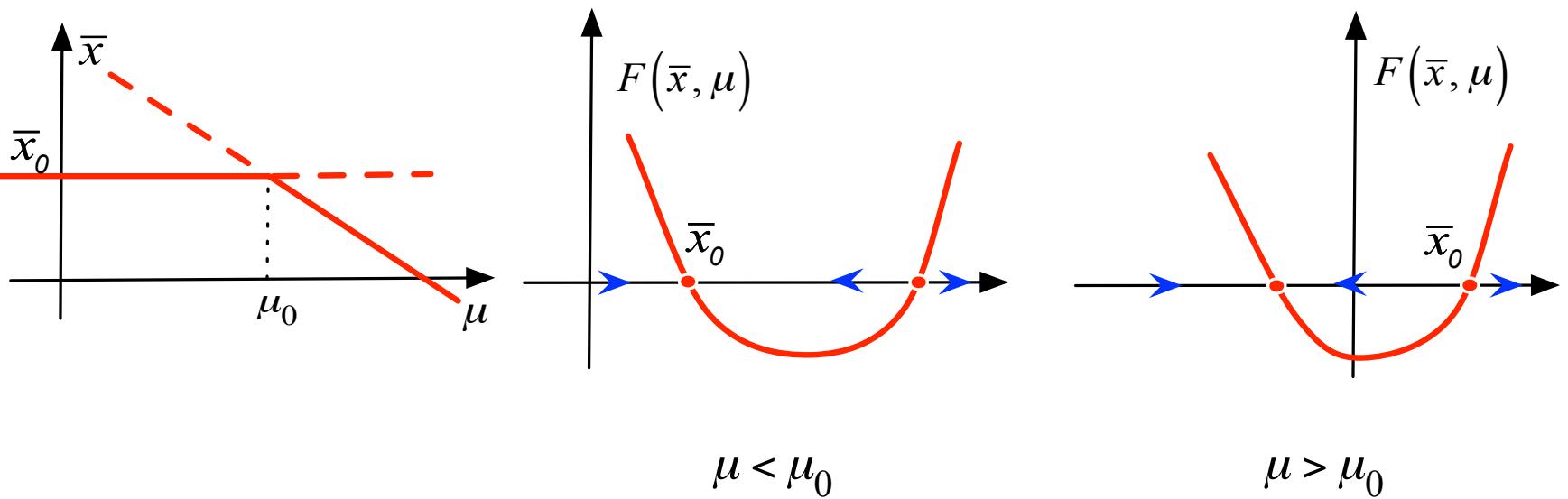
□ Then the system undergoes a transcritical bifurcation at (\bar{x}_0, μ_0) , i.e., in a neighborhood of (\bar{x}_0, μ_0)

(i) for $\mu \neq \mu_0$, there are two equilibrium/fixed points, one asymptotically stable, the other unstable. They switch stability at $\mu = \mu_0$;

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the system to its normal form, which is

$$\dot{x}(t) = \mu x(t) \pm x^2(t) \tag{7.37}$$

Transcritical Bifurcation: $a > 0, b > 0$



$$\mu < \mu_0$$

$$\mu > \mu_0$$

Example: SIS Epidemics

- ◻ $\frac{dI}{dt} = \beta S(t)I(t) + \gamma I(t)$ with $S(t) + I(t) = 1$.
- ◻ Let $R = \beta/\gamma$ and $\tau = \gamma t$. Then we can rewrite the state equation as

$$\dot{I}(\tau) = \frac{dI}{d\tau}(\tau) = R(1 - I(\tau))I(\tau) + I(\tau) = -R I^2(\tau) + (R - 1)I(\tau)$$

- ◻ $F(I, R) = -R I^2 + (R - 1)I \Rightarrow \frac{\partial F}{\partial I}(I, R) = -2RI + R - 1$
- ◻ $F(I, R) = 0 \Rightarrow \bar{I}_h = 0$ or $\bar{I}_e = 1 - \frac{1}{R}$
- ◻ $\frac{\partial F}{\partial I}(I, R) = -2RI + R - 1 = 0 \Rightarrow \bar{I}_h = 0; R_0 = 1$ or $\bar{I}_e = 1 - \frac{1}{R_0}; R_0 = 1$
- ◻ $(\bar{I}_0, R_0) = (0, 1) \Rightarrow F(\bar{I}_0, R_0) = 0$ and $\frac{\partial F}{\partial I}(\bar{I}_0, R_0) = 0$
- ◻ Other conditions:
 - $\frac{\partial F}{\partial \mu}(\bar{I}_0, R_0) = -\bar{I}_0^2 + \bar{I}_0 = 0$
 - $\dots \neq 0$
 - $\dots \neq 0$.
- ◻ The system undergoes a transcritical bifurcation at $(\bar{I}_0, R_0) = (0, 1)$

Theorem: Pitchfork Bifurcation (CT)

- $\dot{x} = F(x, \mu)$ with $F(x, \mu) = -F(-x, \mu)$ and $(\bar{x}_0, \mu_0) = (0, \mu_0)$ such that

$$\frac{\partial F}{\partial x}(0, \mu_0) = 0$$

$$\frac{\partial^2 F}{\partial x \partial \mu}(0, \mu_0) \neq 0$$

$$\frac{\partial^3 F}{\partial x^3}(0, \mu_0) \neq 0.$$

- Then the system undergoes a pitchfork bifurcation at $(0, \mu_0)$, i.e., in a neighborhood of $(0, \mu_0)$

(i) for $\mu < \mu_0$, the origin is the only equilibrium/fixed point and it is asymptotically stable, whereas for $\mu > \mu_0$ the origin is an unstable equilibrium/fixed point, and in addition, there are two asymptotically stable equilibrium/fixed points, or vice-versa (this is called a supercritical pitchfork bifurcation) or for $\mu < \mu_0$, the origin is an asymptotically stable equilibrium/fixed point and in addition there are two unstable equilibrium/fixed points, whereas for $\mu > \mu_0$ the origin is the only equilibrium/fixed point and it is unstable, or vice-versa (this is called a subcritical pitchfork bifurcation);

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the system to its normal form, which is

$$\dot{x}(t) = \mu x(t) \pm x^3(t) \quad (7.29)$$

Theorem: Pitchfork Bifurcation (DT)

- $x(t + 1) = F(x(t), \mu)$ with $F(x, \mu) = -F(-x, \mu)$ and $(\bar{x}_0, \mu_0) = (0, \mu_0)$ such that

$$\begin{aligned}\frac{\partial F}{\partial x}(0, \mu_0) &= 1 \\ \frac{\partial^2 F}{\partial x \partial \mu}(0, \mu_0) &\neq 0 \\ \frac{\partial^3 F}{\partial x^3}(0, \mu_0) &\neq 0.\end{aligned}$$

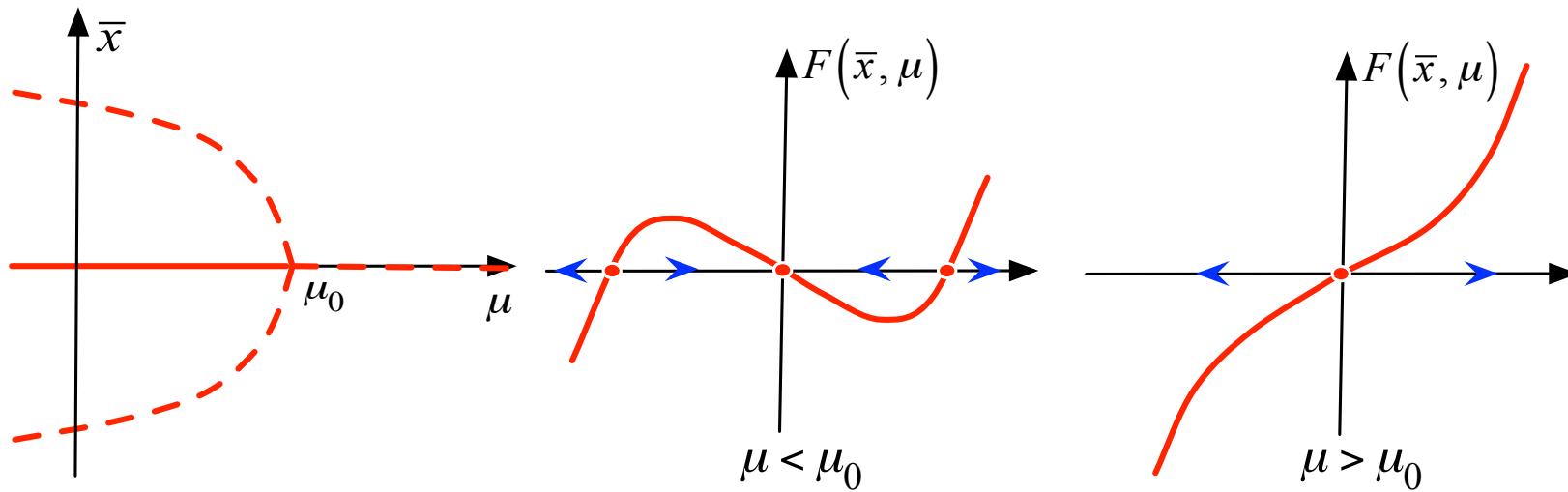
- Then the system undergoes a pitchfork bifurcation at $(0, \mu_0)$, i.e., in a neighborhood of $(0, \mu_0)$

(i) for $\mu < \mu_0$, the origin is the only equilibrium/fixed point and it is asymptotically stable, whereas for $\mu > \mu_0$ the origin is an unstable equilibrium/fixed point, and in addition, there are two asymptotically stable equilibrium/fixed points, or vice-versa (this is called a supercritical pitchfork bifurcation) or for $\mu < \mu_0$, the origin is an asymptotically stable equilibrium/fixed point and in addition there are two unstable equilibrium/fixed points, whereas for $\mu > \mu_0$ the origin is the only equilibrium/fixed point and it is unstable, or vice-versa (this is called a subcritical pitchfork bifurcation);

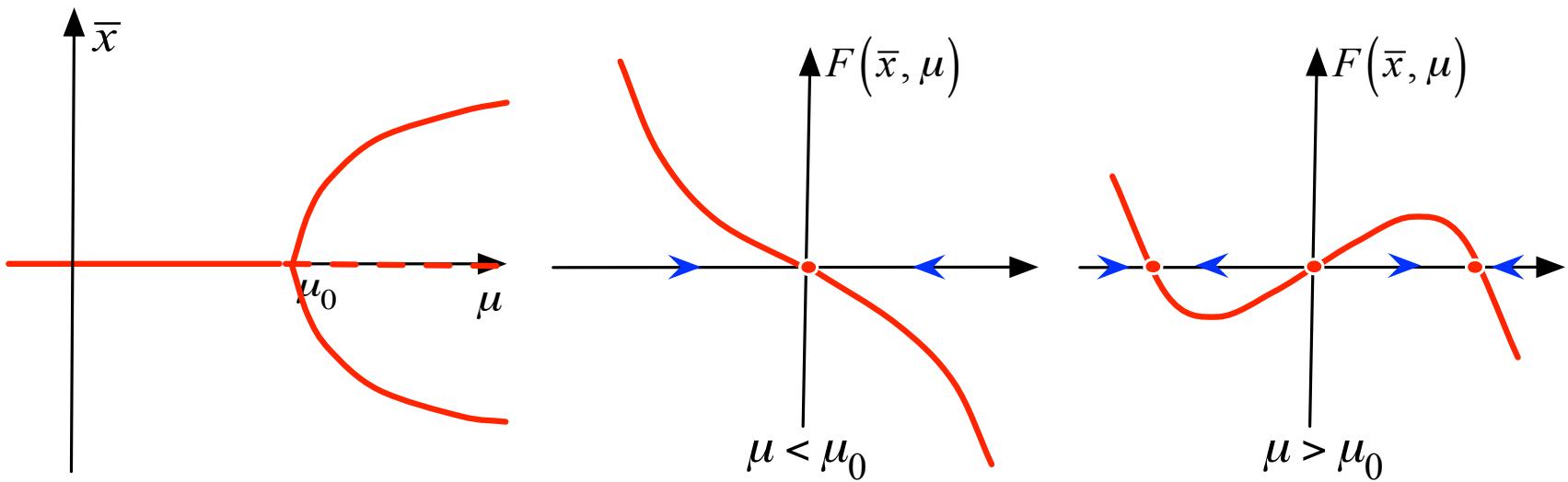
(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the system to its normal form, which is

$$x(t + 1) = (1 + \mu)x(t) \pm x^3(t) \quad (7.30)$$

Pitchfork Bifurcation: $a > 0, b > 0$ (subcritical)



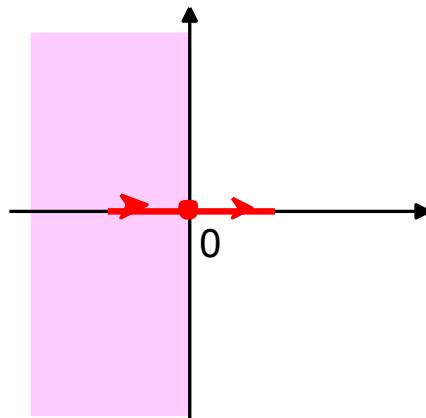
Pitchfork Bifurcation: $a > 0, b < 0$ (supercritical)



Simplest Bifurcations

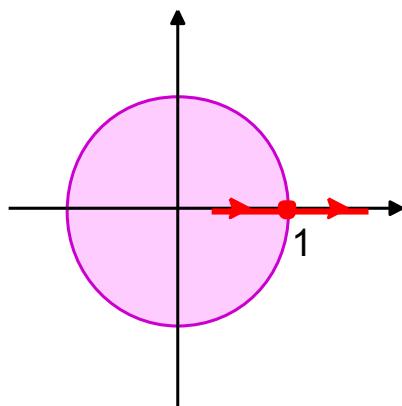
- ❑ Bifurcations can only occur if Jacobian matrix ($\partial F/\partial x$) is non-hyperbolic.

- ❑ Continuous-time system



- Fold (generic)
- Transcritical (symmetry)
- Pitchfork (symmetry)

- ❑ Discrete-time system

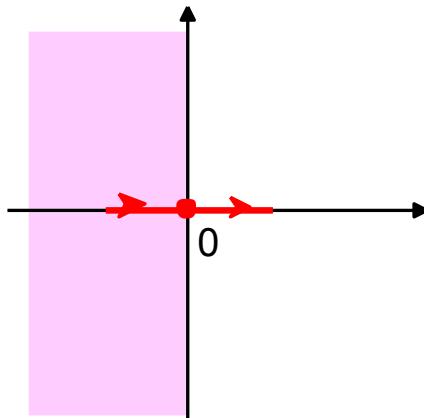


- Fold (generic)
- Transcritical (symmetry)
- Pitchfork (symmetry)

Simplest Bifurcations

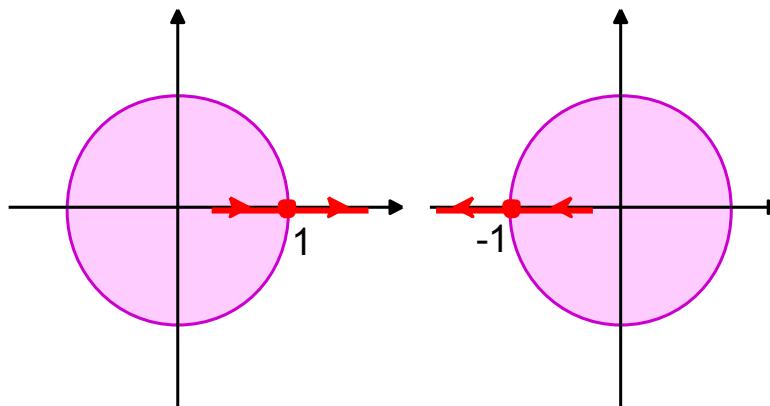
- ❑ Bifurcations can only occur if Jacobian matrix ($\partial F/\partial x$) is non-hyperbolic.

- ❑ Continuous-time system



- Fold (generic)
- Transcritical (symmetry)
- Pitchfork (symmetry)

- ❑ Discrete-time system

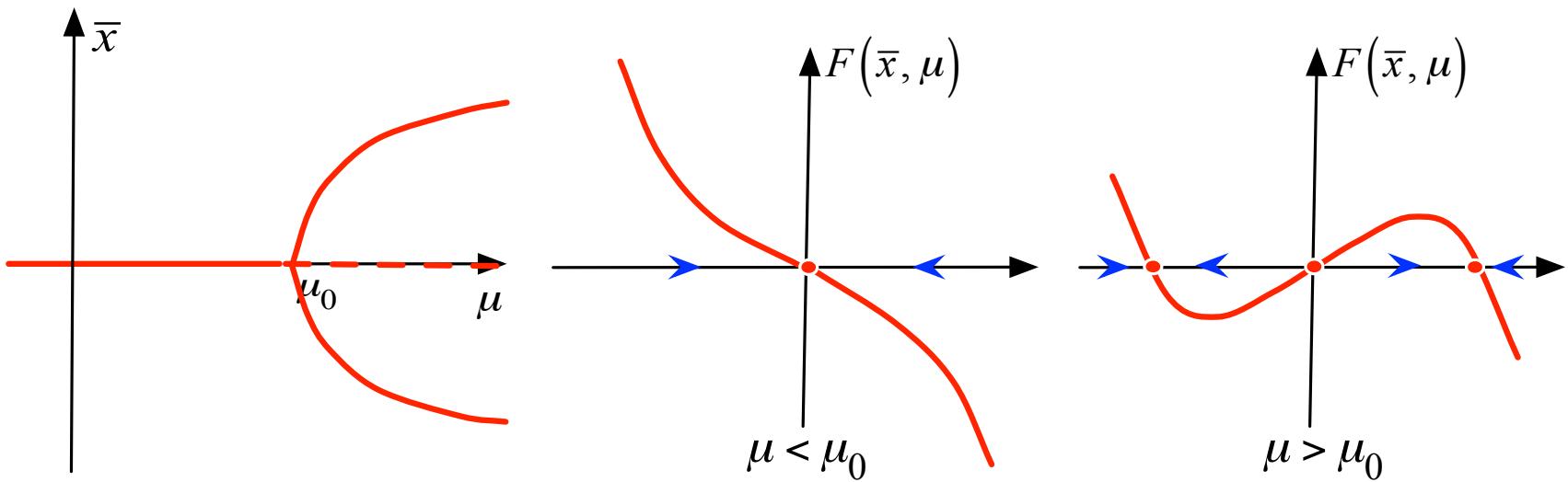


- Flip (period-doubling)

Flip Bifurcation

- $x(t+1) = F(x(t), \mu)$ with $F: \mathbb{R}^2 \rightarrow \mathbb{R}$ a C^3 -function
- Let (\bar{x}_0, μ_0) be such that $F(\bar{x}_0, \mu_0) = \bar{x}_0$ and $\frac{\partial F}{\partial x}(\bar{x}_0, \mu_0) = -1$
- We consider directly the normal form $F(x, \mu) = -(1 + \mu)x \pm x^3$
 - $(\bar{x}_0, \mu_0) = (0, 0)$
- $F^{(2)}(x, \mu) = (F \circ F)(x, \mu) = -(1 + \mu)[-(1 + \mu)x \pm x^3] \pm [-(1 + \mu)x \pm x^3]^3$
 $= \dots = (1 + \mu)^2 x \mp (1 + \mu)(2 + 2\mu + \mu^2)x^3 - 3(1 + \mu)^2 x^5 \mp 3(1 + \mu)x^7 - x^9$
- Now, $F^{(2)}(\bar{x}, \mu) = -F^{(2)}(-\bar{x}, \mu)$ is odd in \bar{x} and
 - $\frac{\partial F^{(2)}}{\partial x}(0, 0) = [(1 + \mu)^2 \mp 3(1 + \mu)(2 + 2\mu + \mu^2)x^2 + O(x^4)]_{(0, 0)} = 1$
 - $\frac{\partial^2 F^{(2)}}{\partial x \partial \mu}(0, 0) = [2(1 + \mu) + O(x^2)]_{(0, 0)} = 2$
 - $\frac{\partial^3 F^{(2)}}{\partial x^3}(0, 0) = [\mp 6(1 + \mu)(2 + 2\mu + \mu^2) + O(x^2)]_{(0, 0)} = \mp 12$
- Therefore, the fixed point at the origin of $x(t+1) = F^{(2)}(x(t), \mu)$ undergoes a pitchfork bifurcation (subcritical if $F(x, \mu) = -(1 + \mu)x - x^3$ and supercritical if $F(x, \mu) = -(1 + \mu)x + x^3$)

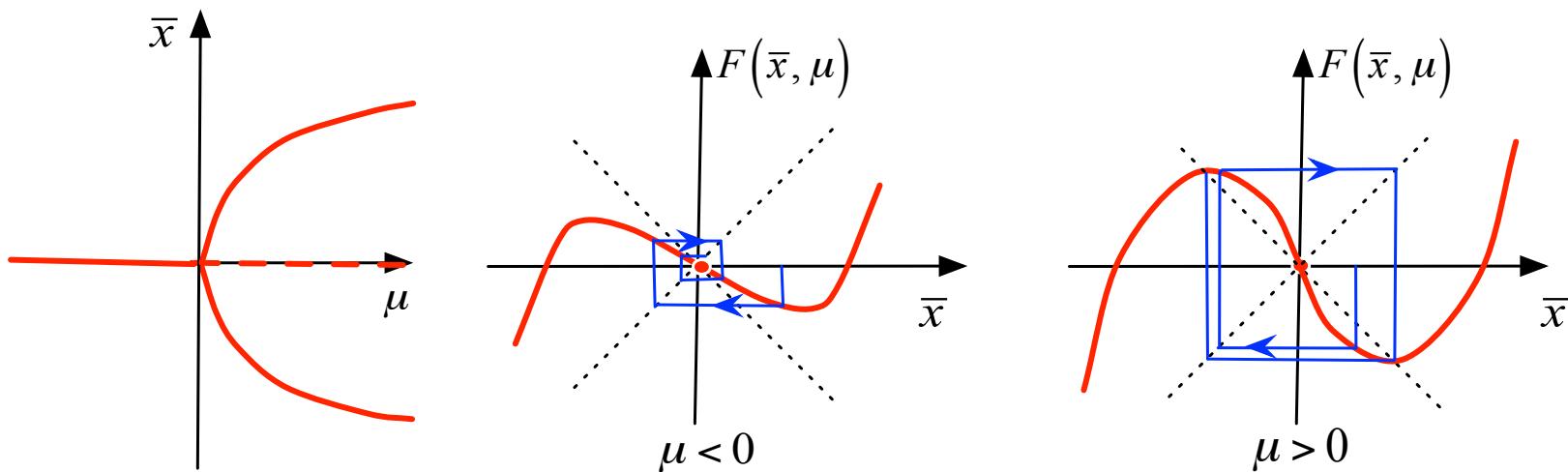
Remember: Pitchfork Bifurcation (supercritical)



Flip Bifurcation

- $x(t+1) = F(x(t), \mu) = -(1 + \mu)x(t) \pm x^3(t);$
- $F(0,0) = 0$ and $\frac{\partial F}{\partial x}(0,0) = -1.$
- The fixed point at the origin of $x(t+1) = F^{(2)}(x(t), \mu)$ undergoes a pitchfork bifurcation at $\mu = 0 \Rightarrow$ in a neighborhood of 0, this system has 3 fixed points for $\mu < 0$ (or $\mu > 0$), and 1 fixed point for $\mu > 0$ (resp., $\mu < 0$).
- Now, a fixed point of $x(t+1) = F^{(2)}(x(t), \mu)$ is either a fixed point or a 2-periodic solution of the original system $x(t+1) = F(x(t), \mu).$
- Implicit function Theorem: Since $\frac{\partial F}{\partial x}(0,0) \neq 1,$
 - \exists neighborhood $\mathcal{U} \subset \mathbb{R}^2$ of $(0,0)$
 - \exists neighborhood $\mathcal{V} \subset \mathbb{R}$ of 0
 - \exists (unique) C^1 function $g: \mathcal{V} \rightarrow \mathbb{R}$ with $g(0) = 0$ such that
$$F(\bar{x}, \mu) - \bar{x} = 0 \text{ for } (\bar{x}, \mu) \in \mathcal{U} \Leftrightarrow \bar{x} = g(\mu) \text{ for } \mu \in \mathcal{V}$$
 - Moreover, $\frac{\partial g}{\partial \mu}(0) = -\left(\frac{\partial F}{\partial x}(0,0) - 1\right)^{-1} \cdot \frac{\partial F}{\partial \mu}(0,0) = -(-1 - 1)^{-1} \cdot 0 = 0.$
 - Hence the only fixed point of the original system in neighborhood \mathcal{U} of $(0,0)$ is $\bar{x}(\mu) = 0.$
- Therefore the other two fixed points of $x(t+1) = F^{(2)}(x(t), \mu)$ are a 2-periodic solution of the original system $x(t+1) = F(x(t), \mu).$

Flip Bifurcation



Theorem: Flip Bifurcation

□ $x(t + 1) = F(x(t), \mu)$ with (\bar{x}_0, μ_0) such that

$$\begin{aligned} F(\bar{x}_0, \mu_0) &= \bar{x}_0 \\ \frac{\partial F}{\partial x}(\bar{x}_0, \mu_0) &= -1 \end{aligned}$$

$$\left[\frac{\partial^2 F}{\partial \mu \partial x} + \frac{1}{2} \left(\frac{\partial F}{\partial \mu} \right) \left(\frac{\partial^2 F}{\partial x^2} \right) \right] (\bar{x}_0, \mu_0) = \alpha \neq 0$$

$$\frac{1}{6} \frac{\partial^3 F}{\partial x^3}(\bar{x}_0, \mu_0) + \left(\frac{1}{2} \frac{\partial^2 F}{\partial x^2}(\bar{x}_0, \mu_0) \right)^2 = \beta \neq 0.$$

□ Then the system undergoes a flip bifurcation at (\bar{x}_0, μ_0) , i.e. in a neighborhood of (\bar{x}_0, μ_0) ,

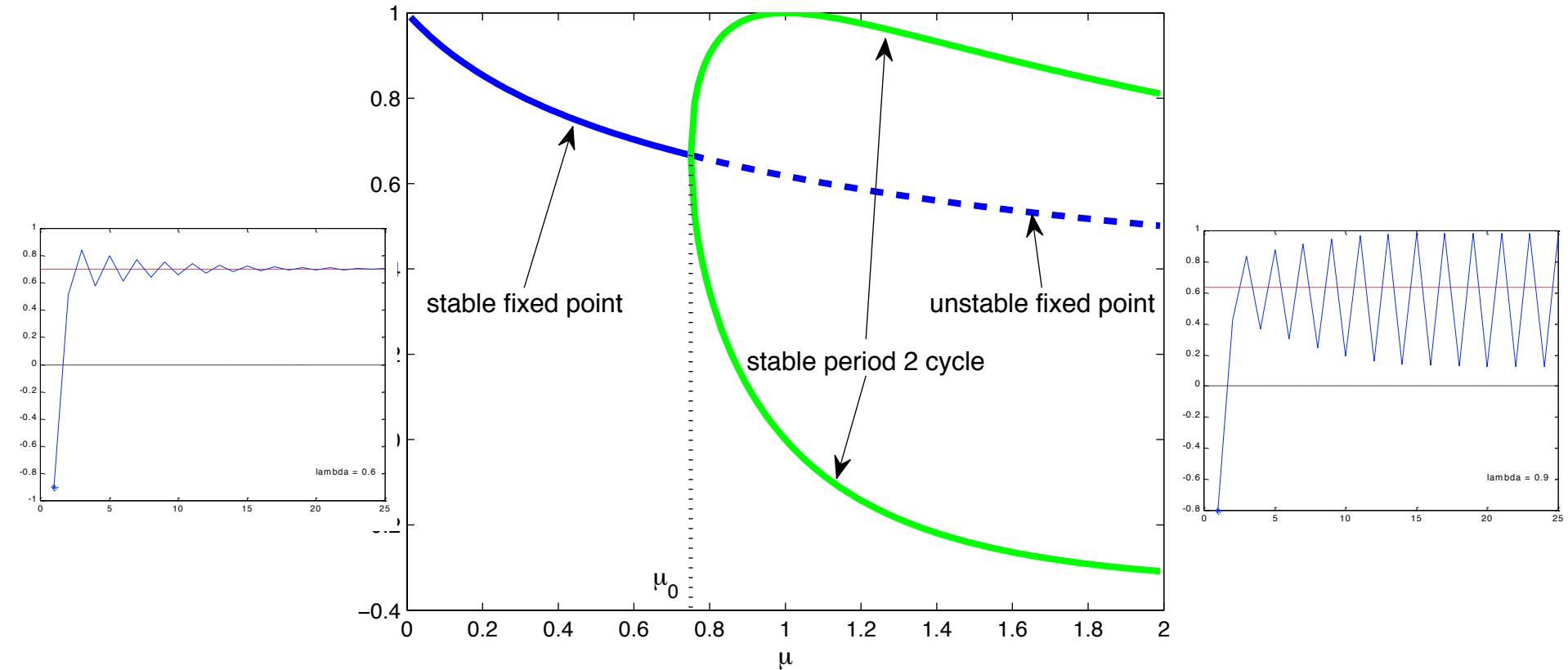
(i) for $\mu < \mu_0$, there is an asymptotically stable fixed point, whereas for $\mu > \mu_0$ the fixed point is unstable, and in addition, there is an asymptotically stable 2-cycle, or vice-versa (this is called a supercritical flip bifurcation) or for $\mu < \mu_0$, there is an asymptotically stable fixed point and an unstable 2-cycle, whereas for $\mu > \mu_0$ there is only the fixed point and it is unstable, or vice-versa (this is called a subcritical flip bifurcation);

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the system to its normal form, which is

$$x(t + 1) = -(1 + \mu)x(t) \pm x^3(t). \quad (7.44)$$

Example: Logistic Map

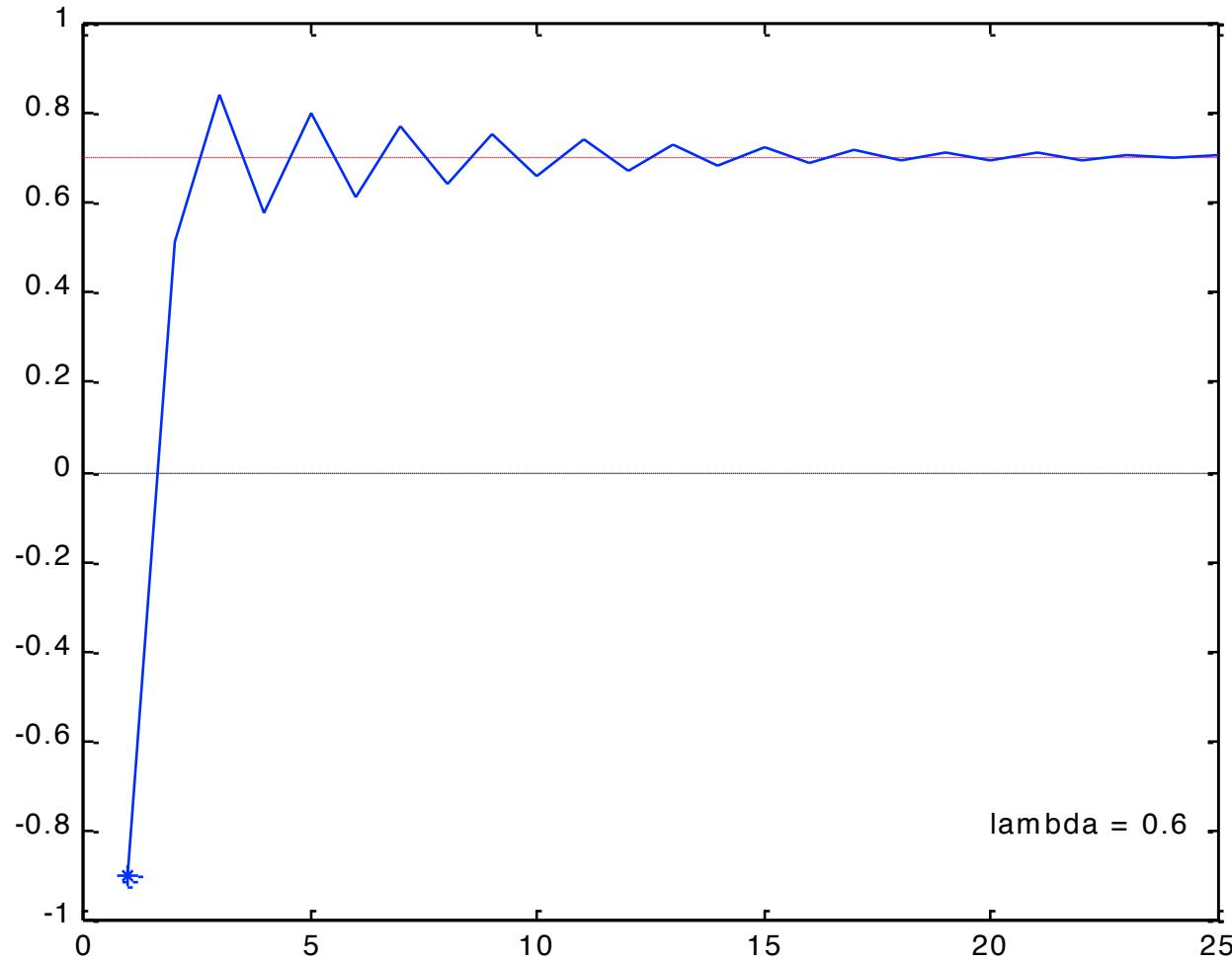
◻ $x(t + 1) = 1 - \mu x^2(t)$



Example: Logistic Map

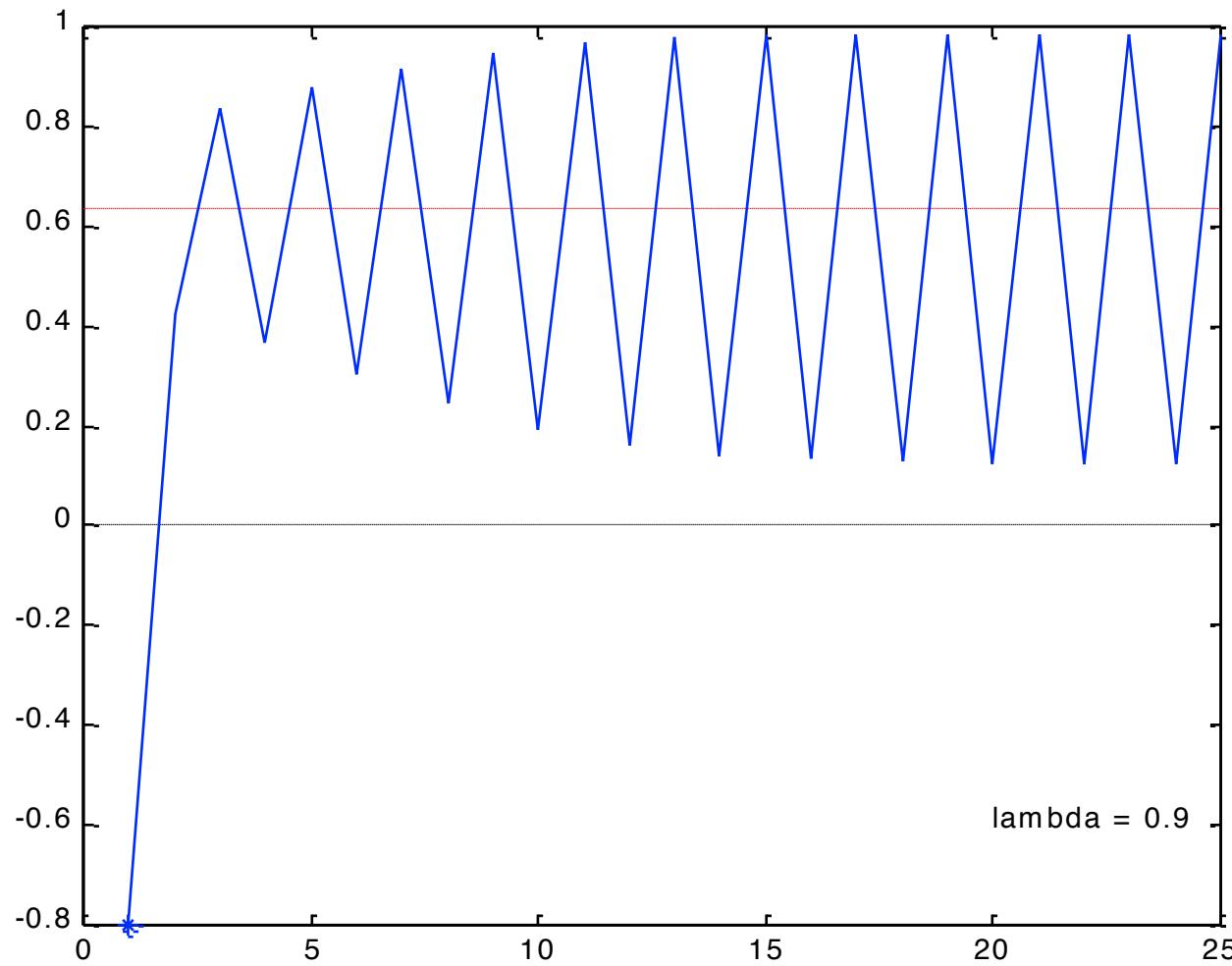
- $x(t+1) = 1 - \mu x^2(t)$

- $\mu = 0.6$

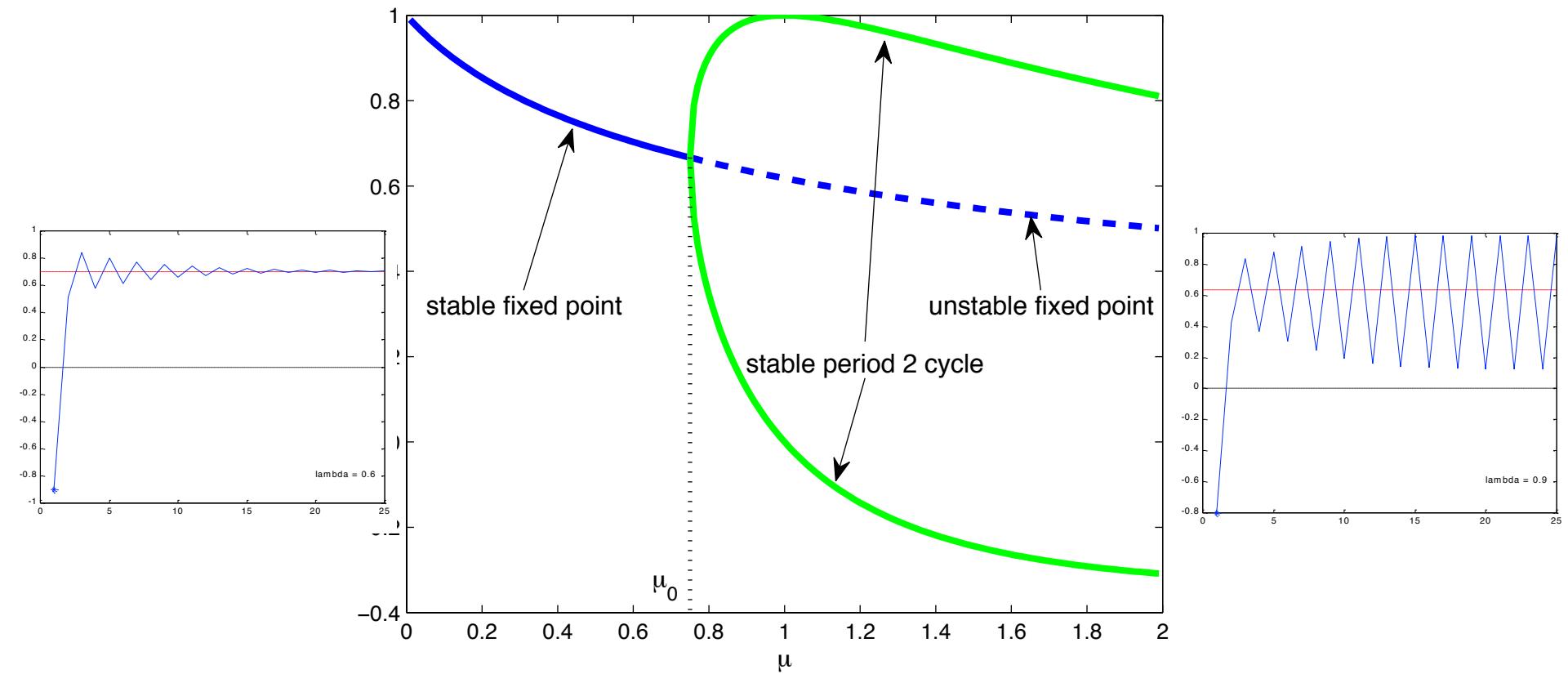


Example: Logistic Map

- $x(t+1) = 1 - \mu x^2(t)$
- $\mu = 0.9$



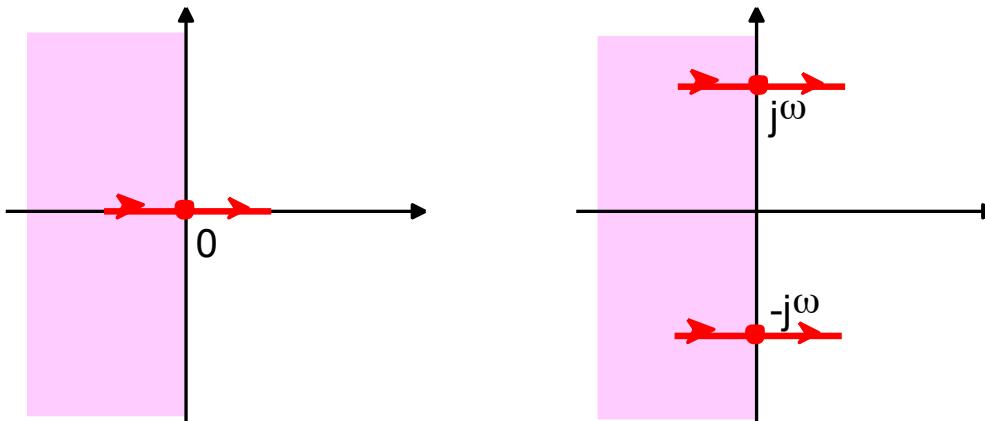
Example: Logistic Map



Simplest Bifurcations

- ❑ Bifurcations can only occur if Jacobian matrix ($\partial F/\partial x$) is non-hyperbolic

- ❑ Continuous-time system



- Fold (generic)
- Transcritical (symmetry)
- Pitchfork (symmetry)
- Andronov-Hopf (generic)

Andronov-Hopf Bifurcation

- ❑ $\dot{x}_1 = \mu x_1 - x_2 \pm x_1(x_1^2 + x_2^2)$
 $\dot{x}_2 = x_1 + \mu x_2 \pm x_2(x_1^2 + x_2^2)$
- ❑ $\bar{x} = (0,0)$ is an equilibrium point for all $\mu \in \mathbb{R}$
- ❑ $\frac{\partial F}{\partial x}((0,0), \mu) = \begin{bmatrix} \mu & -1 \\ 1 & \mu \end{bmatrix}$
- ❑ $\bar{x} = (0,0)$ is a hyperbolic equilibrium point iff $\mu \neq 0$.
- ❑ Let $(\bar{x}_0, \mu_0) = ((0,0), 0)$. By the implicit function theorem, $\bar{x} = (0,0)$ is the only equilibrium point in neighborhood \mathcal{U} of $(\bar{x}_0, \mu_0) = ((0,0), 0)$.
- ❑ From cartesian to polar coordinates

$$r = \sqrt{x_1^2 + x_2^2}$$

$$\varphi = \arctan\left(\frac{x_2}{x_1}\right)$$

- ❑ Equation in polar coordinates (r, φ)

$$\dot{r} = \mu r \pm r^3$$

$$\dot{\varphi} = 1$$

Andronov-Hopf Bifurcation

◻ $\dot{x}_1 = \mu x_1 - x_2 \pm x_1(x_1^2 + x_2^2)$

$\dot{x}_2 = x_1 + \mu x_2 \pm x_2(x_1^2 + x_2^2)$

◻ Equation in polar coordinates (r, φ)

$$\dot{r} = \mu r \pm r^3$$

$$\dot{\varphi} = 1$$

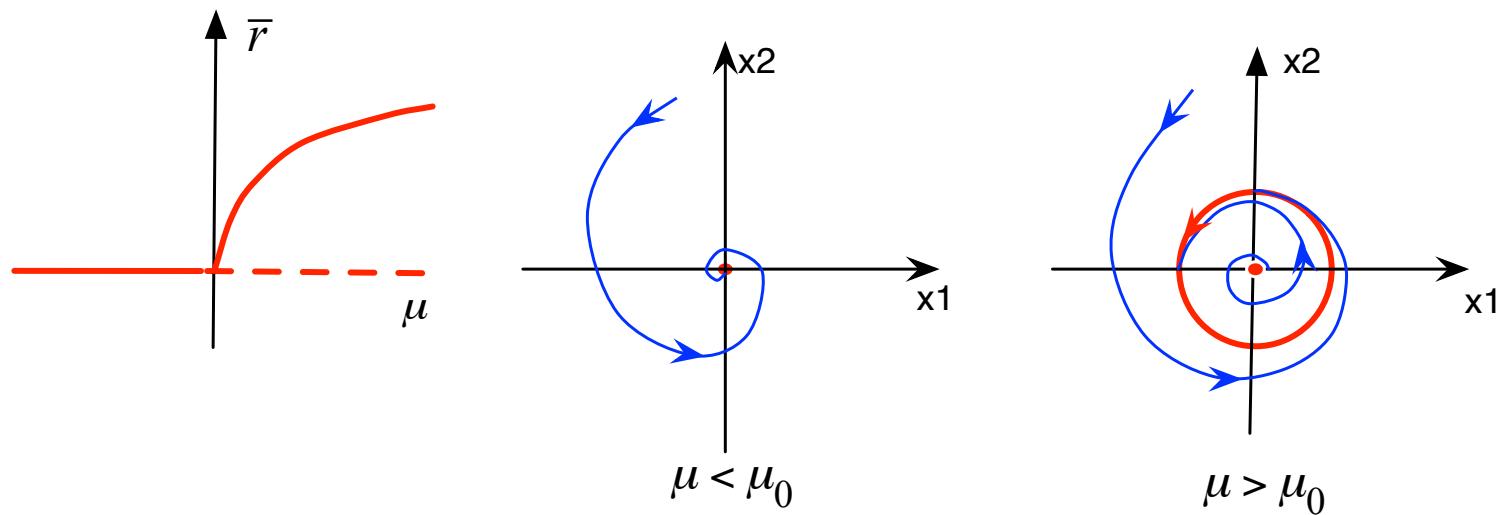
◻ Normal form of a pitchfork bifurcation for r :

- Subcritical for $\dot{r} = \mu r + r^3$
- Supercritical for $\dot{r} = \mu r - r^3$

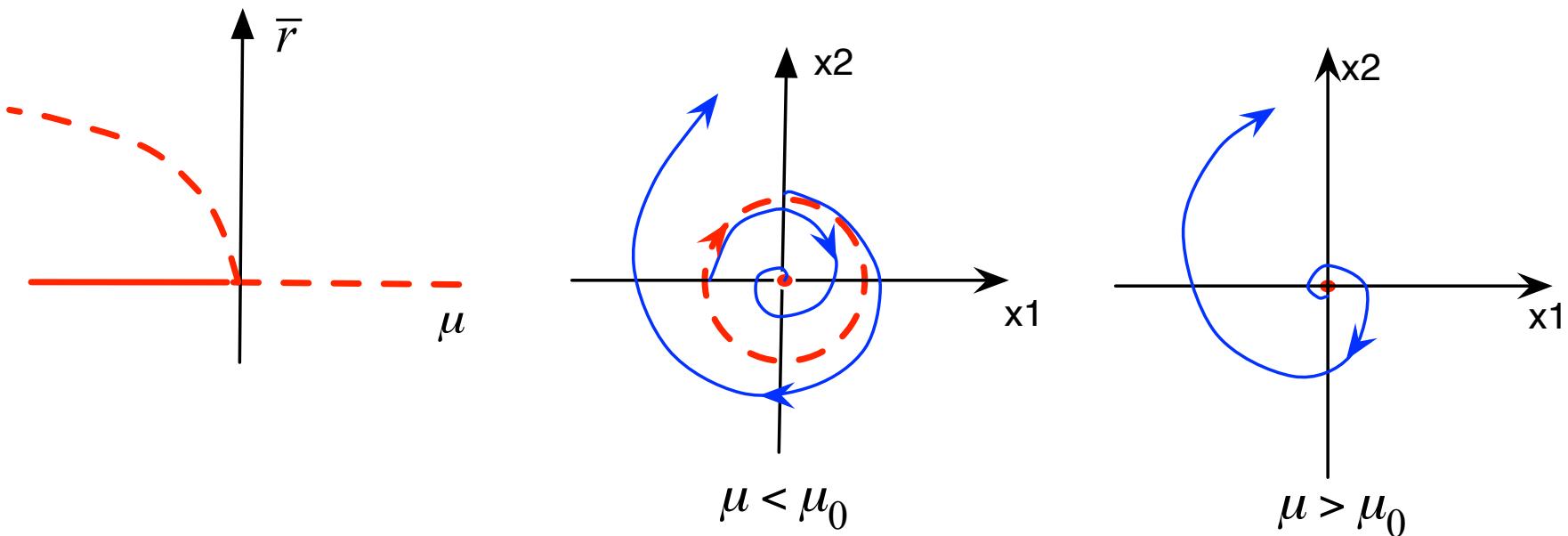
◻ Equilibrium points

- $\bar{r} = 0$
- $\bar{r}' = \sqrt{\pm\mu}$ (depending on the sign of μ)

Andronov-Hopf Bifurcation (supercritical)



Andronov-Hopf Bifurcation (subcritical)



Theorem: Andronov-Hopf Bifurcation

□ $\dot{x} = F(x, \mu)$ with (\bar{x}_0, μ_0) such that $F(\bar{x}_0, \mu_0) = 0$ and $\frac{\partial F}{\partial x}(\bar{x}_0, \mu_0)$ has imaginary e-values $\pm j\omega_0$. Let $\lambda(\mu), \lambda^*(\mu)$ be the e-values of $\frac{\partial F}{\partial x}(\bar{x}(\mu), \mu)$ in the neighborhood of (\bar{x}_0, μ_0) . If

- a complex non-degeneracy condition is satisfied,
- and $\frac{d\Re(\lambda(\mu))}{d\mu}(\mu_0) \neq 0$

□ Then the system undergoes an Andronov-Hopf bifurcation at (\bar{x}_0, μ_0) , i.e. in a neighborhood of (\bar{x}_0, μ_0)

(i) for $\mu < \mu_0$, there is an asymptotically stable equilibrium point $\bar{x}(\mu)$, whereas for $\mu > \mu_0$ the equilibrium point $\bar{x}(\mu)$ becomes unstable, and in addition, there is a stable periodic solution, or vice-versa (this is called a supercritical Andronov-Hopf bifurcation) or for $\mu < \mu_0$, there is an asymptotically stable equilibrium point $\bar{x}(\mu)$ and an unstable periodic solution, whereas for $\mu > \mu_0$ there is only the equilibrium point $\bar{x}(\mu)$ and it is unstable, or vice-versa (this is called a subcritical Andronov-Hopf bifurcation);

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the system to its normal form, which is

$$\begin{aligned}\dot{x}_1 &= \mu x_1 - x_2 \pm x_1 (x_1^2 + x_2^2) \\ \dot{x}_2 &= x_1 + \mu x_2 \pm x_2 (x_1^2 + x_2^2)\end{aligned}$$

(iii) the period of the periodic solution is a differentiable function $T(\mu)$ of μ , with $T(\mu_0) = 2\pi/\omega_0$.

Van der Pol Oscillator

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -x_1 - \lambda(x_1^2 - 1)x_2$$

□ $\lambda = -0.3$

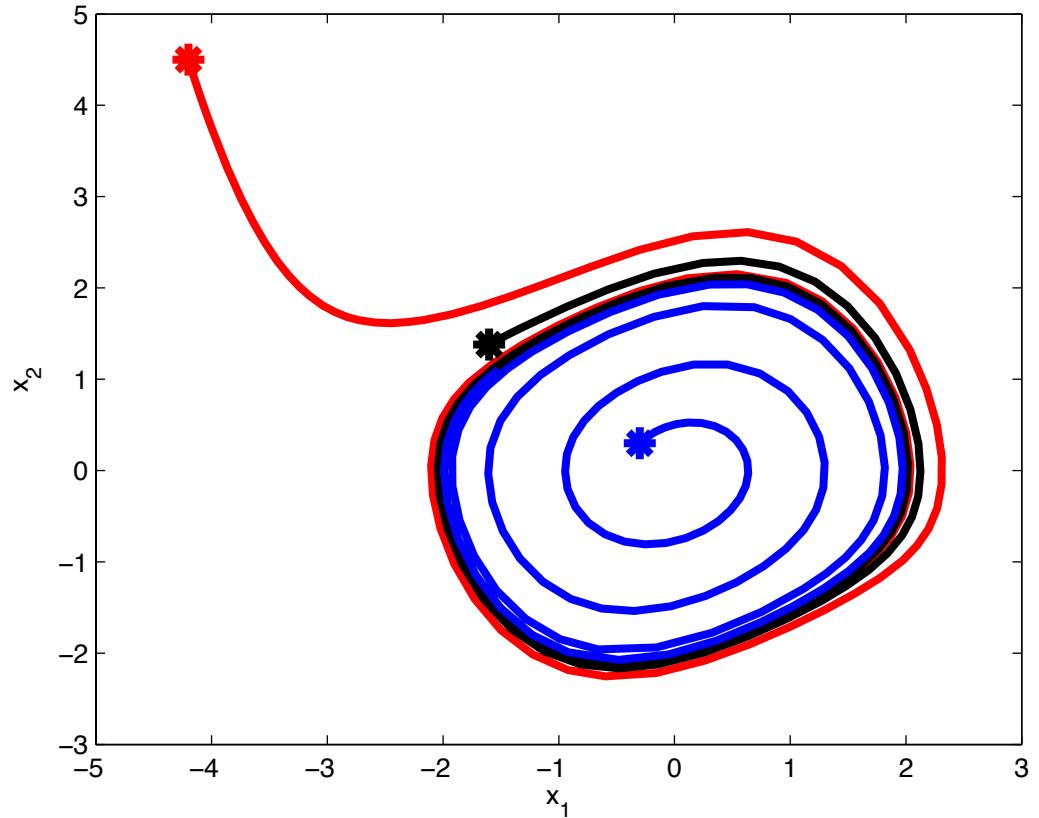


Van der Pol Oscillator

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -x_1 - \lambda(x_1^2 - 1)x_2$$

□ $\lambda = 0.3$

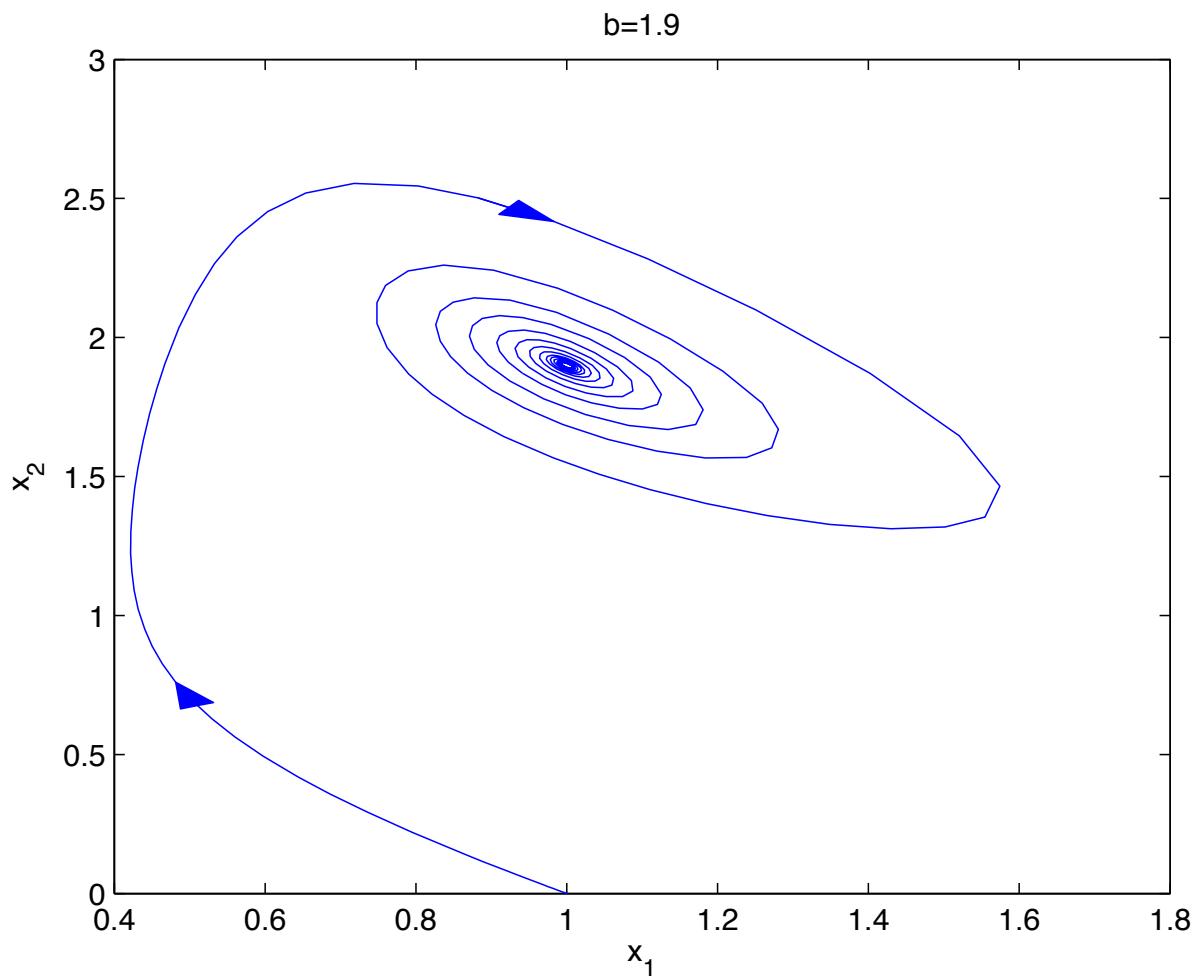


Brusselator

□ $\dot{x}_1 = 1 - (b + 1)x_1 + x_1^2x_2$

□ $\dot{x}_2 = bx_1 - x_1^2x_2$

□ $b = 1.9$



Brusselator

◻ $\dot{x}_1 = 1 - (b + 1)x_1 + x_1^2x_2$

◻ $\dot{x}_2 = bx_1 - x_1^2x_2$

◻ $b = 2.1$

