

Bifurcations

Patrick Thiran (with Martin Halser)
EPFL

CH-1015 Lausanne

Patrick.Thiran@epfl.ch

<http://lcawww.epfl.ch>

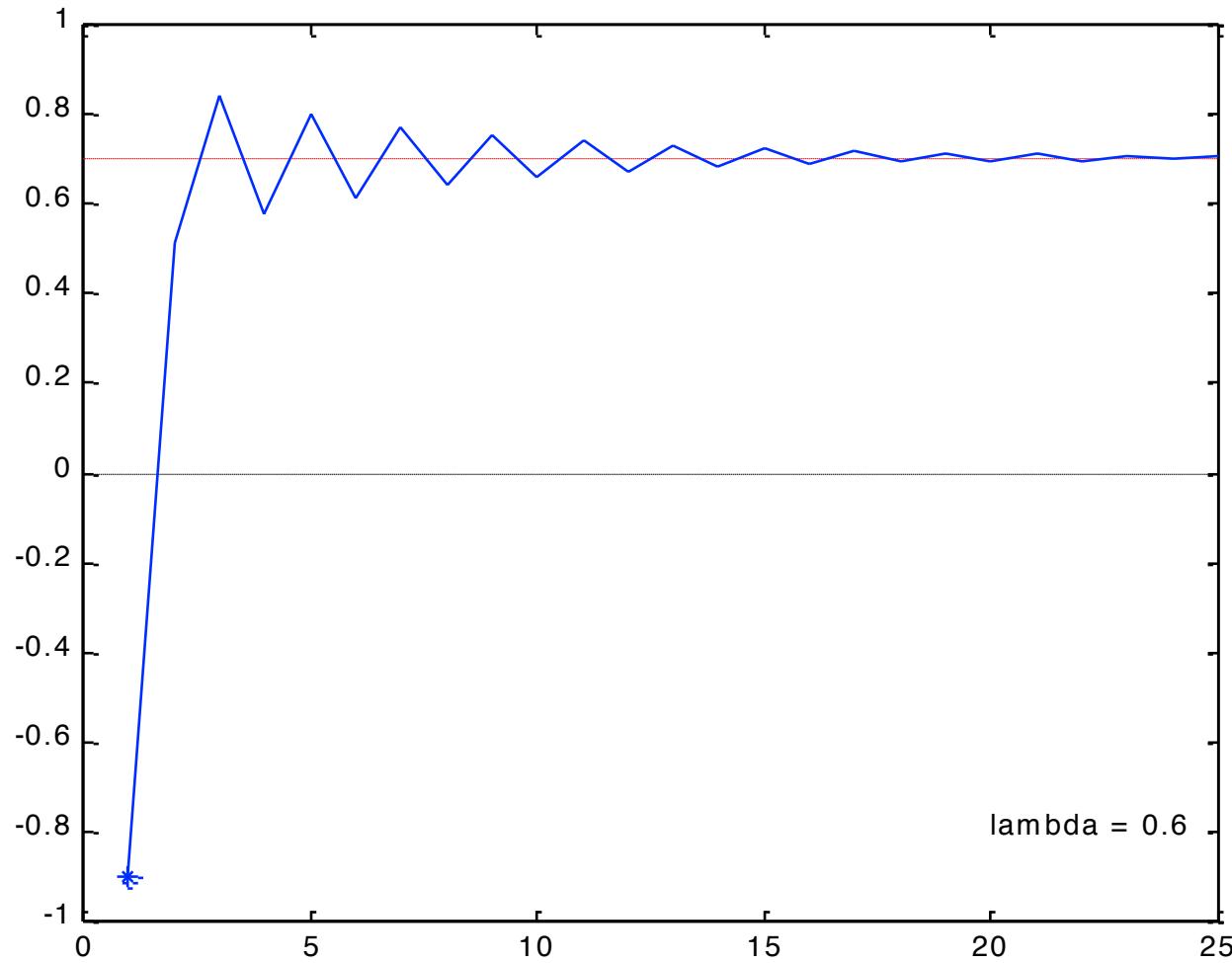
Definition

- Qualitative behavior of dynamical systems depend on parameters. Here we consider 1 parameter $\mu \in \mathbb{R}$
- Make parameter dependence explicit :
 - $\dot{x} = F(x) \rightarrow \dot{x} = F(x, \mu)$
 - $x(t+1) = F(x(t)) \rightarrow x(t+1) = F(x(t), \mu)$
 - $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^n$ continuously differentiable (at least C^1)
- The system undergoes a bifurcation at μ_0 if there is no neighborhood $\mathcal{V} \subset \mathbb{R}$ of μ_0 such that all systems with $\mu \in \mathcal{V}$ have the same qualitative behavior.
- Same qualitative behavior \equiv there is a continuous coordinate and time transformation mapping the solutions of one system to the solutions of the other, and vice versa.
- Codimension of a bifurcation = number of parameters that must be varied for the bifurcation to occur.
 - Here we consider only bifurcations of codimension 1 ($\mu \in \mathbb{R}$)

Example: Logistic Map

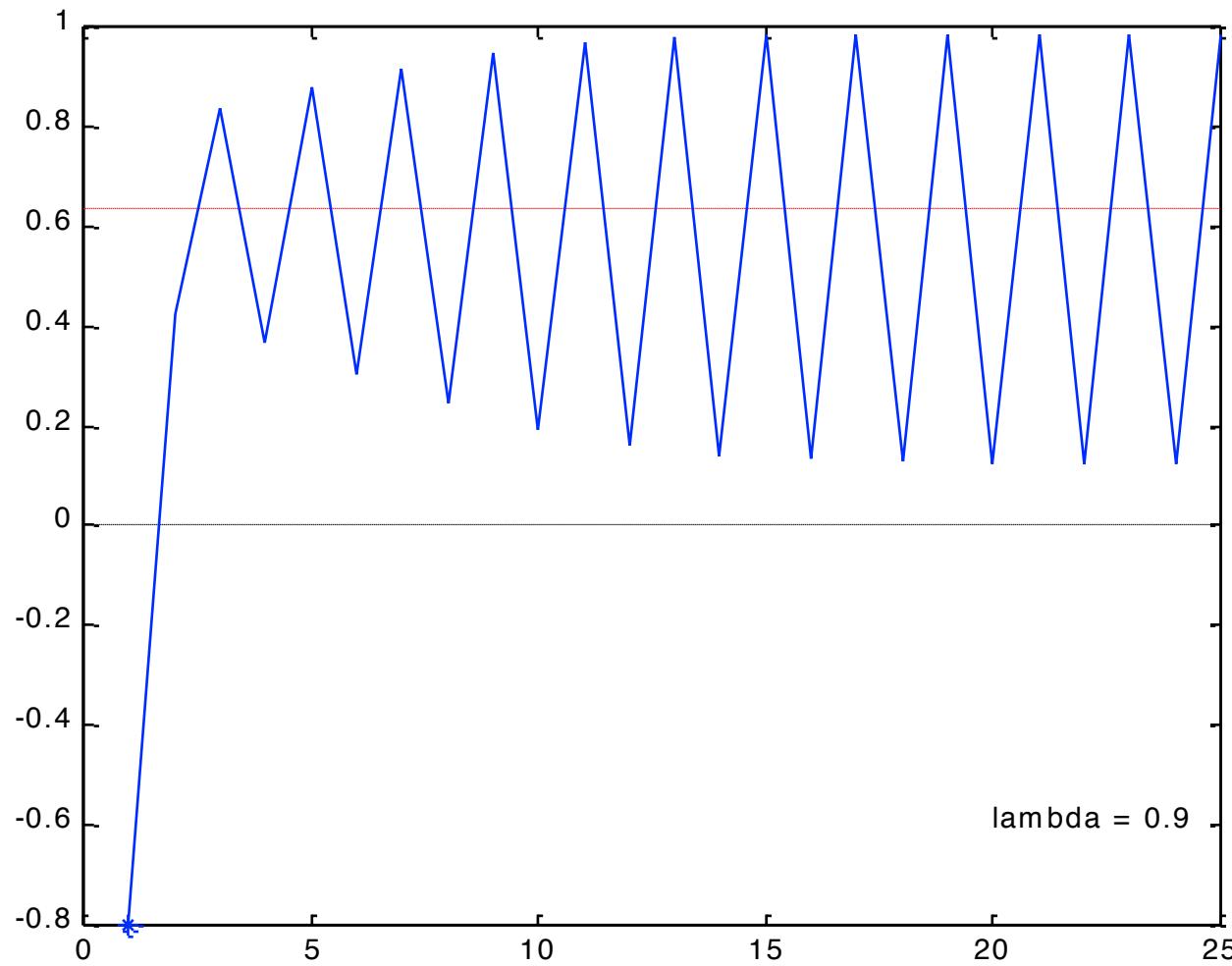
- $x(t+1) = 1 - \mu x^2(t)$

- $\mu = 0.6$

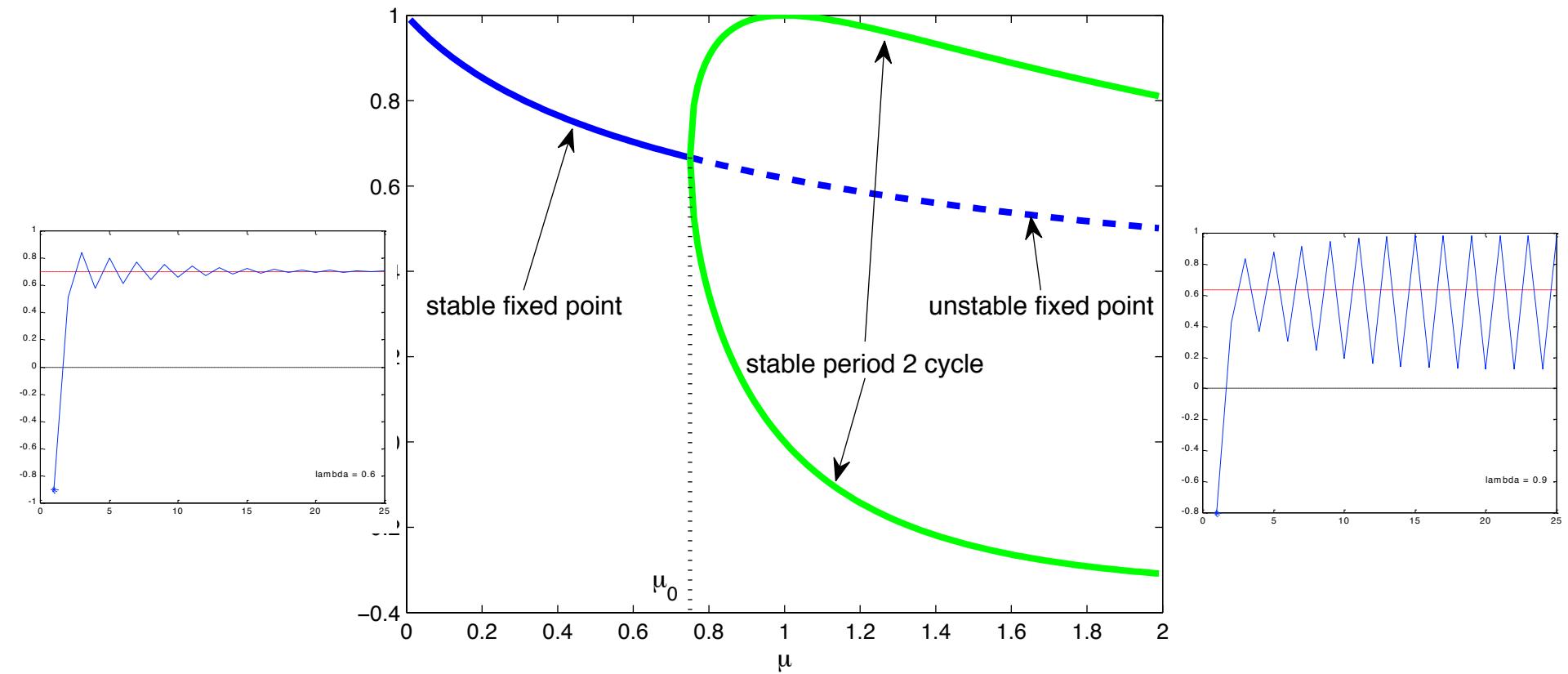


Example: Logistic Map

- $x(t+1) = 1 - \mu x^2(t)$
- $\mu = 0.9$



Example: Logistic Map



Local vs global bifurcation

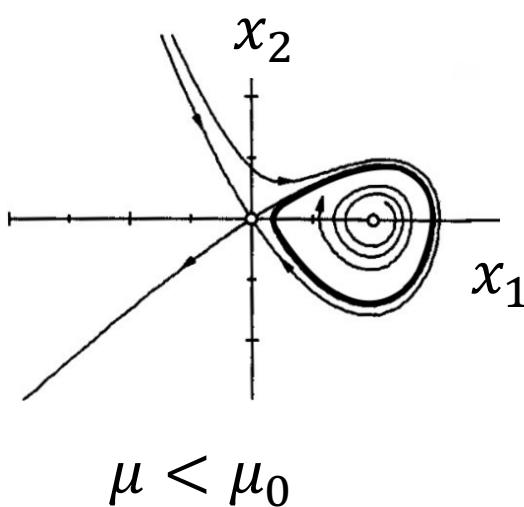
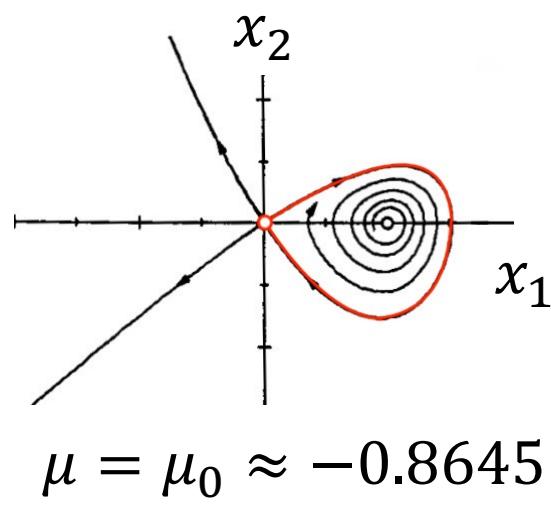
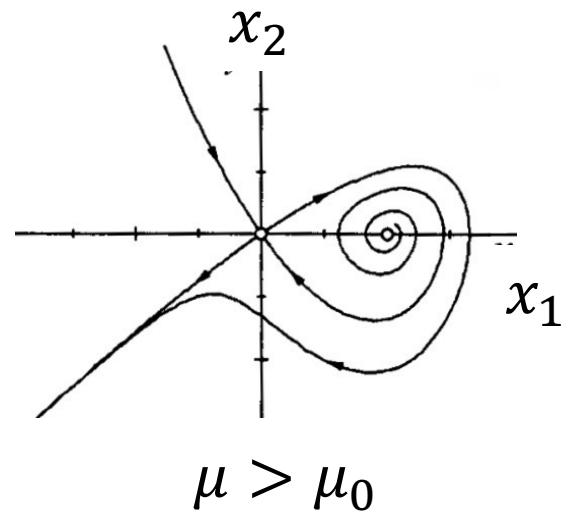
- Local bifurcation: the qualitative change of asymptotic behavior takes place locally around a solution (in the course, an equilibrium point or a fixed point).
 - Examples:
 - Fold (saddle-node) bifurcation
 - Transcritical bifurcation
 - Pitchfork bifurcation
 - Flip (period-doubling) bifurcation
 - Hopf bifurcation
- Global bifurcation: the qualitative change of asymptotic behavior does not take place locally around a solution
 - Examples:
 - Homoclinic bifurcation
 - Heteroclinic bifurcation
 - Not in this course.

Example of Global Bifurcation

□ Example of Homoclinic bifurcation

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = \mu x_2 + x_1 - x_1^2 + x_1 x_2$$



(From S. Strogatz, 2015, p. 266; D. Kartofelev, Lecture notes 7, 2020)

Local Bifurcations of Equilibrium/Fixed Points

- Codimension of the bifurcation = 1 ($\mu \in \mathbb{R}$)
- Qualitative change of asymptotic behavior takes place locally in a neighborhood of an equilibrium (fixed) point.
- Existence for $\mu < \mu_0$ and non-existence for $\mu > \mu_0$ or vice-versa.
 - Does not occur if the implicit function theorem holds.
- Change of (local) stability between $\mu < \mu_0$ and $\mu > \mu_0$

Implicit Function Theorem

Theorem 7.1 (Implicit Function Theorem). *Let $F : \mathbb{R}^{n+m} \rightarrow \mathbb{R}^n$ be a C^1 -function and suppose that*

$$F(x_0, y_0) = 0 \tag{7.6}$$

with $x_0 \in \mathbb{R}^n$, $y_0 \in \mathbb{R}^m$. Suppose that the $n \times n$ Jacobian matrix of F with respect to x is

$$J_x(x_0, y_0) = \frac{\partial F}{\partial x}(x_0, y_0) = \begin{bmatrix} \frac{\partial F_1}{\partial x_1}(x_0, y_0) & \frac{\partial F_1}{\partial x_2}(x_0, y_0) & \dots & \frac{\partial F_1}{\partial x_n}(x_0, y_0) \\ \frac{\partial F_2}{\partial x_1}(x_0, y_0) & \frac{\partial F_2}{\partial x_2}(x_0, y_0) & \dots & \frac{\partial F_2}{\partial x_n}(x_0, y_0) \\ \vdots & & \ddots & \\ \frac{\partial F_n}{\partial x_1}(x_0, y_0) & \frac{\partial F_n}{\partial x_2}(x_0, y_0) & \dots & \frac{\partial F_n}{\partial x_n}(x_0, y_0) \end{bmatrix} \tag{7.7}$$

is non-singular (i.e is invertible). Then there is a neighborhood \mathcal{U} of (x_0, y_0) in \mathbb{R}^{n+m} , a neighborhood \mathcal{V} of y_0 in \mathbb{R}^m and a C^1 -function $g : \mathcal{V} \rightarrow \mathbb{R}^n$ such that all solutions of $F(x, y) = 0$ in \mathcal{U} are given by $x = g(y)$. Moreover,

$$\begin{aligned} \frac{\partial g}{\partial y}(y_0) &= - \left(\frac{\partial F}{\partial x} \right)^{-1}(x_0, y_0) \cdot \frac{\partial F}{\partial y}(x_0, y_0) \\ &= -J_x^{-1}(x_0, y_0)J_y(x_0, y_0). \end{aligned} \tag{7.8}$$

Example: Implicit Function Theorem

□ Let $F: \mathbb{R}^2 \rightarrow \mathbb{R}$ $(x, y) \rightarrow F(x, y) = x^2 + y^2 - 1$

□ Let (x_0, y_0) be such that $F(x_0, y_0) = 0$

□ Implicit function Theorem:

If $J_x(x_0, y_0) = \frac{\partial F}{\partial x}(x_0, y_0)$ is non singular then

- \exists neighborhood $\mathcal{U} \subset \mathbb{R}^2$ of (x_0, y_0)
- \exists neighborhood $\mathcal{V} \subset \mathbb{R}$ of y_0
- \exists (unique) C^1 function $g: \mathcal{V} \rightarrow \mathbb{R}$ with $x_0 = g(y_0)$ and such that

$$F(x, y) = 0 \text{ for } (x, y) \in \mathcal{U} \Leftrightarrow x = g(y) \text{ for } y \in \mathcal{V}$$

- Moreover, $\frac{\partial g}{\partial y}(y_0) = - \left(\frac{\partial F}{\partial x} \right)^{-1}(x_0, y_0) \cdot \frac{\partial F}{\partial y}(x_0, y_0)$.

Example: Implicit Function Theorem

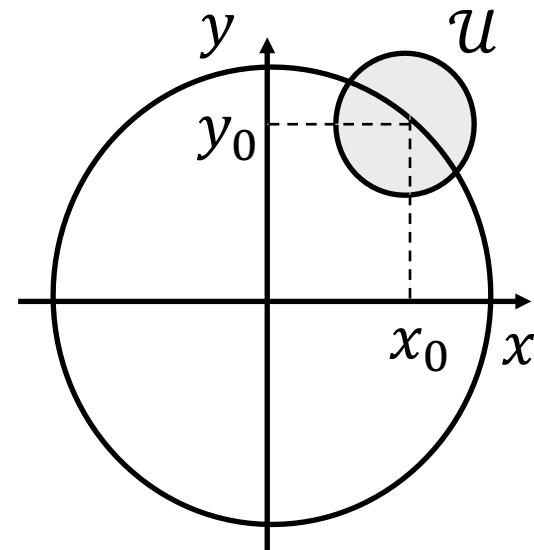
- Let $F: \mathbb{R}^2 \rightarrow \mathbb{R}$ $(x, y) \rightarrow F(x, y) = x^2 + y^2 - 1$
- Let (x_0, y_0) be s.t. $F(x_0, y_0) = x_0^2 + y_0^2 - 1 = 0$
- Implicit function Theorem:

If $J_x(x_0, y_0) = \frac{\partial F}{\partial x}(x_0, y_0) = 2x_0 \neq 0$ then

- \exists neighborhood $\mathcal{U} \subset \mathbb{R}^2$ of (x_0, y_0)
- \exists neighborhood $\mathcal{V} \subset \mathbb{R}$ of y_0
- \exists (unique) C^1 function $g: \mathcal{V} \rightarrow \mathbb{R}$ with $x_0 = g(y_0)$ and such that

$$x^2 + y^2 - 1 \text{ for } (x, y) \in \mathcal{U} \Leftrightarrow x = g(y) = \sqrt{1 - y^2}$$

- Moreover, $\frac{\partial g}{\partial y}(y_0) = -\left(\frac{\partial F}{\partial x}\right)^{-1}(x_0, y_0) \cdot \frac{\partial F}{\partial y}(x_0, y_0) = - (2x_0)^{-1} \cdot 2y_0 = -\frac{y_0}{x_0} = -\frac{y_0}{g(y_0)} = -\frac{y_0}{\sqrt{1-y_0^2}}$



Application to Continuous Time System

- ◻ $\dot{x} = F(x, \mu)$ with $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^n$ continuously differentiable (C^1)
- ◻ Any equilibrium point \bar{x} satisfies $F(\bar{x}, \mu) = 0$
- ◻ Let (\bar{x}_0, μ_0) be such that $F(\bar{x}_0, \mu_0) = 0$
- ◻ When can we write $\bar{x} = g(\mu)$ in a neighborhood \mathcal{V} of μ_0 with g a C^1 function?
- ◻ Implicit function Theorem:

If $J_x(\bar{x}_0, \mu_0) = \frac{\partial F}{\partial x}(\bar{x}_0, \mu_0)$ is non singular (i.e., all its eigenvalues are non-zero), then

- \exists neighborhood $\mathcal{U} \subset \mathbb{R}^2$ of (\bar{x}_0, μ_0)
- \exists neighborhood $\mathcal{V} \subset \mathbb{R}$ of μ_0
- \exists (unique) C^1 function $g: \mathcal{V} \rightarrow \mathbb{R}$ with $\bar{x}_0 = g(\mu_0)$ and such that

$$F(\bar{x}, \mu) = 0 \text{ for } (\bar{x}, \mu) \in \mathcal{U} \Leftrightarrow \bar{x} = g(\mu) \text{ for } \mu \in \mathcal{V}$$

- Moreover, $\frac{\partial g}{\partial \mu}(\mu_0) = - \left(\frac{\partial F}{\partial x} \right)^{-1}(\bar{x}_0, \mu_0) \cdot \frac{\partial F}{\partial \mu}(\bar{x}_0, \mu_0)$.

Application to Discrete Time System

- $x(t + 1) = F(x(t), \mu)$ with $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^n$ cont. different. (C^1)
- Any fixed point \bar{x} satisfies $F(\bar{x}, \mu) - \bar{x} = 0$
- Let (\bar{x}_0, μ_0) be such that $F(\bar{x}_0, \mu_0) - \bar{x}_0 = 0$
- When can we write $\bar{x} = g(\mu)$ in a neighborhood \mathcal{V} of μ_0 with g a C^1 function?
- Implicit function Theorem:

If $J_x(\bar{x}_0, \mu_0) - I_n = \frac{\partial F}{\partial x}(\bar{x}_0, \mu_0) - I_n$ is non singular (i.e., all the eigenvalues of $J_x(\bar{x}_0, \mu_0)$ are not equal to 1), then

- \exists neighborhood $\mathcal{U} \subset \mathbb{R}^2$ of (\bar{x}_0, μ_0)
- \exists neighborhood $\mathcal{V} \subset \mathbb{R}$ of μ_0
- \exists (unique) C^1 function $g: \mathcal{V} \rightarrow \mathbb{R}$ with $\bar{x}_0 = g(\mu_0)$ and such that

$$F(\bar{x}, \mu) - \bar{x} = 0 \text{ for } (\bar{x}, \mu) \in \mathcal{U} \Leftrightarrow \bar{x} = g(\mu) \text{ for } \mu \in \mathcal{V}$$

- Moreover, $\frac{\partial g}{\partial \mu}(\mu_0) = - \left(\frac{\partial F}{\partial x}(\bar{x}_0, \mu_0) - I_n \right)^{-1} \cdot \frac{\partial F}{\partial \mu}(\bar{x}_0, \mu_0)$.

Necessary Condition for Bifurcation

◻ Implicit equation:

- (CT) Equilibrium point equation: $F(\bar{x}, \mu) = 0$.
- (DT) Fixed point equation $F(\bar{x}, \mu) - \bar{x} = 0$.

◻ If Jacobian matrix $(\partial F / \partial x)$ does not have

- (CT) the eigenvalue 0
- (DT) the eigenvalue 1
- then in a neighborhood of (\bar{x}_0, μ_0) , the equilibrium/fixed points are given by a continuously differentiable 1-parameter family $\bar{x}(\mu)$ with

$$\bar{x}(\mu_0) = \bar{x}_0$$

and
$$\frac{\partial \bar{x}}{\partial \mu}(\mu_0) = - \left(\frac{\partial F}{\partial x} \right)^{-1}(\bar{x}_0, \mu_0) \cdot \frac{\partial F}{\partial \mu}(\bar{x}_0, \mu_0).$$

◻ A local bifurcation might however still occurs, if the local stability of the equilibrium/fixed point changes at $\mu = \mu_0$.

◻ If Jacobian matrix $(\partial F / \partial x)$ is hyperbolic, i.e., does not have

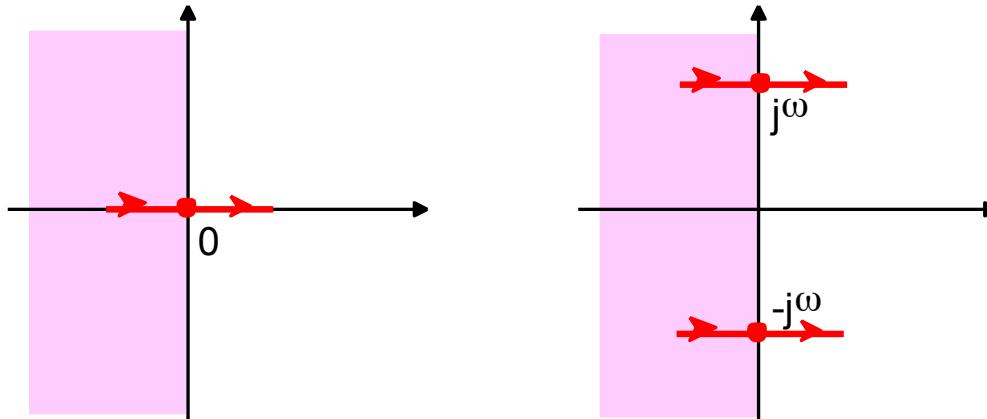
- (CT) eigenvalues on the imaginary axis
- (DT) eigenvalues on the unit circle

then there is no bifurcation at μ_0 .

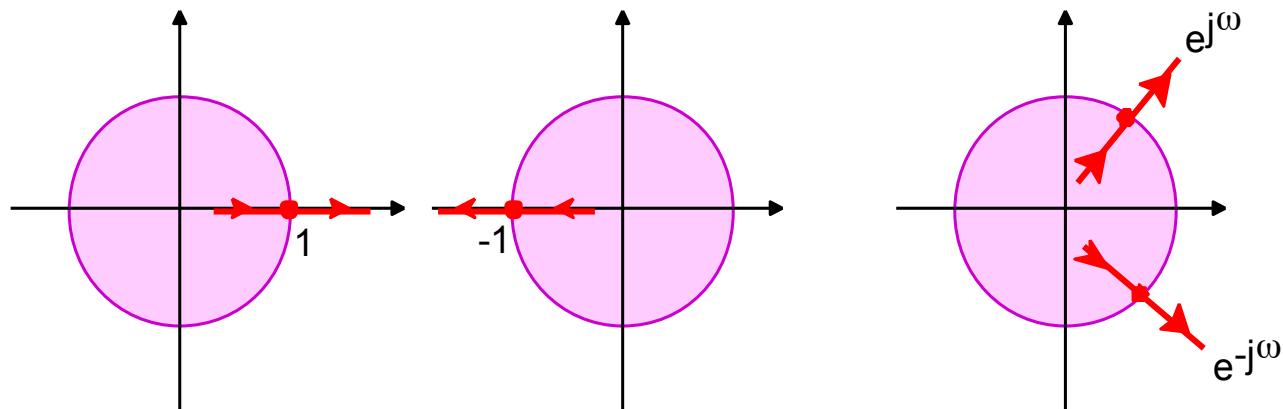
Simplest Bifurcations

- ❑ Bifurcations can only occur if Jacobian matrix ($\partial F/\partial x$) is non-hyperbolic

- ❑ Continuous-time system



- ❑ Discrete-time system



Theorem: Fold Bifurcation

□ $\dot{x} = F(x, \mu)$ with (\bar{x}_0, μ_0) such that

$$\begin{aligned} F(\bar{x}_0, \mu_0) &= 0 \\ \frac{\partial F}{\partial x}(\bar{x}_0, \mu_0) &= 0 \\ \frac{\partial^2 F}{\partial x^2}(\bar{x}_0, \mu_0) &\neq 0 \\ \frac{\partial F}{\partial \mu}(\bar{x}_0, \mu_0) &\neq 0. \end{aligned}$$

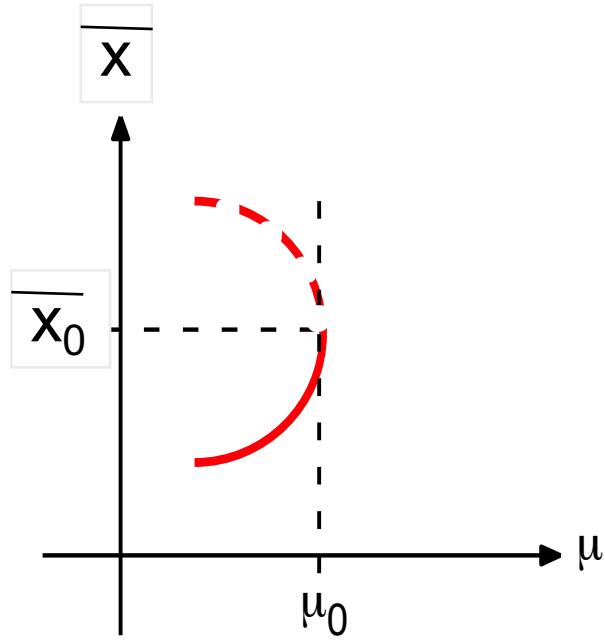
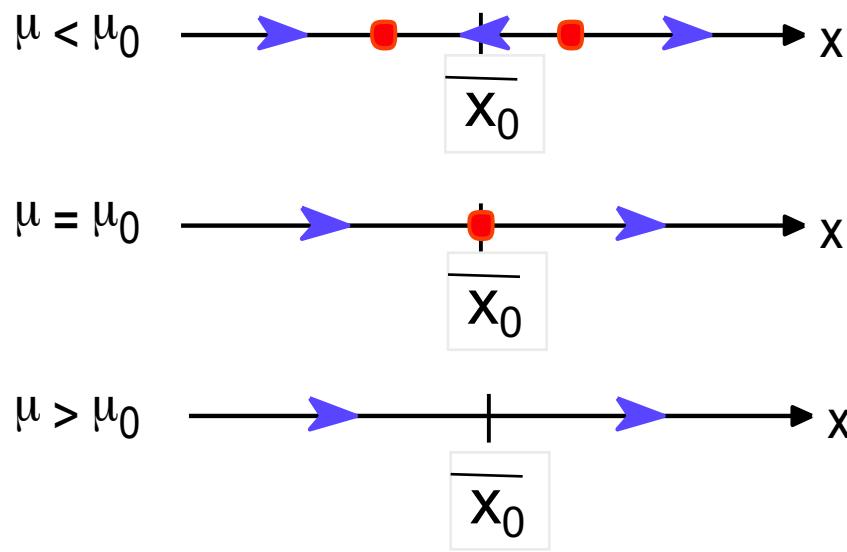
□ Then the system undergoes a fold bifurcation (\bar{x}_0, μ_0) , i.e. in a neighborhood of (\bar{x}_0, μ_0)

(i) for $\mu < \mu_0$, there are two equilibrium/fixed points, one asymptotically stable, the other unstable, and for $\mu > \mu_0$ there is none, or vice-versa;

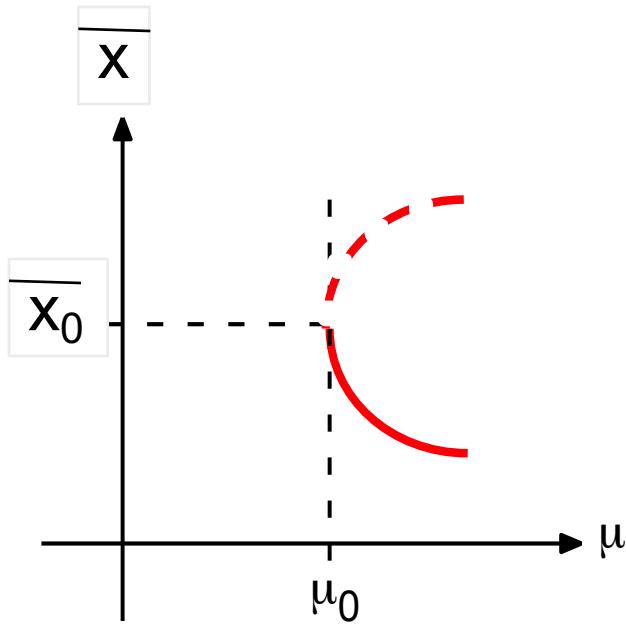
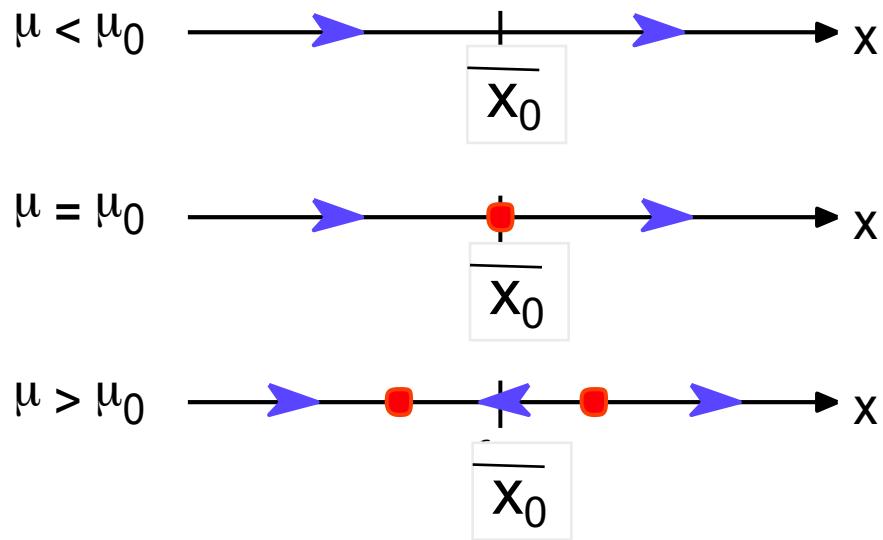
(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the system to its normal form, which is

$$\dot{x}(t) = \mu \pm x^2(t) \tag{7.21}$$

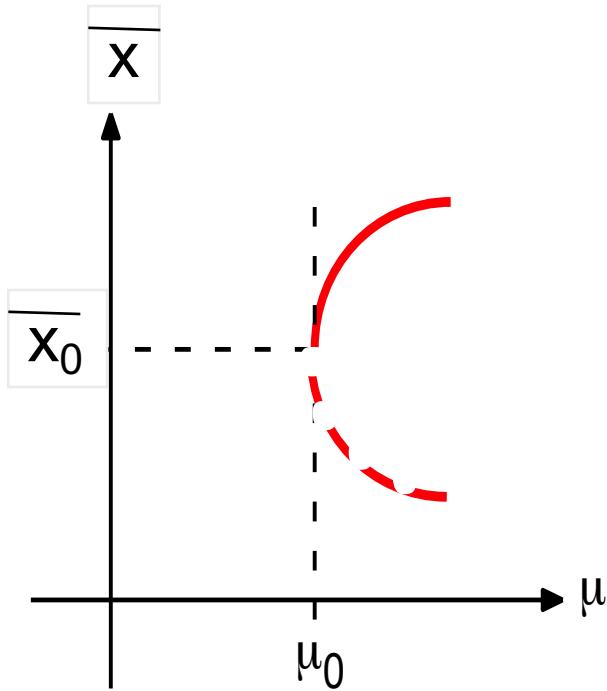
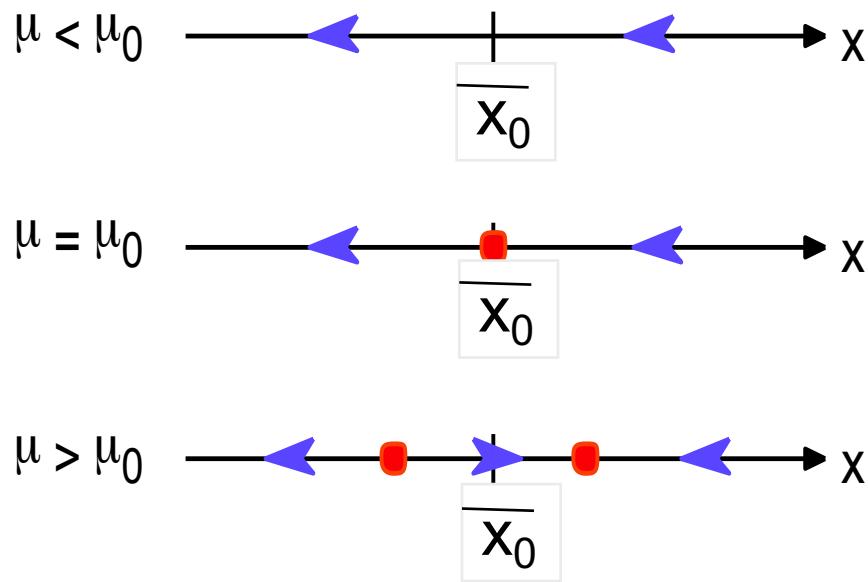
Fold Bifurcation: $a > 0, b > 0$



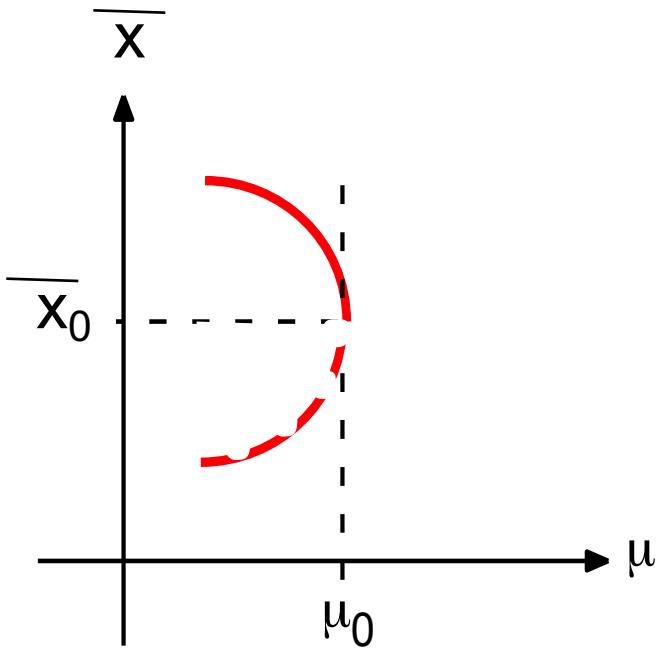
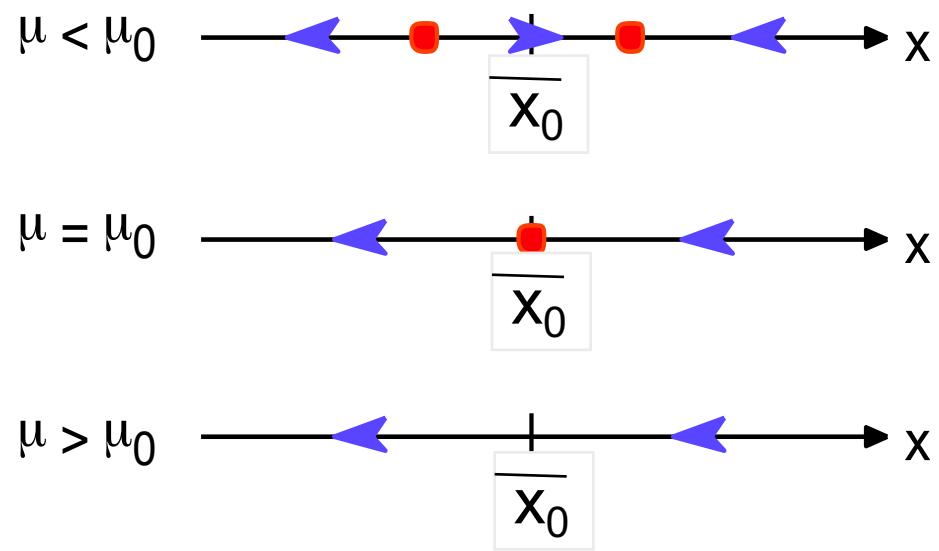
Fold Bifurcation: $a > 0, b < 0$



Fold Bifurcation: $a < 0, b > 0$



Fold Bifurcation: $a < 0, b < 0$



Theorem: Transcritical Bifurcation

□ $\dot{x} = F(x, \mu)$ with (\bar{x}_0, μ_0) such that

$$\begin{aligned} F(\bar{x}_0, \mu_0) &= 0 \\ \frac{\partial F}{\partial x}(\bar{x}_0, \mu_0) &= 0 \\ \frac{\partial F}{\partial \mu}(\bar{x}_0, \mu_0) &= 0 \\ \frac{\partial^2 F}{\partial x^2}(\bar{x}_0, \mu_0) &\neq 0 \\ \left[\frac{\partial^2 F}{\partial \mu \partial x} \bar{x}_0, \mu_0 \right]^2 - \frac{\partial^2 F}{\partial x^2}(\bar{x}_0, \mu_0) \frac{\partial^2 F}{\partial \mu^2}(\bar{x}_0, \mu_0) &> 0 \end{aligned}$$

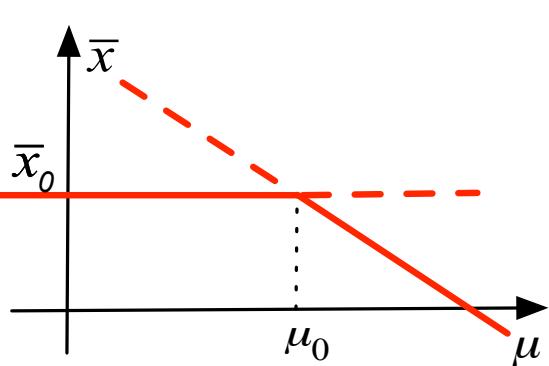
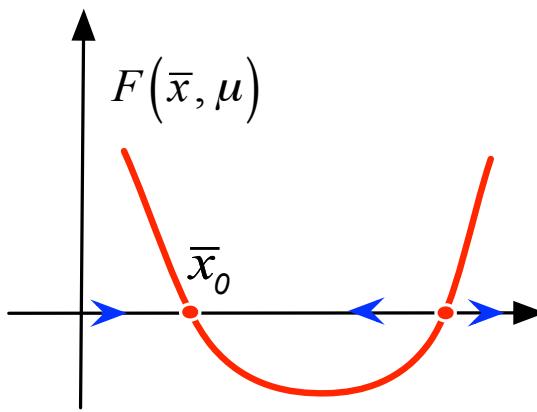
□ Then the system undergoes a transcritical bifurcation at (\bar{x}_0, μ_0) , i.e., in a neighborhood of (\bar{x}_0, μ_0)

(i) for $\mu \neq \mu_0$, there are two equilibrium/fixed points, one asymptotically stable, the other unstable. They switch stability at $\mu = \mu_0$;

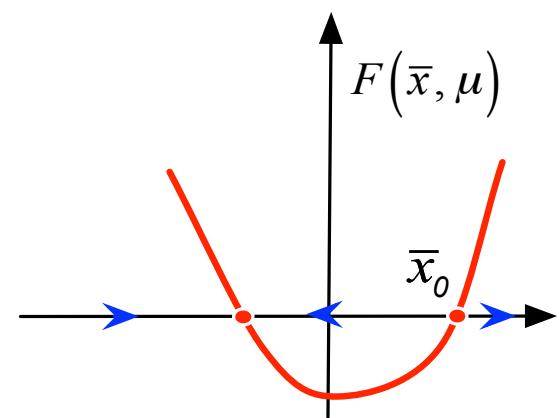
(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the system to its normal form, which is

$$\dot{x}(t) = \mu x(t) \pm x^2(t) \tag{7.37}$$

Transcritical Bifurcation: $a > 0, b > 0$



$$\mu < \mu_0$$



$$\mu > \mu_0$$

Theorem: Pitchfork Bifurcation

- $\dot{x} = F(x, \mu)$ with $F(x, \mu) = -F(-x, \mu)$ and $(\bar{x}_0, \mu_0) = (0, \mu_0)$ such that

$$\begin{aligned}\frac{\partial F}{\partial x}(0, \mu_0) &= 0 \\ \frac{\partial^2 F}{\partial x \partial \mu}(0, \mu_0) &\neq 0 \\ \frac{\partial^3 F}{\partial x^3}(0, \mu_0) &\neq 0.\end{aligned}$$

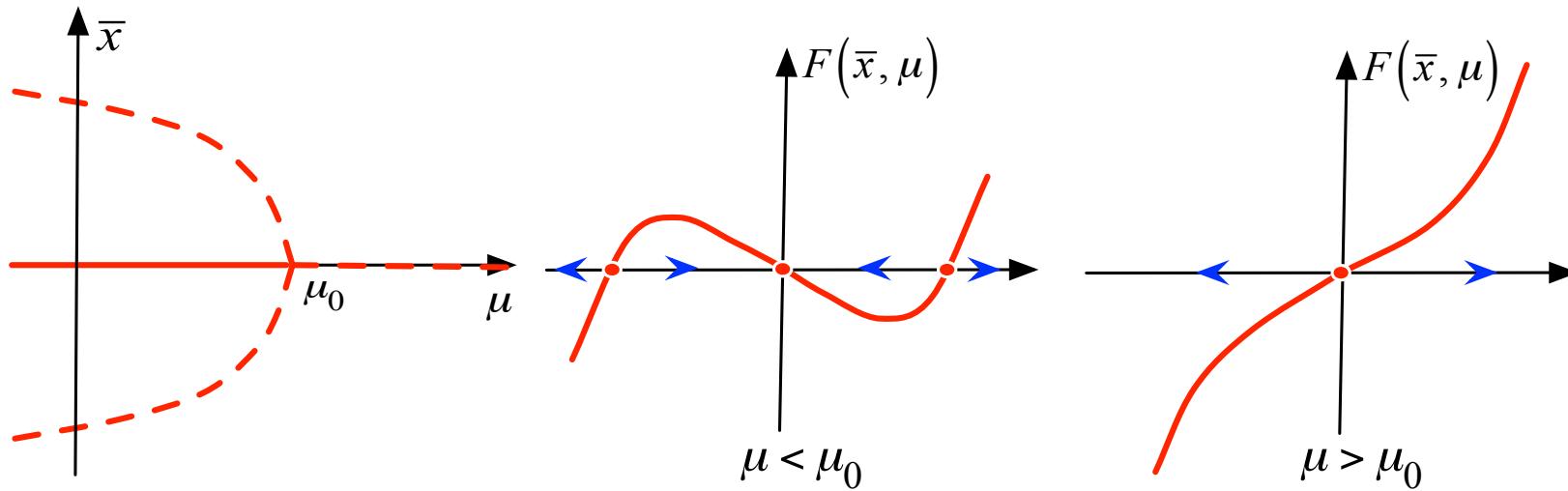
- Then the system undergoes a pitchfork bifurcation at $(0, \mu_0)$, i.e., in a neighborhood of $(0, \mu_0)$

(i) for $\mu < \mu_0$, the origin is the only equilibrium/fixed point and it is asymptotically stable, whereas for $\mu > \mu_0$ the origin is an unstable equilibrium/fixed point, and in addition, there are two asymptotically stable equilibrium/fixed points, or vice-versa (this is called a supercritical pitchfork bifurcation) or for $\mu < \mu_0$, the origin is an asymptotically stable equilibrium/fixed point and in addition there are two unstable equilibrium/fixed points, whereas for $\mu > \mu_0$ the origin is the only equilibrium/fixed point and it is unstable, or vice-versa (this is called a subcritical pitchfork bifurcation);

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the system to its normal form, which is

$$\dot{x}(t) = \mu x(t) \pm x^3(t) \tag{7.29}$$

Pitchfork Bifurcation: $a > 0, b > 0$ (subcritical)



Pitchfork Bifurcation: $a > 0, b < 0$ (supercritical)

