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Property 1: Irregular trajectories

x(t+1)=1-Ax(¢)

dA=1.06




Chua’s Circuit

X, =a(=x,— f(x)+x,) I
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X, =a(=x,— f(x)+x,)

Xy =X — Xy + X5

X3 = _/J)xz

da=9
a3 =100/7
d my=-8/7
d m,=-5/7
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Chua’s Circuit

X, =a(=x,— f(x)+x,)

Xy =X — Xy + X5
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Chua’s Circuit

X, =a(=x,— f(x)+x,)

Xy =X — Xy + X5

Xy =—px,
X, =2x,

X, ==2Xx,
X, =27X,
X, =—-27x,
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Property 2: Sensitivity to initial conditions
[ A feature of
nonlinear systems /
that solutions are
bounded and F~
2

depend on initial
conditions.

1 But they do not
always repel each
other.

1 In a chaotic
system, yes.




Property 2: Sensitivity to initial conditions

x(t+1)=1-Ax(¢)

AA1=10
d x,=-0.85
1 x,=-0.85085




Property 2: Sensitivity to initial conditions

x(t+1)=1-Ax(¢)

dA=16 ” ”
d x,=-0.85 o6 M
0 x, = -0.85000085 .




Lyapunov Exponents for 1-dim Maps

3 x(t + 1) = F(x(t)) with F: R - R continuously differentiable (C")

d Let x(t), X(t) be two solutions s. t. |[Ax(0)| = |X¥(0) — x(0)] is small.

3 Then Ax(t) = %(t) — x(t) = ®(t, %(0)) — ®(¢,x(0)) evolves approx. as
Ax(t) = M(t)Ax(0)

with M(t) = — (t x(0)).
3 Variational Equation: M(t + 1) = —(x(t))M(t)

0 Therefore M(t) = 2= (x(t — 1)) 5= (x(t — 2)) = 2= (x(1)) 2 (x(0)) M (0)

1 Let us set a(t) such that IleEct);ll et Then

_1 Ax(D)] 1
@0 =N 0] ?Z,

(x(ﬂ)
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Lyapunov Exponents for 1-dim Maps

x(t + 1) = F(x(¢)) with F: R - R continuously differentiable (C')
Let us set a(t) such that :Axg';;ll e?Ot Then
L 1ax@l 1 — |OF
a(t) = | ] _Z In
|AX(0)| t

a(t) is the time-average exponential speed of growth or contraction in
[0,f] along solution x(t). Can be computed along any solution x(t).

If the limit exists,

1
a = lim — In
tooo t
7=0

is the Lyapunov exponent of solution x(t).
If @« < 0, the solution x(t) is asymptotically stable.
If « > 0, the solution x(t) is unstable.

If all solutions are bounded and (almost all) have a positive Lyapunov
exponent a > 0, then the system is chaotic.

0F
- (x(@®)
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Lyapunov Exponents: Examples

1 If the limit exists, the Lyapunov exponent of solution x(t) is

1 oF
a = tll_)Iglo? In a(x(r))
7=0
1 If x(t) converges to a fixed point x,
a =In|— (x)‘

A If x(t) converges to a T- periodic solutlon E=(&,8&, &),

TZln 7@
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Example: Lyapunov Exponent of Logistic Map

x(t+1)=1-Ax(¢)

4 1=0.9

-0.5F

unstable fixed point (Z ~ 0.6360)

stable periodic solution
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1teration
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Lyapunov Exponents: Examples

1 If the limit exists, the Lyapunov exponent of solution x(t) is

1 oF
a = tll_)rglo? In a(x(r))
7=0
[ If x(t) converges to a fixed point f
a =In|— (x)‘

A If x(t) converges to a T- periodic solutlon E=(&,8&, &),

TZln 7@

(1 Does not add anything compared to computing the Jacobian.

1 If the system is chaotic, how to compute a?

@ Predict long term behavior of x(t) from deterministically chosen x(0)? Difficult, even
impossible in a chaotic system when initial data have limited precision.

@ Predict long term behavior of x(t) from randomly chosen x(0)? Use tools from ergodic
theory.




Elements from the Theory of Ergodic

Dynamical Systems.
1 Probability Space (Q,%,P)

® Sample space Q
® Sigma-algebra X
® Probability measure P

d Transformations F: Q — Q
® Measurable
® Measure-preserving
® Invariant set
1 Ergodic Transformations F: Q — Q
® Ergodic transformation
® Mixing transformations
® Birkhoff Ergodic Theorem

14



Probability Space (Q2,%,P)
1 Sample space Q = {elementary events}

1 oc—algebra X = {events %} = {subsets of Q2, including @ and Q}
® closed under Complement: If it contains %; it also contains £ = Q\Z;
® closed under countable (finite or infinite) union of events.

1 Probability measure P: ¥ — [0,1], with
® P(?) =0 and
® P(U;%) = ),; P(%) for countable (finite or infinite) seq. of disjoint sets X, € X.
1 If Qis a countable set,
® Largest c—algebra X = power set of all its subsets (default c—algebra)
Ex: Q={a,b,c} = X = {0.{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}}
Smallest c-algebra = = {@, 3}
Ex: Q={ab,c} = X ={0.{a,b,c}}

If A is a (collection of) subset(s) of Q, c—algebra generated by A = Smallest
c—algebra that includes A.

® Ex:Q={a,b,c}and A={a} = X ={0.{a},{b,c},{a,b,c}}.

1 If Qis a non-countable set, need to specify c—algebra .
® Ex: QO =R = c—algebra generated by all open intervals in R. 15



Probability Space (Q2,X,P): Examples

1 Example 1: Single dice roll
® Sample space Q={1,2,3,4,5,6}

-2t- ® o-algebra X = power set of all its subsets =
.o {0,{1},{2},{3},{4},{5},{6},{1,2},...,{2,3,4,5,6},{1,2,3,4,5,6}}

® Probability measure P : ¥ — [0,1]

P({1}) = P({2}) = P({3}) = P({4}) = P({3}) = P({6}) = 1/6.

1 Example 2: Repeated dice roll
® Sample space Q ={w | ® = (04, ®2, ®3,...)} With o; € {1,2,3,4,5,6}.
® 'cylinder’ c—algebra X~ generated by cylinder subsets
. y S (i) i) (i) = (@03, = J1, @i, = o, ..., @i, = jin} fOr sOme
- :{ '\-< / finteneN’, i; < i, <--<i, € Nandj, j,,..., j, €{1,2,3,4,5,6}.
o(«*"} ® Probability measure P : £ — [0,1]
o P(S 1,10 2,72) - (img D) = (116)".

S

®
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Probability Space (Q2,X,P): Examples

1 Example 3: Uniform distribution on [0,1)
® Sample space Q=[0,1)

® Borel c—algebra X of [0,1) = smallest c—algebra containing [a,b),

(a,b), (a,b], [a,b] forall 0 <sa<b<1.

® Probability measure P = Lebesgue measure P : ¥ — [0,1]
P([a,b)) = P((a,b)) = P((a,b]) = P([a,b]) = b-a.

17



Measurable and Measure-Preserving

Transformations
1 Probability space (2, =, P)

1 Transformation F: Q — Qis
® Measurable if F-1(A) € X for all A € X.

® Measure preserving if F is measurable and P(F-1(A)) = P(A) for all A € X.
P is then an invariant measure under F.

[ A € X is an invariant set under F if F-1(A) = A.

1 Example 1 (continued) : F = Permutation
® Measure preserving
® Invariant sets:

® 1 2 3 4 5 6
F(o) 2 1 4 6 3 5
® 1 2 3 4 5 6

F(o) 6 1 2 3 4 5




Measurable and Measure-Preserving

Transformations
1 Example 2 (continued) : F = Left shift transformation

® F((Dla 07, 03, ) = ((029 (03, W4, )
® 'cylinder’ c—algebra X generated by cylinder subsets

) ’ S (i1, j) o)t ) = 1101 = J1, 04 = Jz, e, @4, = J} fOr SOMeE
WA finteneN’,i; < i, <--<i, € Nandj, j,,..., j, €{1,2,3,4,5,6}.
S5 @ FN (S0 ndn)) T S+ i+ 1) - (in+ 1,7n)

® Measure preserving
® Set S(ilijl)(iz»jz)---(in:jn) IS not invariant.

19



Measurable and Measure-Preserving

Transformations

1 Example 3 (continued) : F =
Bernouilli map on Q=1[0,1)
® F(x)=2x mod 1.
e F'([a,b)) =[a/2,b/2) U [(a+1)/2,(b+1)/2)
® Measure preserving
® [a,b)is notinvariantif0 <a<b<1.
® [0,1) is invariant
® Q N[0,1)is invariant

1/2
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Ergodic Transformations

1 Probability space (2, Z, P)

1 Let F: Q — Q be a measure preserving transformation.

1 F is ergodic if for any set A € X that is invariant under F,
P(A)=0orP(A)=1.

(1 Then the invariant measure P is an ergodic measure w.r.t. F.

d F is not ergodic w.r.t. P & there is a non trivial Q’ c Q, P, # P,
both invariant under F and such that P,(Q2’) = 1, P,(©2’) = 0 and
some 0 <A<1withP=AP,+ (1-1)P,.

A F is ergodic w.r.t. invariant P if its only invariant sets are QQ and @.

A F is mixing if for any two sets A, B € %,
lim .. P(A N F-NY(B)) =P(A)P(B).
1 F is mixing = F is ergodic (proof : take B = A an invariant set
under F).

21



Ergodic Transformations

1 Example 1 (continued) : F = Permutation

® 1 2 3 4 5 6
“w F(o) 2 1 4 6 3 5

® Plo}))=16ifo=1,2, 34,5, 6.

F is not ergodic for P < there is a non trivial Q° € Q, P, # P, both invariant
under F and such that P{(Q2’) =1, Po(Q2’)=0and some 0 <A <1 withP =4
Py + (1-1)P>

Pi({w}) =1/2if ® =1, 2 and O otherwise invariant under F
P>({w})=1/4if o = 3, 4,5, 6 and O otherwise invariant under F

Q’ ={1,2} non trivial = P4(Q’) = 1and P,(Q2’) =0

P=XP;+ (1-A)Pyforx =1/3

Therefore F is not ergodic.

22



Ergodic Transformations

1 Example 1 (continued) : F = Permutation

e ® 1 2 3 4 5 6
o B F(o) 6 1 2 3 4 5

® P{n})=16ifo=1, 2,3, 4,5, 6 invariant under F.

® The only invariant sets are 2 and @ = F is ergodic.

® Mixing?

® Let A=B ={1}. Then F-N)(B) = {i} with i = 1 if and only if N mod 6 = 0.

® Therefore AN F-N(B)={1}ifNmod 6 =0and AN FN(B)=¢ and
lim \_ P(A N F-(N)(B)) does not exist.

® Therefore F is not mixing.

23



Ergodic Transformations

1 Example 2 (continued) : F = Left shift transformation
o F(Obl, 0y, M3, ) = ((02, 03 W4, )
® 'cylinder’ c—algebra X generated by cylinder subsets

‘)f’ Si1j) 2 (inn) = (01 W1, = 1, @, = Ja, ., @4y, = jn} for some
X :4-.\.'<.\/ finite n EN’, iy < iy < <i, €N'and jy, jpr..., jn € {1,2,3,4,5,6).
ST @ FS Gy i) lindn)) T S+ 1i0) o412 lin+ L)
® Measure preserving
® Sets A= S(i,j)) 22 linjn) BN B = Sy 1)z 1) . G lom)
® FN(B) = FN(St, 10tka10) Gmlim)) = Sy +N,11) (K +N,13) (ko 4N, L)
® Let N be large enough so that k; + N> i,
® Then AN FTN(B) = S(i,,11)(10,72)-(injm) s +N.11) (kg +N,Lo)...Gegm+ N, L)
® P(An FN(B)) = (1/6)™*™ = (1/6)" - (1/6)™ = P(A)P(B)
® F is mixing for cylinder sets, can show that it is mixing for all sets in Z.

24



Ergodic Transformations

1 Example 3 (continued) : F =
Bernouilli map on Q=1[0,1)
F(x) = 2x mod 1.
Measure preserving
Binary expansion of x = (b4, by, bs, ...)

F(x) =2xmod 1= Y2, b;;;277 mod 1

Binary expansion of F(x) = (by, b3, by, ...)

o
o
o
® x= Y72, b2
o
o
o

Left shift

1/2
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Birkhoff Ergodic Theorem

1 Probability space (Q, %, P)
1 Random variable f is a function f : QO — R that is measurable, i.e.

such that f1(B) € X for all B € X = Borel c—algebra of R (note: can
take X~ = o—algebra generated by subsets (-«,b] for all b € R).

1 Let F: Q — Q be a measure preserving transformation, and P be
an invariant measure under F(.).

[ Theorem. Let f be a P-integrable random variable (i.e., such that
E[|f]] < ). Then
® for P-almost all ® € Q (i.e., excent possibly for a set M such that P(M) = 0)
Jim ~YNZ3 f(F™ (w)) exists.
® if in addition F is ergodic, trieinfoi P-almost all ® € Q
lim 323 F(F™ () =

Expected
value E[f]
26



Elements from the Theory of Ergodic

Dynamical Systems.
1 Probability Space (Q,%,P)

® Sample space Q
® Sigma-algebra X
® Probability measure P

d Transformations F: Q — Q
® Measurable
® Measure-preserving
® Invariant set

1 Ergodic Transformations F: Q — Q
® Ergodic transformation
® Mixing transformations
® Birkhoff Ergodic Theorem

1 Back to Lyapunov Exponents.



Lyapunov Exponents for 1-dim Maps

3 x(t + 1) = F(x(¢)) with F: R - R continuously differentiable (C")

0 Let us set a(¢) such that 12Ol _ pa®t Then
|Ax(0)]

1 M@ 1
alt) = I o ?Z n

oF
Ix (x(D)

d a(t) is the time-average exponential speed of growth or contraction in
[0,f] along solution x(t). Can be computed along any solution x(t).

A If the limit exists,

1
a=]lim— ) In
tooo t
7=0
is the Lyapunov exponent of solution x(t).

1 How to compute it?

@ Predict long term behavior of x(t) from determinitstically chosen x(0)? Difficult, even
impossible in a chaotic system when initial data have limited precision.

@ Predict long term behavior of x(t) from randomly chosen x(0)? Use tools from ergodic
theory.

oF
M (x(D)

28



Lyapunov Exponents for 1-dim Maps

1 If the limit exists, the Lyapunov exponent of solution x(t) is

1~ |0F
a(x(f))

a=lim—- ) In
tooo t
=0
[ Birkhoff’'s Theorem (i): Let f be a P-integrable random variable. If F: Q —
() is a measure preserving transformation (i.e., P is an invariant measure

under F(+)), then for P-almost all ® € Q
. 1 — .
Jlim Y=o f(F™(w)) exists.
d Pick Q =R, f =1n|%/, | and w = x.

1 Theorem (i): If P is an invariant measure under F(+), then for P-almost all
solutions, then the Lyapunov exponent of solution x(t) exists.

29



Lyapunov Exponents for 1-dim Maps

1 If the limit exists, the Lyapunov exponent of solution x(t) is

1~ |0F
a(x(f))

a=lim—- ) In
tooo t
=0
(1 Birkhoff’'s Theorem (ii): Let f be a P-integrable random variable. If F: Q —
Q is (in addition) an ergodic transformation (i.e., P is an ergodic measure

with respect to F(+)), then for P-almost all ® € Q

N—-1
lim %;f(F(")(w)) = jﬂ f(w)dP((w))

N—oo

d Pick Q =R, f =1n|%/, | and w = x.

1 Theorem (ii): If P is (in addition) an ergodic measure under F(-), then for
P-almost all solutions,

a=f In

1 If the ergodic invariant measure is given by a density p(x)

® |0F
a = j_ooln a(x)‘p(x)dx 30

oF
= (0| aPeo)




Mixing Property of Bernouilli Map
x(t+1)=2x(t) modl

4 P([a,b)) = |b-a|.
. P is called the

Lebesgue
measure.

d dP(x) = dx

1/2 1



Mixing Property of Bernouilli Map

x(t+1)=2x(t) modl

4 P([a,b)) = |b-a|.
d P is invariant
under F(.).

d dP(x) = dx

1

A

1/2



Mixing Property of Bernouilli Map

x(t+1)=2x(t) modl

1 100 points )
chosen 0.8
randomly in 061
A=[0.3,0.4] ol
0.2+
-0.2 -
-0.6 -
-0.8
_10 0.1 0.2 0.3 O.‘4 0.5 0.6 0.7 0.8 O.‘9
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Mixing Property of Bernouilli Map

x(t+1)=2x(t) modl

[ Position of .
the 100
points after 2 0.6+
iterations o4r
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Mixing Property of Bernouilli Map

x(t+1)=2x(t) modl

[d Position of T
the 100 >R
points after 5 )
iterations 0.2]




Mixing Property of Bernouilli Map

x(t+1)=2x(t) modl

1 Position of
the 100 T
points after o
10 iterations 0.4
4 F is mixing °-2r
for P .
-> P is ergodic 0.4
with respect to ZZ
F(.). )
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Lyapunov Exponents of Bernouilli Map

1 Theorem (ii): If P is an
ergodic measure under F(-),
then for P-almost all
solutions, A

a = j_o:o In ‘g—i (x)‘ dP(x)

d Bernouilli map:

x(t+1) =2x(t) mod1
e 0=[01)

) g—i(x) =2 forallx € Q\ {1/,}
® dP(x) =dx

1 Therefore
a = folan dx=In2 >0
and the system is chaotic.

1

1/2 1



Lyapunov Exponent of Logistic Map

x(t+1)=1-Ax(¢)

D }\‘Z 16 ! x0|=—0.8

0.8 ___x0=0.2 B

0.6}

L]
0.4 — — S g
0.2 i
—~
“ —

~— ol

-0.2f

—0.4}

06|

-0.8F

-1

| | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000
1teration



Property 2: Sensitivity to initial conditions

X, =a(=x,— f(x)+x,)

Xy =X — Xy + X5

X3 = _/J)xz




Property 2: Sensitivity to initial conditions

X, =a(=x,— f(x)+x,)

Xy =X — Xy + X5
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iIc solutions

Dense set of periodi

Property 3

x(t+1)=1-

(1)

AXx

41
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Remember: Flip Bifurcation of Logistic Map

2
x(t+1)=1-Ax"(2) Flip bifurcation at A = 1 = 0.75

N T —

0.6

...
..-
L

;/A L- RETm

stable fixed point - unstable fixed point| v v \/ \/ \/ \/ \/ \/ \/ \/ \/
i stable pe/riod 2 cycle 4 ozf

Mo -
~0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
u
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Cascade of Period Doubling Bifurcations

Period Doubling Bifurcations:1 -2 -4 -8 —» ... —» 2"

Ratio of distances between consecutive bifurcation points = 4.669... =
Feigenbaum constant.

Windows in chaos, largest one with a stable 3-periodic solution,
followed by new period doubling cascade: 3 - 6 —» 12 - 24 — ...

44



Sarkovskii’s Theorem

Sarkovskii's ordering of natural numbers:

3»5» 70> ...>»23v 25> 27> .. » 223> 225> 227 » |

> 203 > 205 > 207 > > 23> 22> 2 > 1,

where a > b means a precedes b in the order.

Theorem: Suppose that F is a continuous function having a point x* of
period m: FM(x*) = x*. Then it has a point with period nif m » n.

In particular, if x = F(x) has a 3-periodic solution (m = 3), then it has a
periodic solution of every possible period.

“Period three implies chaos," by Li and Yorke, 1975.

With some windows in chaos where a periodic solution may be stable.

45




Period Doubling Route to Chaos

1-Ax°(2)

x(t+1)

)
05

06—

0

0
04
0
ad
04



Property 3: Dense set of periodic solutions
x(t+1) 1- )Lx (t) ‘
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Property 3: Dense set of periodic solutions
x(t+1) 1- )Lx (t) ‘

A gl m it m..m.l W I m M

| | | | | |
0 10 20 30 40 50 60 70 80 90 100
time
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Property 3: Dense set of periodic solutions
x(t+1) 1- )Lx (t) ‘

| | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
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Property 3: Dense set of periodic solutions
x(t+1) 1- )Lx (t) ‘
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