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Property 1: Irregular trajectories

❏ l = 1.6

x(t +1) =1−λx2 (t)
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Chua’s Circuit

❏ α = 9
❏ β = 100/7
❏ m0=-8/7
❏ m1=-5/7

x1 =α(−x1 − f (x1)+ x2 )
x2 = x1 − x2 + x3
x3 = −βx2
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Figure 2 : Chua’s  circuit 

All elements in this circuit are linear, except the nonlinear resistor RN. Its characteristic is 
given in Figure 3. 
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Figure 3 : Characteristic of the nonlinear resistor RN. 

 

The state equations of this system are 
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 It is worthwhile to normalize the currents, voltages and time as follows: x1 = v1/v0, x2 = 
v2/v0, x3 = RiL/v0, and W = t/(RC2), where v0 the voltage where the characteristic of the 
nonlinear resistor has a breakpoint. The resulting system of equations is then 
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Chua’s Circuit

❏ α = 9
❏ β = 100/7
❏ m0=-8/7
❏ m1=-5/7

x1 =α(−x1 − f (x1)+ x2 )
x2 = x1 − x2 + x3
x3 = −βx2
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Chua’s Circuit

❏ α = 9
❏ β = 100/7
❏ m0=-8/7
❏ m1=-5/7

x1 =α(−x1 − f (x1)+ x2 )
x2 = x1 − x2 + x3
x3 = −βx2
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Chua’s Circuit
x1 =α(−x1 − f (x1)+ x2 )
x2 = x1 − x2 + x3
x3 = −βx2
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x1 = 2x2
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x5 = 2x6
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Property 2: Sensitivity to initial conditions

❏ A feature of 
nonlinear systems 
that  solutions are 
bounded and 
depend on initial 
conditions.

❏ But they do not 
always repel each 
other.

❏ In a chaotic 
system, yes.
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Property 2: Sensitivity to initial conditions

❏ l = 1.6
❏ x0 = -0.85
❏ x0 = -0.85085

x(t +1) =1−λx2 (t)

0 5 10 15 20 25 30 35 40 45 50
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

x

λ = 1.6

 

 

x0 = −0.85
x0 = −0.85085



8

0 5 10 15 20 25 30 35 40 45 50
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

x

λ = 1.6

 

 

x0 = −0.85
x0 = −0.85085

Property 2: Sensitivity to initial conditions

❏ l = 1.6
❏ x0 = -0.85
❏ x0 = -0.85000085

x(t +1) =1−λx2 (t)
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Lyapunov Exponents for 1-dim Maps

❏ ! " + 1 = & ! " with &:ℝ → ℝ continuously differentiable (C1) 
❏ Let ! " , *! " be two solutions s. t. Δ!(0) = *! 0 − ! 0 is small.
❏ Then Δ! " = *! " − ! " = Φ ", *! 0 − Φ ", ! 0 evolves approx. as

Δ! " = 2(")Δ! 0

with 2 " = 34
356

", ! 0 .

❏ Variational Equation: 2 " + 1 = 37
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Lyapunov Exponents for 1-dim Maps
❏ ! " + 1 = & ! " with &:ℝ → ℝ continuously differentiable (C1) 

❏ Let us set * " such that +,(.)+,(0) = 12(.)3.. Then

* " = 1
" ln

Δ!(")
Δ!(0) ≈ 1

"9:;0

.<=
ln >&

>! ! ?

❏ * " is the time-average exponential speed of growth or contraction in 
[0,t] along solution ! " . Can be computed along any solution ! " .

❏ If the limit exists,

* = lim.→B
1
"9:;0

.<=
ln >&

>! ! ?

is the Lyapunov exponent of solution ! " .
❏ If * < 0, the solution ! " is asymptotically stable. 
❏ If * > 0, the solution ! " is unstable. 
❏ If all solutions are bounded and (almost all) have a positive Lyapunov 

exponent * > 0, then the system is chaotic.
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Lyapunov Exponents: Examples
❏ If the limit exists, the Lyapunov exponent of solution ! " is

# = lim(→*
1
",-./

(01
ln 34

3! ! 5

❏ If ! " converges to a fixed point !̅, 

# = ln 34
3! !̅

❏ If ! " converges to a T-periodic solution 7 = 71, 79,⋯ , 7; , 

# = 1
<,=.1

;
ln 34

3! 7=
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Example: Lyapunov Exponent of Logistic Map

❏ l = 0.9

x(t +1) =1−λx2 (t)
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Lyapunov Exponents: Examples
❏ If the limit exists, the Lyapunov exponent of solution ! " is

# = lim(→*
1
",-./

(01
ln 34

3! ! 5

❏ If ! " converges to a fixed point !̅, 

# = ln 34
3! !̅

❏ If ! " converges to a T-periodic solution 7 = 71, 79,⋯ , 7; , 

# = 1
<,=.1

;
ln 34

3! 7=

❏ Does not add anything compared to computing the Jacobian.
❏ If the system is chaotic, how to compute #? 

● Predict long term behavior of ! " from deterministically chosen ! 0 ? Difficult, even 
impossible in a chaotic system when initial data have limited precision.

● Predict long term behavior of ! " from randomly chosen ! 0 ? Use tools from ergodic 
theory.
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Elements from the Theory of Ergodic 
Dynamical Systems.

❏ Probability Space (W,S,P)
● Sample space W
● Sigma-algebra S
● Probability measure P

❏ Transformations F: W → W
● Measurable
● Measure-preserving
● Invariant set

❏ Ergodic Transformations F: W → W
● Ergodic transformation 
● Mixing transformations 
● Birkhoff Ergodic Theorem
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Probability Space (W,S,P)
❏ Sample space W = {elementary events}

❏ s-algebra S = {events Si} = {subsets of W, including ∅ and W}
● closed under Complement: If it contains Si it also contains Σ#$ = Ω\Si

● closed under countable (finite or infinite) union of events. 

❏ Probability measure P: S → [0,1], with 
● P(∅) = 0 and 

● ( ⋃# Si = ∑# ( Si for countable (finite or infinite) seq. of disjoint sets Si ∈ S. 

❏ If W is a countable set, 
● Largest s-algebra S = power set of all its subsets (default s-algebra)

● Ex: W = {a,b,c} ⟹ S = {∅,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}}

● Smallest s-algebra S = {∅, W}

● Ex: W = {a,b,c} ⟹ S = {∅,{a,b,c}}

● If A is a (collection of) subset(s) of W, s-algebra generated by A = Smallest 
s-algebra that includes A.

● Ex: W = {a,b,c} and A = {a} ⟹ S = {∅,{a},{b,c},{a,b,c}}.

❏ If W is a non-countable set, need to specify s-algebra S. 
● Ex: W = ℝ⟹ s-algebra generated by all open intervals in ℝ.
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Probability Space (W,S,P): Examples

❏ Example 1: Single dice roll
● Sample space W = {1,2,3,4,5,6}
● s-algebra S = power set of all its subsets = 

{∅,{1},{2},{3},{4},{5},{6},{1,2},…,{2,3,4,5,6},{1,2,3,4,5,6}} 
● Probability measure P : S → [0,1]

P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) = 1/6.

❏ Example 2: Repeated dice roll
● Sample space W = {w | w = (w1,w2,w3,…)} with wi∈ {1,2,3,4,5,6}.
● ”cylinder” s-algebra S generated by cylinder subsets

# $%,'% $(,'( … $*,'* = |- -$% = ./, -$( = .0, … , -$* = .1 for some 
finite n ∈ ℕ*, 3/ < 30 < ⋯ < 31 ∈ ℕ* and ./, .0,…, .1 ∈ {1,2,3,4,5,6}.

● Probability measure P : S → [0,1]
P({# $%,'% $(,'( … $*,'* }) = (1/6)n.
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Probability Space (W,S,P): Examples

❏ Example 3: Uniform distribution on [0,1)
● Sample space W = [0,1)

● Borel s-algebra S of [0,1) = smallest s-algebra containing [a,b), 
(a,b), (a,b], [a,b] for all 0 ≤ a ≤ b ≤ 1.

● Probability measure P = Lebesgue measure P : S → [0,1] 
P([a,b)) = P((a,b)) = P((a,b]) = P([a,b]) = b-a.

10
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Measurable and Measure-Preserving 
Transformations

❏ Probability space (W, S, P) 
❏ Transformation F: W → W is

● Measurable if F-1(A) ∈ S for all A ∈ S. 
● Measure preserving if F is measurable and P(F-1(A)) = P(A) for all A ∈ S.      

P is then an invariant measure under F. 

❏ A ∈ S is an invariant set under F if F-1(A) = A.
❏ Example 1 (continued) : F = Permutation

● Measure preserving
● Invariant sets:

w 1 2 3 4 5 6
F(w) 2 1 4 6 3 5

w 1 2 3 4 5 6
F(w) 6 1 2 3 4 5
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Measurable and Measure-Preserving 
Transformations

❏ Example 2 (continued) : F = Left shift transformation
● F(w1, w2, w3, …) = (w2, w3, w4 , …) 
● ”cylinder” s-algebra S generated by cylinder subsets

! "#,%# "&,%& … "(,%( = |+ +"# = ,-, +"& = ,., … , +"( = ,/ for some 
finite n ∈ ℕ*, 2- < 2. < ⋯ < 2/ ∈ ℕ* and ,-, ,.,…, ,/ ∈ {1,2,3,4,5,6}.

● F-1 (! "#,%# "&,%& … "(,%( ) = ! "#5-,%# "&5-,%& … "(5-,%(
● Measure preserving
● Set ! "#,%# "&,%& … "(,%( is not invariant.
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Measurable and Measure-Preserving 
Transformations

❏ Example 3 (continued) : F = 
Bernouilli map on W = [0,1) 
● F(x) = 2x mod 1.
● F-1 ([a,b)) = [a/2,b/2) ∪ [(a+1)/2,(b+1)/2)
● Measure preserving
● [a,b) is not invariant if 0 < a < b < 1.
● [0,1) is invariant
● ℚ ∩ [0,1) is invariant

11/2

1
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Ergodic Transformations

❏ Probability space (W, S, P) 

❏ Let F: W → W be a measure preserving transformation.
❏ F is ergodic if for any set A ∈ S that is invariant under F, 

P(A) = 0 or P(A) = 1. 

❏ Then the invariant measure P is an ergodic measure w.r.t. F. 
❏ F is not ergodic w.r.t. P ⇔ there is a non trivial W’ ⊂ W, P1 ≠ P2

both invariant under F and such that P1(W’) = 1, P2(W’) = 0 and 
some 0 < l < 1 with P = l P1 + (1- l)P1.

❏ F is ergodic w.r.t. invariant P if its only invariant sets are W and ∅.
❏ F is mixing if for any two sets A, B ∈ S, 

lim N→∞ P(A ∩ F-(N)(B)) = P(A)P(B). 
❏ F is mixing  ⇒ F is ergodic (proof : take B = A an invariant set 

under F).
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Ergodic Transformations

❏ Example 1 (continued) : F = Permutation

● P({w}) = 1/6 if w = 1, 2, 3, 4, 5, 6.
● F is not ergodic for P ⇔ there is a non trivial W’ ⊂ W, P1 ≠ P2 both invariant 

under F and such that P1(W’) = 1, P2(W’) = 0 and some 0 < l < 1 with P = l
P1 + (1- l)P2

● P1({w}) = 1/2 if w = 1, 2 and 0 otherwise invariant under F
● P2({w}) = 1/4 if w = 3, 4, 5, 6 and 0 otherwise invariant under F
● W’ = {1,2} non trivial ⇒ P1(W’) = 1 and P2(W’) = 0
● P = l P1 + (1- l)P2 for l = 1/3
● Therefore F is not ergodic.

w 1 2 3 4 5 6
F(w) 2 1 4 6 3 5
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Ergodic Transformations

❏ Example 1 (continued) : F = Permutation

● P({w}) = 1/6 if w = 1, 2, 3, 4, 5, 6 invariant under F.
● The only invariant sets are W and ∅ ⇒ F is ergodic.
● Mixing? 
● Let A = B = {1}. Then F-(N)(B) = {i} with i = 1 if and only if N mod 6 = 0.
● Therefore A ∩ F-(N)(B) = {1} if N mod 6 = 0 and A ∩ F-(N)(B) = ∅ and

lim N→∞ P(A ∩ F-(N)(B)) does not exist.
● Therefore F is not mixing.

w 1 2 3 4 5 6

F(w) 6 1 2 3 4 5
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Ergodic Transformations

❏ Example 2 (continued) : F = Left shift transformation
● F(w1, w2, w3, …) = (w2, w3, w4 , …) 
● ”cylinder” s-algebra S generated by cylinder subsets

! "#,%# "&,%& … "(,%( = |+ +"# = ,-, +"& = ,., … , +"( = ,/ for some 
finite n ∈ ℕ*, 2- < 2. < ⋯ < 2/ ∈ ℕ* and ,-, ,.,…, ,/ ∈ {1,2,3,4,5,6}.

● F-1 (! "#,%# "&,%& … "(,%( ) = ! "#5-,%# "&5-,%& … "(5-,%(
● Measure preserving
● Sets 6 = ! "#,%# "&,%& … "(,%( and 7 = ! 8#,9# 8&,9& … 8:,9:
● F-N (7) = F-N (! 8#,9# 8&,9& … 8:,9: ) = ! 8#5;,9# 8&5;,9& … 8:5;,9:
● Let N be large enough so that k1 + N > in 

● Then 6 ∩ =>;(7) = ! "#,%# "&,%& … "(,%( 8#5;,9# 8&5;,9& … 8:5;,9:
● A 6 ∩ =>; 7 = 1/6 /5E = 1/6 / F 1/6 E = A 6 A(7)
● F is mixing for cylinder sets, can show that it is mixing for all sets in S.
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Ergodic Transformations

❏ Example 3 (continued) : F = 
Bernouilli map on W = [0,1) 
● F(x) = 2x mod 1.
● Measure preserving
● Binary expansion of x = (b1, b2, b3, …)
● ! = ∑$%&' ($2*$
● + ! = 2! mod 1 = ∑0%&' (01&2*0 mod 1
● Binary expansion of F(x) = (b2, b3, b4, …)
● Left shift

11/2

1
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Birkhoff Ergodic Theorem

❏ Probability space (W, S, P) 
❏ Random variable f is a function f : W → ℝ that is measurable, i.e. 

such that f-1(B) ∈ S for all B ∈ S = Borel s-algebra of ℝ (note: can 
take S = s-algebra generated by subsets (-∞,b] for all b ∈ ℝ).

❏ Let F: W → W be a measure preserving transformation, and P be 
an invariant measure under F(.).

❏ Theorem. Let f be a P-integrable random variable (i.e., such that 
E[|f|] < ∞). Then
● for P-almost all w ∈ W (i.e., except possibly for a set M such that P(M) = 0) 

lim&→(
)
& ∑+,-

&.) / 0 + (2) exists.

● if in addition F is ergodic, then for P-almost all w ∈ W
lim&→(

)
& ∑+,-

&.) / 0 + (2) = ∫6 / 2 78 2
Expected 
value E[f]Temporal 

average
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Elements from the Theory of Ergodic 
Dynamical Systems.

❏ Probability Space (W,S,P)

● Sample space W
● Sigma-algebra S
● Probability measure P

❏ Transformations F: W → W
● Measurable

● Measure-preserving

● Invariant set

❏ Ergodic Transformations F: W → W
● Ergodic transformation 

● Mixing transformations 

● Birkhoff Ergodic Theorem

❏ Back to Lyapunov Exponents.
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Lyapunov Exponents for 1-dim Maps
❏ ! " + 1 = & ! " with &:ℝ → ℝ continuously differentiable (C1) 

❏ Let us set * " such that +,(.)+,(0) = 12(.)3.. Then

* " = 1
" ln

Δ!(")
Δ!(0) ≈ 1

"9:;0

.<=
ln >&

>! ! ?

❏ * " is the time-average exponential speed of growth or contraction in 
[0,t] along solution ! " . Can be computed along any solution ! " .

❏ If the limit exists,

* = lim.→B
1
"9:;0

.<=
ln >&

>! ! ?

is the Lyapunov exponent of solution ! " .
❏ How to compute it? 

● Predict long term behavior of ! " from determinitstically chosen ! 0 ? Difficult, even 
impossible in a chaotic system when initial data have limited precision.

● Predict long term behavior of ! " from randomly chosen ! 0 ? Use tools from ergodic 
theory.
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Lyapunov Exponents for 1-dim Maps
❏ If the limit exists, the Lyapunov exponent of solution ! " is

# = lim(→*
1
",-./

(01
ln 34

3! ! 5

❏ Birkhoff’s Theorem (i): Let 6 be a P-integrable random variable. If 4:Ω →
Ω is a measure preserving transformation (i.e., P is an invariant measure 
under 4(:)), then for P-almost all w ∈ W

lim=→*
1
=∑?./

=01 6 4 ? (@) exists. 

❏ Pick Ω = ℝ, 6 = ln ⁄DE DF and @ = !. 
❏ Theorem (i): If P is an invariant measure under 4(:), then for P-almost all 

solutions, then the Lyapunov exponent of solution ! " exists.
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Lyapunov Exponents for 1-dim Maps
❏ If the limit exists, the Lyapunov exponent of solution ! " is

# = lim
(→*

1
",
-./

(01

ln
34
3! ! 5

❏ Birkhoff’s Theorem (ii): Let 6 be a P-integrable random variable. If 4:Ω →
Ω is (in addition) an ergodic transformation (i.e., P is an  ergodic measure 
with respect to 4(:)), then for P-almost all w ∈ W

lim
=→*

1
>,
?./

=01

6 4 ? (@) = A
B
6 @ CD @

❏ Pick Ω = ℝ, 6 = ln ⁄HI
HJ and @ = !. 

❏ Theorem (ii): If P is (in addition) an ergodic measure under 4(:), then for 
P-almost all solutions, 

# = A
0*

*
ln
34
3! ! CD(!)

❏ If the ergodic invariant measure is given by a density K(!)

# = A
0*

*
ln
34
3! ! K(!)C!
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Mixing Property of Bernouilli Map

x(t +1) = 2x(t) mod1

11/2

1
❏ P([a,b)) = |b-a|.
❏ P is called the 

Lebesgue 
measure.

❏ !" # = !#
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Mixing Property of Bernouilli Map

❏ P([a,b)) = |b-a|.
❏ P is invariant 

under F(.).
❏ !" # = !#

x(t +1) = 2x(t) mod1

11/2

1
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Mixing Property of Bernouilli Map

❏ 100 points 
chosen 
randomly in 
A=[0.3,0.4]

x(t +1) = 2x(t) mod1

��������  
Figure 1. Equivalence between the Bernoulli map on the unit interval and 
the left shift on the binary sequences. 

 
Having established that the Bernoulli map on the unit interval is equivalent to the left shift 
on the binary sequences, we can apply the same reasoning as in example 2 to prove that T 
is mixing. 
 
To illustrate the mixing property, we take 100 initial points randomly in the interval A = 
[0.3, 0.4] (Figure ) 
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Figure 3. 100 points chosen randomly in the interval A = 
[0.3, 0.4] 

 
Then, we apply the Bernoulli map to these 100 points. The resulting distribution of points 
after 2, 5 and 10 times applying the map is represented in Figure , Figure  and Figure , 
respectively. Progressively, they spread out evenly over the whole interval. 
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Figure 4. Position of the 100 points after 2 iterations of the Bernoulli map 
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Mixing Property of Bernouilli Map

❏ Position of 
the 100 
points after 2 
iterations

x(t +1) = 2x(t) mod1

��������  
Figure 1. Equivalence between the Bernoulli map on the unit interval and 
the left shift on the binary sequences. 

 
Having established that the Bernoulli map on the unit interval is equivalent to the left shift 
on the binary sequences, we can apply the same reasoning as in example 2 to prove that T 
is mixing. 
 
To illustrate the mixing property, we take 100 initial points randomly in the interval A = 
[0.3, 0.4] (Figure ) 
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Figure 3. 100 points chosen randomly in the interval A = 
[0.3, 0.4] 

 
Then, we apply the Bernoulli map to these 100 points. The resulting distribution of points 
after 2, 5 and 10 times applying the map is represented in Figure , Figure  and Figure , 
respectively. Progressively, they spread out evenly over the whole interval. 
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Figure 4. Position of the 100 points after 2 iterations of the Bernoulli map 
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Mixing Property of Bernouilli Map

❏ Position of 
the 100 
points after 5 
iterations

x(t +1) = 2x(t) mod1
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Figure 5. Position of the 100 points after 5 iterations of the 
Bernoulli map 
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We now come to the main theorem. 
 
 
 

Theorem 3 (Ergodic theorem of Birkhoff) : 
 

Let (:�6�P) be a probability space, and let T: :��!�: be a probability preserving map. Let 
F:ȍĺR be a P-integrable random variable (i.e. the expectation of |F| is finite). Then for P-
almost all Z�:  the limit 
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almost all Z�:   
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Mixing Property of Bernouilli Map

❏ Position of 
the 100 
points after 
10 iterations
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-> P is ergodic
with respect to 
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Lyapunov Exponents of Bernouilli Map
❏ Theorem (ii): If P is an 

ergodic measure under !(#), 
then for P-almost all 
solutions, 

% = '
()

)
ln ,!

,- - ./(-)

❏ Bernouilli map: 
- 0 + 1 = 2- 0 mod1
● Ω = [0,1)
●

89
8: - = 2 for all - ∈ Ω ∖ { ⁄? @}

● ./ - = .-
❏ Therefore 

% = ∫C
? ln 2 .- = ln 2 > 0

and the system is chaotic.

11/2

1
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Lyapunov Exponent of Logistic Map

❏ l = 1.6

x(t +1) =1−λx2 (t)
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Property 2: Sensitivity to initial conditions
x1 =α(−x1 − f (x1)+ x2 )
x2 = x1 − x2 + x3
x3 = −βx2
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Property 2: Sensitivity to initial conditions
x1 =α(−x1 − f (x1)+ x2 )
x2 = x1 − x2 + x3
x3 = −βx2
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Property 3: Dense set of periodic solutions
x(t +1) =1−λx2 (t)
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Remember: Flip Bifurcation of Logistic Map
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Cascade of Period Doubling Bifurcations
• Period Doubling Bifurcations: 1 → 2 → 4 → 8 → … → 2n

• Ratio of distances between consecutive bifurcation points = 4.669... = 

Feigenbaum constant.

• Windows in chaos, largest one with a stable 3-periodic solution, 

followed by new period doubling cascade: 3 → 6 → 12 → 24 → … 
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Sarkovskii’s Theorem
• Sarkovskii’s ordering of natural numbers: 

3 ▹ 5 ▹ 7 ▹ … ▹ 2∙3 ▹ 2∙5 ▹ 2∙7 ▹ … ▹ 22∙3 ▹ 22∙5 ▹ 22∙7 ▹ … 
▹ 2n∙3 ▹ 2n∙5 ▹ 2n∙7 ▹ ... ▹ 23 ▹ 22 ▹ 2 ▹ 1. 
where a ▹ b means a precedes b in the order. 

• Theorem: Suppose that F is a continuous function having a point x* of  
period m: Fm(x*) = x*. Then it has a point with period n if m ▹ n. 

• In particular, if x = F(x) has a 3-periodic solution (m = 3), then it has a 
periodic solution of every possible period.

• “Period three implies chaos," by Li and Yorke, 1975. 
• With some windows in chaos where a periodic solution may be stable.
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Period Doubling Route to Chaos

x(t +1) =1−λx2 (t)
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Property 3: Dense set of periodic solutions
x(t +1) =1−λx2 (t)
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Property 3: Dense set of periodic solutions
x(t +1) =1−λx2 (t)
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Property 3: Dense set of periodic solutions
x(t +1) =1−λx2 (t)
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Property 3: Dense set of periodic solutions
x(t +1) =1−λx2 (t)
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Property 3: Dense set of periodic solutions
x(t +1) =1−λx2 (t)
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