

Chaos

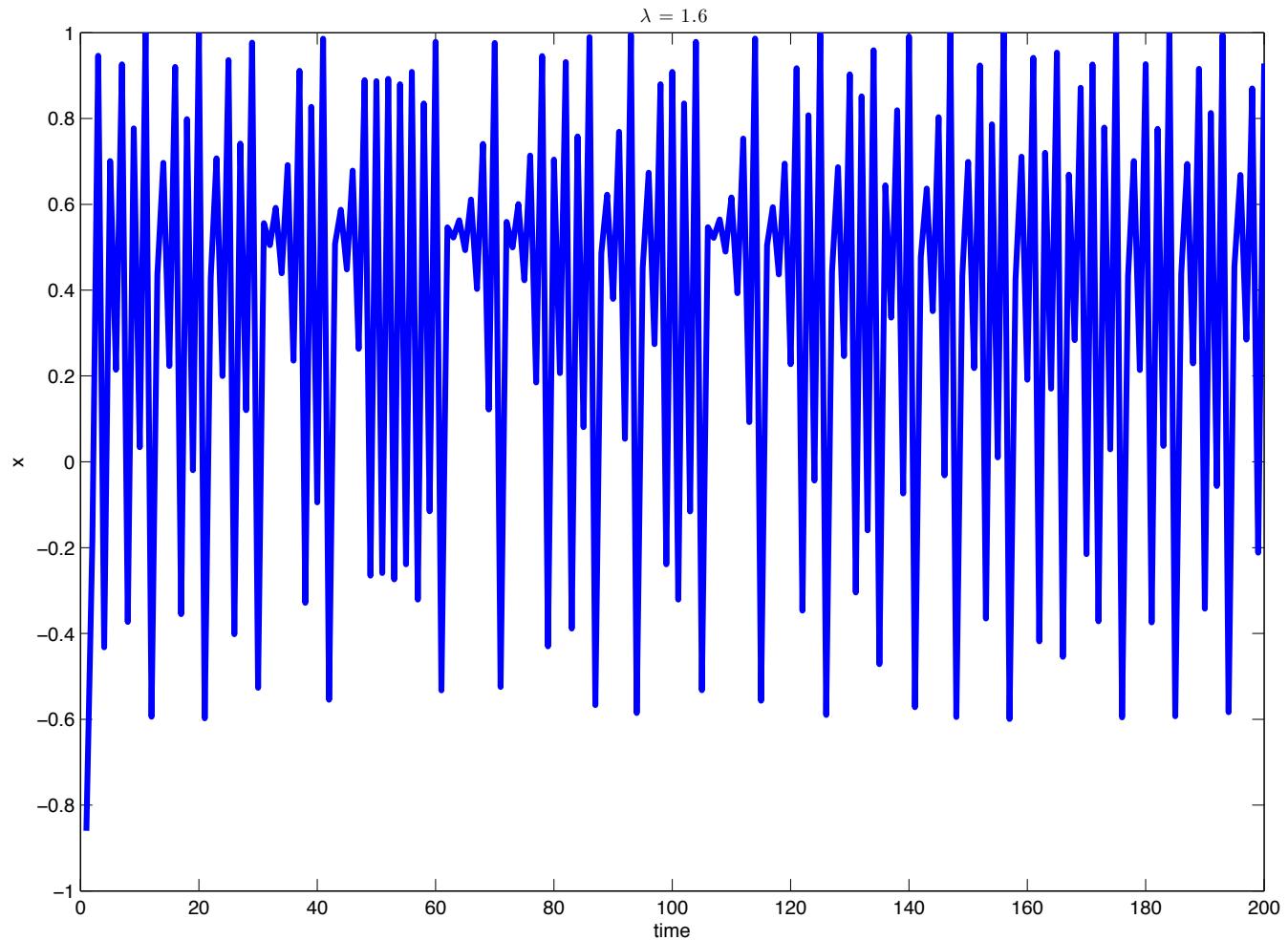
Martin Hasler and Patrick Thiran
EPFL

CH-1015 Lausanne
Patrick.Thiran@epfl.ch
<http://indy.epfl.ch>

Property 1: Irregular trajectories

$$x(t+1) = 1 - \lambda x^2(t)$$

□ $\lambda = 1.6$

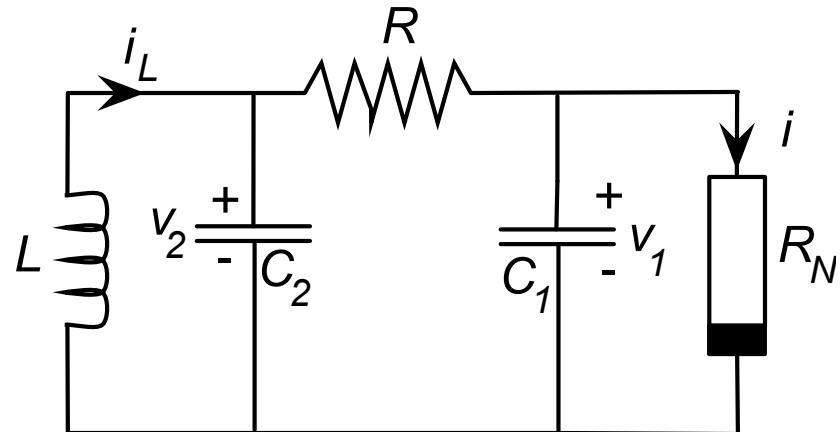


Chua's Circuit

$$\dot{x}_1 = \alpha(-x_1 - f(x_1) + x_2)$$

$$\dot{x}_2 = x_1 - x_2 + x_3$$

$$\dot{x}_3 = -\beta x_2$$

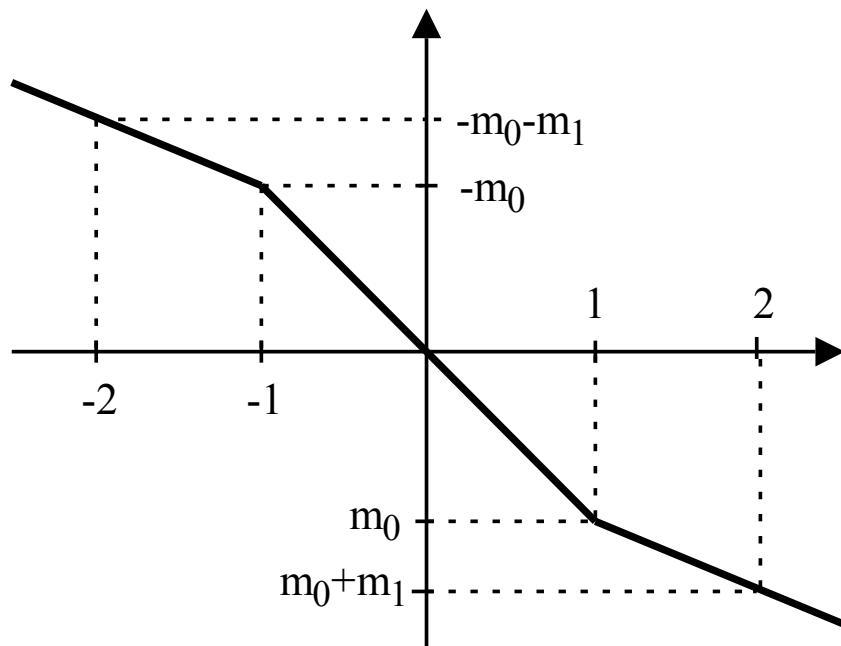


$\alpha = 9$

$\beta = 100/7$

$m_0 = -8/7$

$m_1 = -5/7$



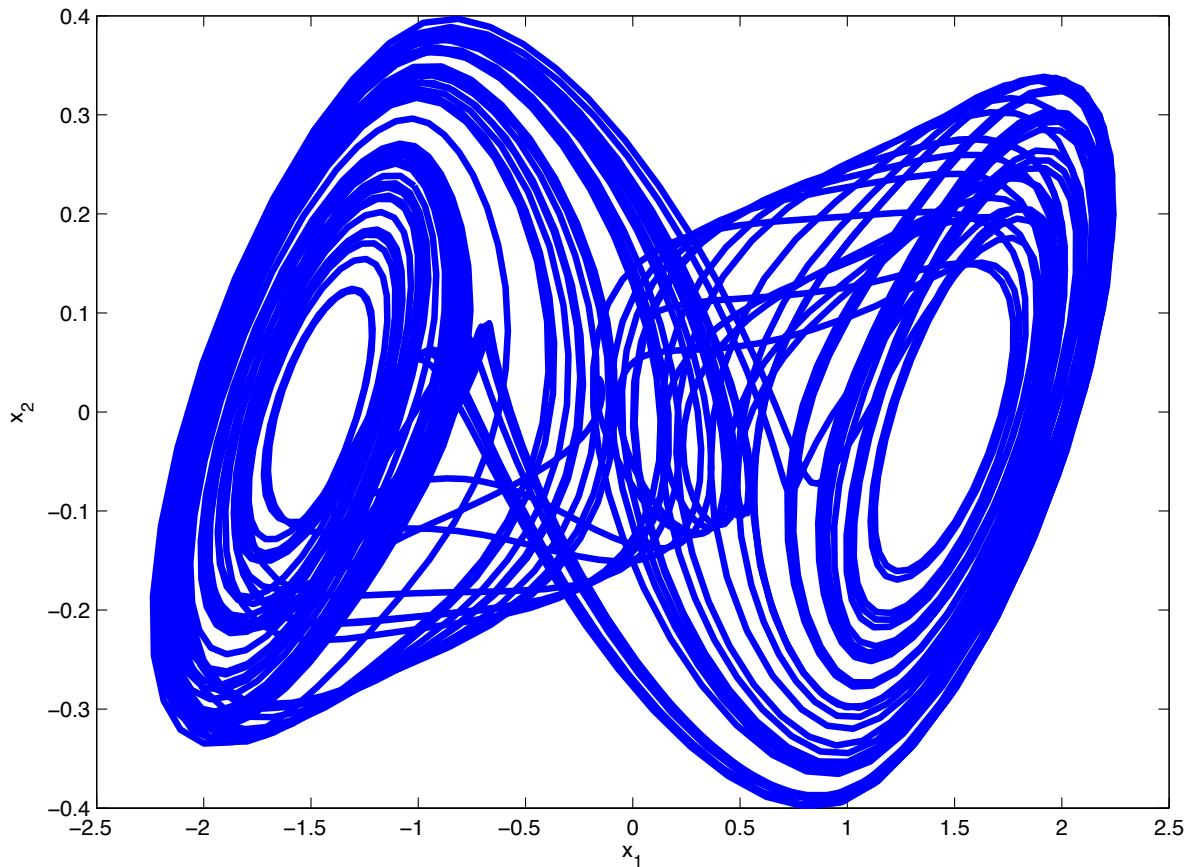
Chua's Circuit

$$\dot{x}_1 = \alpha(-x_1 - f(x_1) + x_2)$$

$$\dot{x}_2 = x_1 - x_2 + x_3$$

$$\dot{x}_3 = -\beta x_2$$

- $\alpha = 9$
- $\beta = 100/7$
- $m_0 = -8/7$
- $m_1 = -5/7$



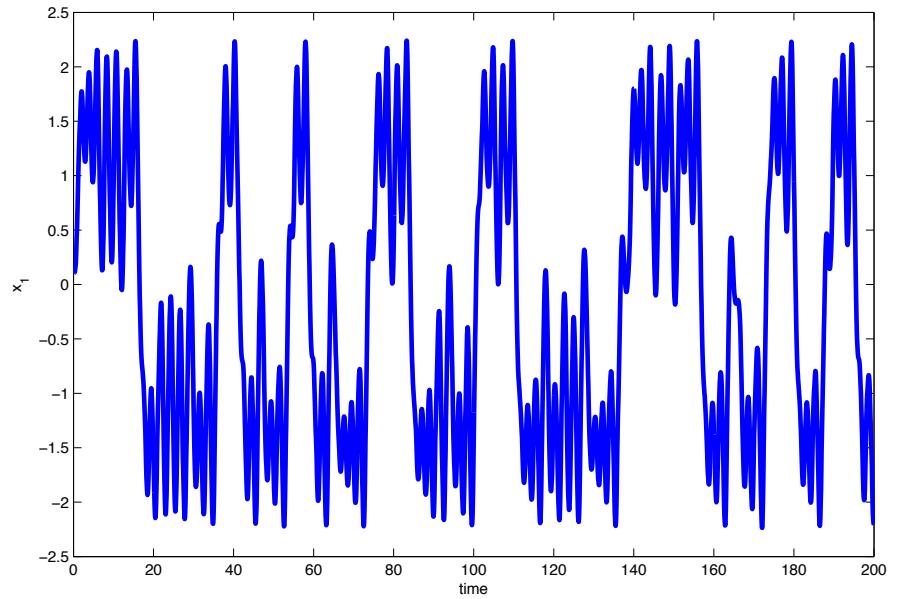
Chua's Circuit

$$\dot{x}_1 = \alpha(-x_1 - f(x_1) + x_2)$$

$$\dot{x}_2 = x_1 - x_2 + x_3$$

$$\dot{x}_3 = -\beta x_2$$

- $\alpha = 9$
- $\beta = 100/7$
- $m_0 = -8/7$
- $m_1 = -5/7$



Chua's Circuit

$$\dot{x}_1 = \alpha(-x_1 - f(x_1) + x_2)$$

$$\dot{x}_2 = x_1 - x_2 + x_3$$

$$\dot{x}_3 = -\beta x_2$$

$$\dot{x}_1 = 2x_2$$

$$\dot{x}_2 = -2x_1$$

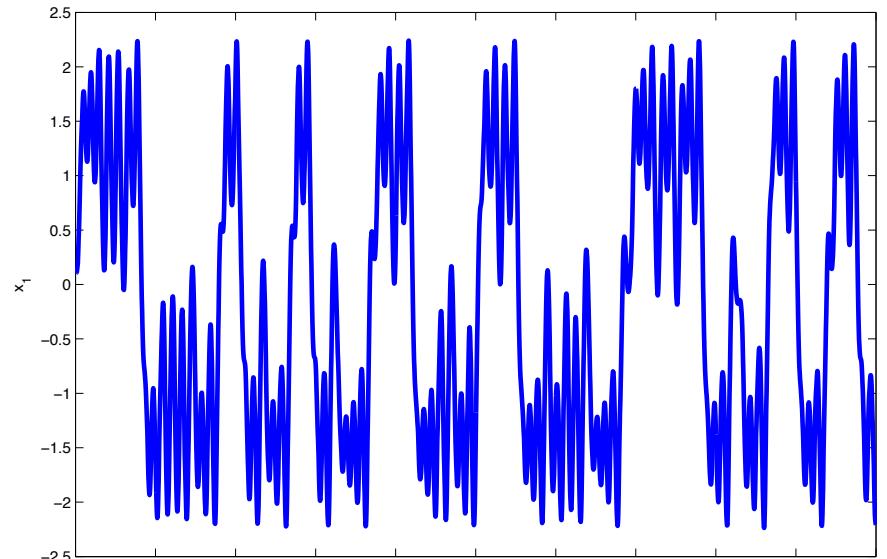
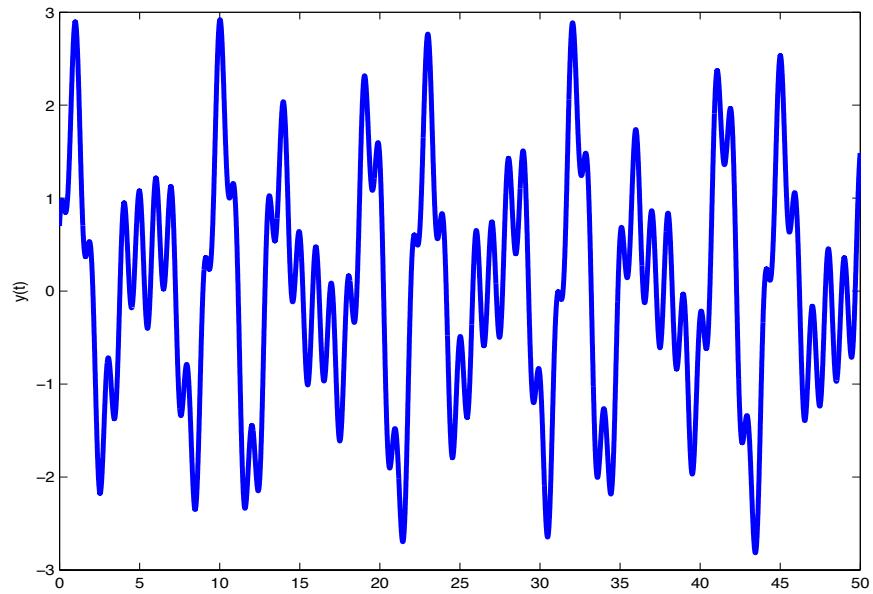
$$\dot{x}_3 = 2\pi x_4$$

$$\dot{x}_4 = -2\pi x_3$$

$$\dot{x}_5 = \sqrt{2}x_6$$

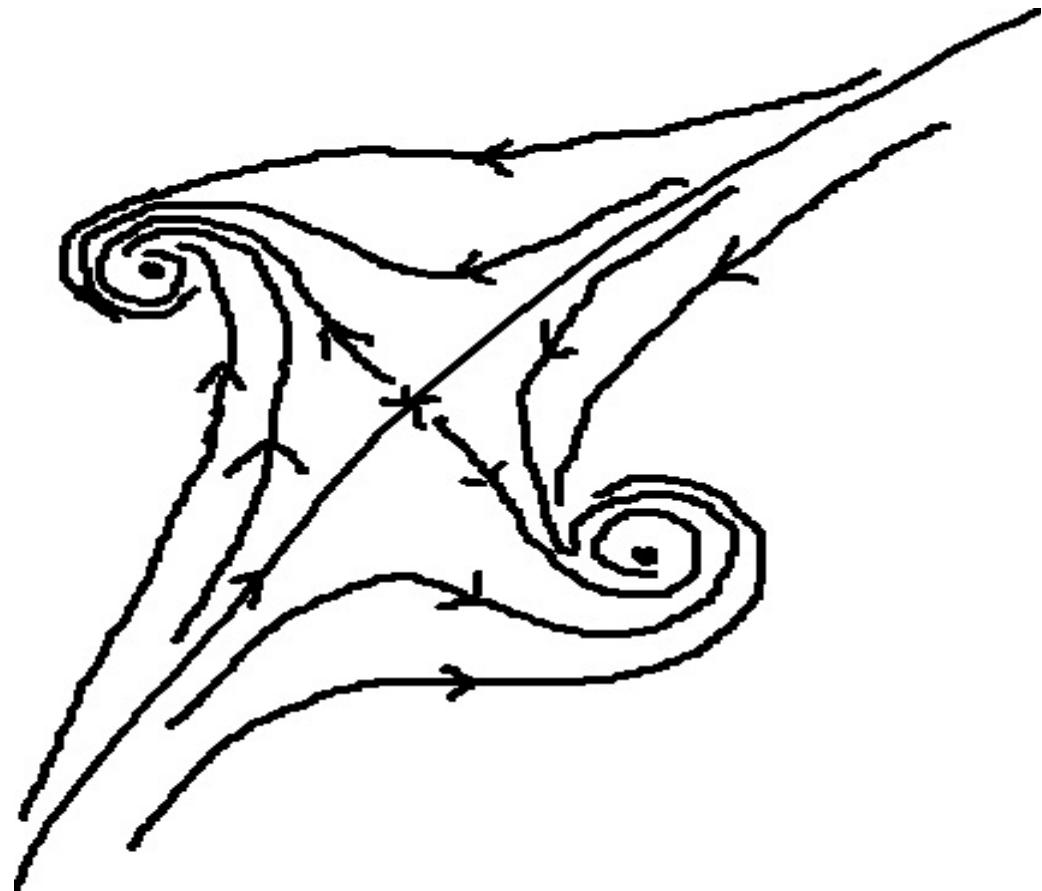
$$\dot{x}_6 = -\sqrt{2}x_5$$

$$y = x_1 + x_3 + x_5$$



Property 2: Sensitivity to initial conditions

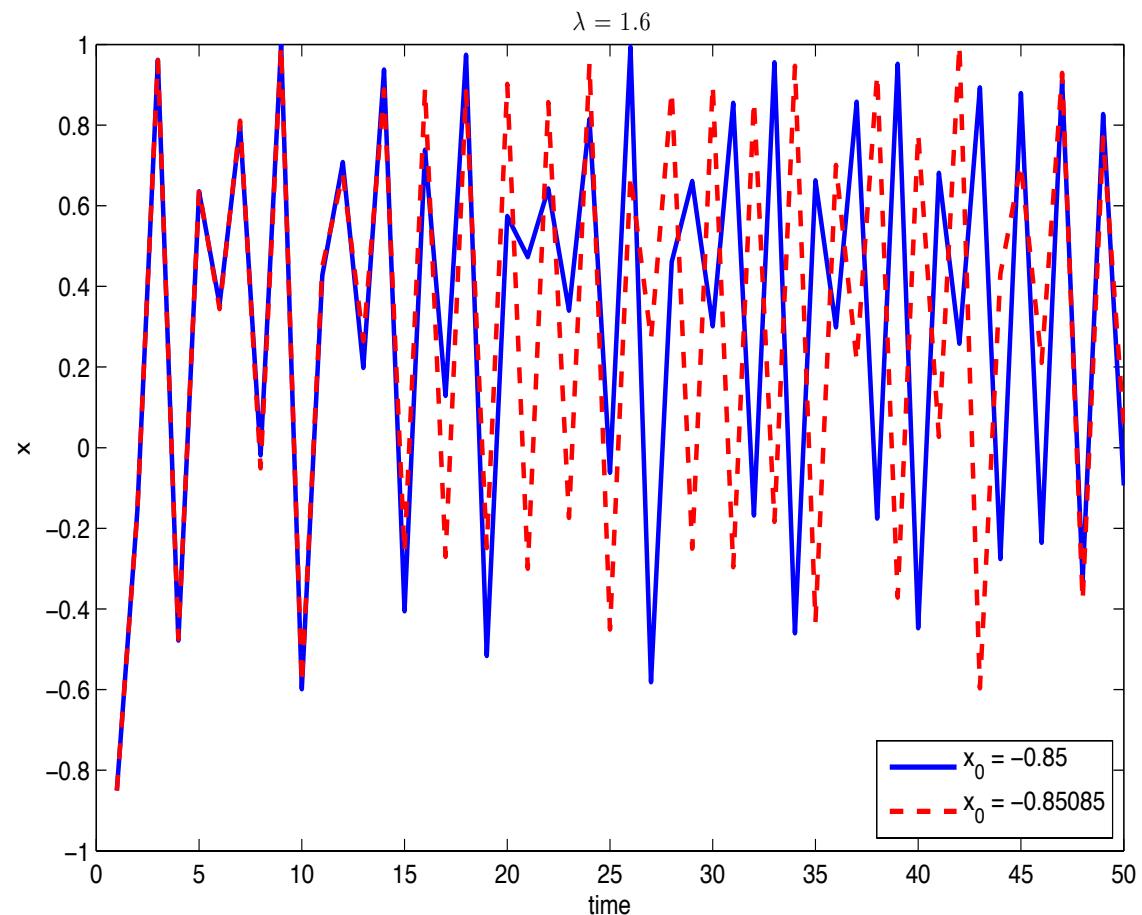
- ❑ A feature of nonlinear systems that solutions are bounded and depend on initial conditions.
- ❑ But they do not always repel each other.
- ❑ In a chaotic system, yes.



Property 2: Sensitivity to initial conditions

$$x(t+1) = 1 - \lambda x^2(t)$$

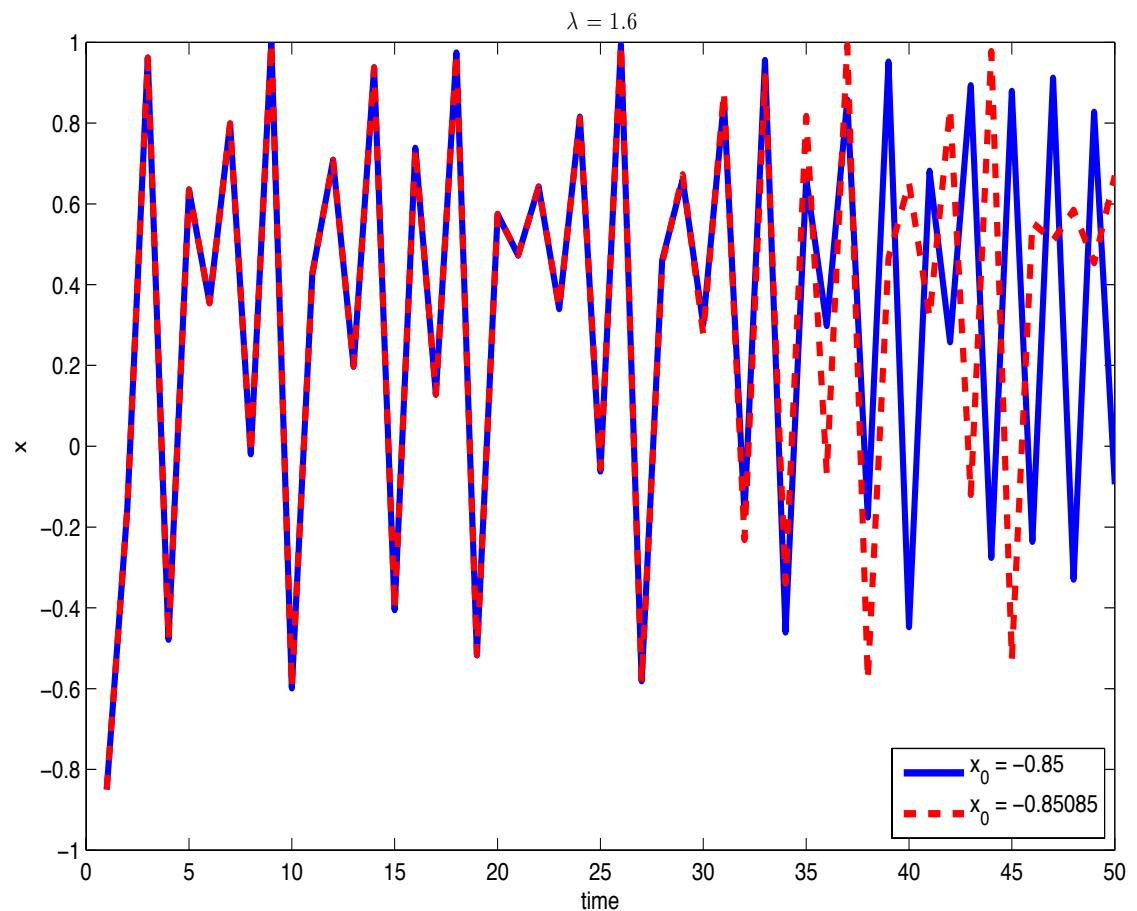
- $\lambda = 1.6$
- $x_0 = -0.85$
- $x_0 = -0.85085$



Property 2: Sensitivity to initial conditions

$$x(t+1) = 1 - \lambda x^2(t)$$

- $\lambda = 1.6$
- $x_0 = -0.85$
- $x_0 = -0.85000085$



Lyapunov Exponents for 1-dim Maps

- $x(t+1) = F(x(t))$ with $F: \mathbb{R} \rightarrow \mathbb{R}$ continuously differentiable (C^1)
- Let $x(t), \tilde{x}(t)$ be two solutions s. t. $|\Delta x(0)| = |\tilde{x}(0) - x(0)|$ is small.
- Then $\Delta x(t) = \tilde{x}(t) - x(t) = \Phi(t, \tilde{x}(0)) - \Phi(t, x(0))$ evolves approx. as
$$\Delta x(t) = M(t)\Delta x(0)$$
with $M(t) = \frac{\partial \Phi}{\partial x_0}(t, x(0))$.
- Variational Equation: $M(t+1) = \frac{\partial F}{\partial x}(x(t))M(t)$
- Therefore $M(t) = \frac{\partial F}{\partial x}(x(t-1)) \frac{\partial F}{\partial x}(x(t-2)) \cdots \frac{\partial F}{\partial x}(x(1)) \frac{\partial F}{\partial x}(x(0))M(0)$
- Let us set $\alpha(t)$ such that $\frac{|\Delta x(t)|}{|\Delta x(0)|} = e^{\alpha(t) \cdot t}$. Then

$$\alpha(t) = \frac{1}{t} \ln \frac{|\Delta x(t)|}{|\Delta x(0)|} \approx \frac{1}{t} \sum_{\tau=0}^{t-1} \ln \left| \frac{\partial F}{\partial x}(x(\tau)) \right|$$

Lyapunov Exponents for 1-dim Maps

- $x(t+1) = F(x(t))$ with $F: \mathbb{R} \rightarrow \mathbb{R}$ continuously differentiable (C^1)

- Let us set $\alpha(t)$ such that $\frac{|\Delta x(t)|}{|\Delta x(0)|} = e^{\alpha(t) \cdot t}$. Then

$$\alpha(t) = \frac{1}{t} \ln \frac{|\Delta x(t)|}{|\Delta x(0)|} \approx \frac{1}{t} \sum_{\tau=0}^{t-1} \ln \left| \frac{\partial F}{\partial x}(x(\tau)) \right|$$

- $\alpha(t)$ is the time-average exponential speed of growth or contraction in $[0, t]$ along solution $x(t)$. Can be computed along any solution $x(t)$.
- If the limit exists,

$$\alpha = \lim_{t \rightarrow \infty} \frac{1}{t} \sum_{\tau=0}^{t-1} \ln \left| \frac{\partial F}{\partial x}(x(\tau)) \right|$$

is the Lyapunov exponent of solution $x(t)$.

- If $\alpha < 0$, the solution $x(t)$ is asymptotically stable.
- If $\alpha > 0$, the solution $x(t)$ is unstable.
- If all solutions are bounded and (almost all) have a positive Lyapunov exponent $\alpha > 0$, then the system is chaotic.

Lyapunov Exponents: Examples

- If the limit exists, the Lyapunov exponent of solution $x(t)$ is

$$\alpha = \lim_{t \rightarrow \infty} \frac{1}{t} \sum_{\tau=0}^{t-1} \ln \left| \frac{\partial F}{\partial x} (x(\tau)) \right|$$

- If $x(t)$ converges to a fixed point \bar{x} ,

$$\alpha = \ln \left| \frac{\partial F}{\partial x} (\bar{x}) \right|$$

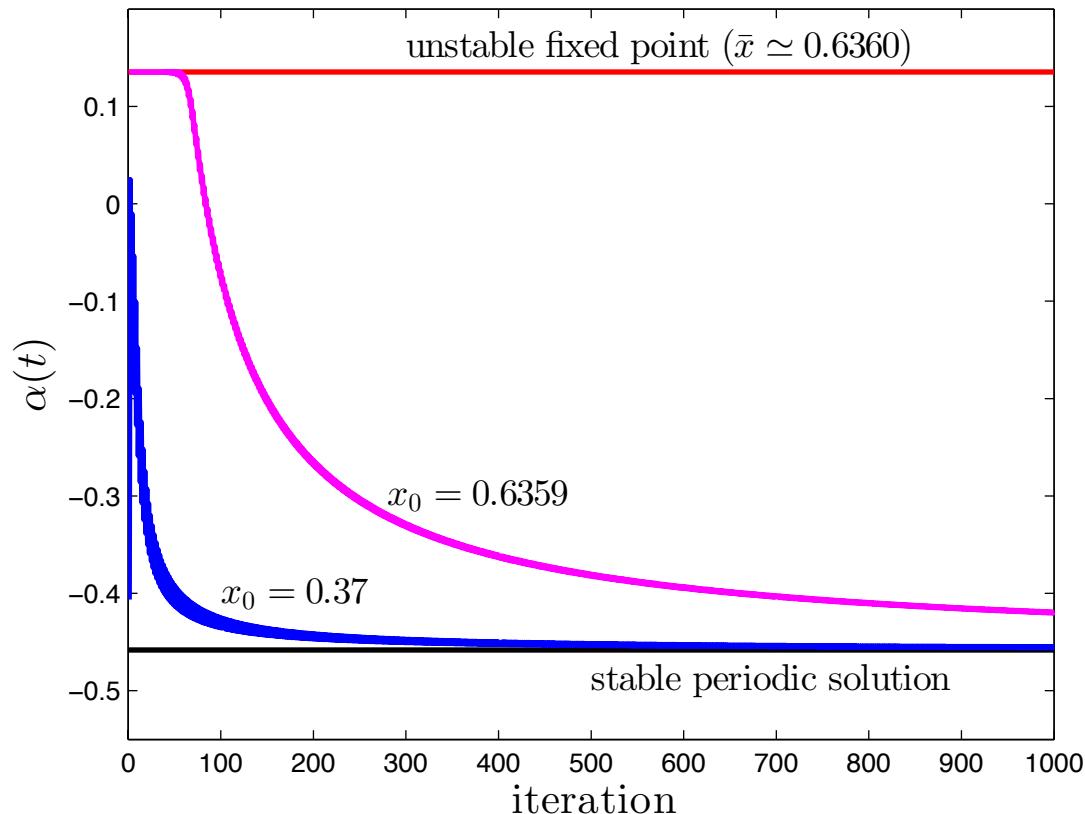
- If $x(t)$ converges to a T -periodic solution $\xi = (\xi_1, \xi_2, \dots, \xi_T)$,

$$\alpha = \frac{1}{T} \sum_{i=1}^T \ln \left| \frac{\partial F}{\partial x} (\xi_i) \right|$$

Example: Lyapunov Exponent of Logistic Map

$$x(t+1) = 1 - \lambda x^2(t)$$

□ $\lambda = 0.9$



Lyapunov Exponents: Examples

- If the limit exists, the Lyapunov exponent of solution $x(t)$ is

$$\alpha = \lim_{t \rightarrow \infty} \frac{1}{t} \sum_{\tau=0}^{t-1} \ln \left| \frac{\partial F}{\partial x} (x(\tau)) \right|$$

- If $x(t)$ converges to a fixed point \bar{x} ,

$$\alpha = \ln \left| \frac{\partial F}{\partial x} (\bar{x}) \right|$$

- If $x(t)$ converges to a T-periodic solution $\xi = (\xi_1, \xi_2, \dots, \xi_T)$,

$$\alpha = \frac{1}{T} \sum_{i=1}^T \ln \left| \frac{\partial F}{\partial x} (\xi_i) \right|$$

- Does not add anything compared to computing the Jacobian.

- If the system is chaotic, how to compute α ?

- Predict long term behavior of $x(t)$ from deterministically chosen $x(0)$? Difficult, even impossible in a chaotic system when initial data have limited precision.
- Predict long term behavior of $x(t)$ from randomly chosen $x(0)$? Use tools from ergodic theory.

Elements from the Theory of Ergodic Dynamical Systems.

□ Probability Space (Ω, Σ, P)

- Sample space Ω
- Sigma-algebra Σ
- Probability measure P

□ Transformations $F: \Omega \rightarrow \Omega$

- Measurable
- Measure-preserving
- Invariant set

□ Ergodic Transformations $F: \Omega \rightarrow \Omega$

- Ergodic transformation
- Mixing transformations
- Birkhoff Ergodic Theorem

Probability Space (Ω, Σ, P)

- Sample space $\Omega = \{\text{elementary events}\}$
- σ -algebra $\Sigma = \{\text{events } \Sigma_i\} = \{\text{subsets of } \Omega, \text{ including } \emptyset \text{ and } \Omega\}$
 - closed under Complement: If it contains Σ_i it also contains $\Sigma_i^c = \Omega \setminus \Sigma_i$
 - closed under countable (finite or infinite) union of events.
- Probability measure $P: \Sigma \rightarrow [0, 1]$, with
 - $P(\emptyset) = 0$ and
 - $P(\bigcup_i \Sigma_i) = \sum_i P(\Sigma_i)$ for countable (finite or infinite) seq. of disjoint sets $\Sigma_i \in \Sigma$.
- If Ω is a countable set,
 - Largest σ -algebra Σ = power set of all its subsets (default σ -algebra)
 - Ex: $\Omega = \{a, b, c\} \Rightarrow \Sigma = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$
 - Smallest σ -algebra $\Sigma = \{\emptyset, \Omega\}$
 - Ex: $\Omega = \{a, b, c\} \Rightarrow \Sigma = \{\emptyset, \{a, b, c\}\}$
 - If A is a (collection of) subset(s) of Ω , σ -algebra generated by A = Smallest σ -algebra that includes A .
 - Ex: $\Omega = \{a, b, c\}$ and $A = \{a\} \Rightarrow \Sigma = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$.
- If Ω is a non-countable set, need to specify σ -algebra Σ .
 - Ex: $\Omega = \mathbb{R} \Rightarrow \sigma$ -algebra generated by all open intervals in \mathbb{R} .

Probability Space (Ω, Σ, P) : Examples

□ Example 1: Single dice roll

- Sample space $\Omega = \{1, 2, 3, 4, 5, 6\}$
- σ -algebra $\Sigma = \text{power set of all its subsets} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{1, 2\}, \dots, \{2, 3, 4, 5, 6\}, \{\Omega\}\}$
- Probability measure $P : \Sigma \rightarrow [0, 1]$
 $P(\{1\}) = P(\{2\}) = P(\{3\}) = P(\{4\}) = P(\{5\}) = P(\{6\}) = 1/6.$

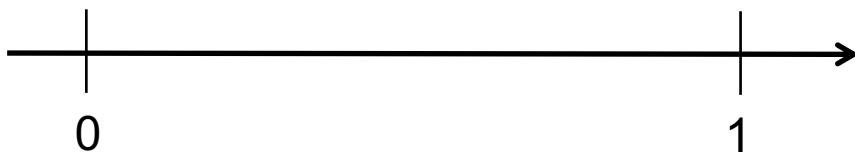
□ Example 2: Repeated dice roll

- Sample space $\Omega = \{\omega \mid \omega = (\omega_1, \omega_2, \omega_3, \dots)\}$ with $\omega_i \in \{1, 2, 3, 4, 5, 6\}$.
- "cylinder" σ -algebra Σ generated by cylinder subsets
 $S_{(i_1, j_1)(i_2, j_2) \dots (i_n, j_n)} = \{\omega \mid \omega_{i_1} = j_1, \omega_{i_2} = j_2, \dots, \omega_{i_n} = j_n\}$ for some finite $n \in \mathbb{N}^*$, $i_1 < i_2 < \dots < i_n \in \mathbb{N}^*$ and $j_1, j_2, \dots, j_n \in \{1, 2, 3, 4, 5, 6\}$.
- Probability measure $P : \Sigma \rightarrow [0, 1]$
 $P(\{S_{(i_1, j_1)(i_2, j_2) \dots (i_n, j_n)}\}) = (1/6)^n.$

Probability Space (Ω, Σ, P) : Examples

□ Example 3: Uniform distribution on $[0, 1]$

- Sample space $\Omega = [0, 1]$
- Borel σ -algebra Σ of $[0, 1]$ = smallest σ -algebra containing $[a, b)$, (a, b) , $(a, b]$, $[a, b]$ for all $0 \leq a \leq b \leq 1$.
- Probability measure P = Lebesgue measure $P : \Sigma \rightarrow [0, 1]$
$$P([a, b)) = P((a, b)) = P((a, b]) = P([a, b]) = b - a.$$



Measurable and Measure-Preserving Transformations

- ❑ Probability space (Ω, Σ, P)
- ❑ Transformation $F: \Omega \rightarrow \Omega$ is
 - Measurable if $F^{-1}(A) \in \Sigma$ for all $A \in \Sigma$.
 - Measure preserving if F is measurable and $P(F^{-1}(A)) = P(A)$ for all $A \in \Sigma$. P is then an invariant measure under F .
- ❑ $A \in \Sigma$ is an invariant set under F if $F^{-1}(A) = A$.
- ❑ Example 1 (continued) : $F = \text{Permutation}$
 - Measure preserving
 - Invariant sets:

ω	1	2		3	4	5	6
$F(\omega)$	2	1		4	6	3	5
ω	1	2	3	4	5	6	
$F(\omega)$	6	1	2	3	4	5	

Measurable and Measure-Preserving Transformations

□ Example 2 (continued) : F = Left shift transformation

- $F(\omega_1, \omega_2, \omega_3, \dots) = (\omega_2, \omega_3, \omega_4, \dots)$
- "cylinder" σ -algebra Σ generated by cylinder subsets
$$S_{(i_1, j_1)(i_2, j_2) \dots (i_n, j_n)} = \{\omega | \omega_{i_1} = j_1, \omega_{i_2} = j_2, \dots, \omega_{i_n} = j_n\} \text{ for some finite } n \in \mathbb{N}^*, i_1 < i_2 < \dots < i_n \in \mathbb{N}^* \text{ and } j_1, j_2, \dots, j_n \in \{1, 2, 3, 4, 5, 6\}.$$
- $F^{-1}(S_{(i_1, j_1)(i_2, j_2) \dots (i_n, j_n)}) = S_{(i_1+1, j_1)(i_2+1, j_2) \dots (i_n+1, j_n)}$
- Measure preserving
- Set $S_{(i_1, j_1)(i_2, j_2) \dots (i_n, j_n)}$ is not invariant.

Measurable and Measure-Preserving Transformations

□ Example 3 (continued) : $F =$
Bernouilli map on $\Omega = [0,1]$

- $F(x) = 2x \bmod 1$.
- $F^{-1}([a,b)) = [a/2,b/2) \cup [(a+1)/2,(b+1)/2)$
- Measure preserving
- $[a,b)$ is not invariant if $0 < a < b < 1$.
- $[0,1)$ is invariant
- $\mathbb{Q} \cap [0,1)$ is invariant



Ergodic Transformations

- ❑ Probability space (Ω, Σ, P)
- ❑ Let $F: \Omega \rightarrow \Omega$ be a measure preserving transformation.
- ❑ F is ergodic if for any set $A \in \Sigma$ that is invariant under F ,
 $P(A) = 0$ or $P(A) = 1$.
- ❑ Then the invariant measure P is an ergodic measure w.r.t. F .
- ❑ F is **not** ergodic w.r.t. $P \Leftrightarrow$ there is a non trivial $\Omega' \subset \Omega$, $P_1 \neq P_2$ both invariant under F and such that $P_1(\Omega') = 1$, $P_2(\Omega') = 0$ and some $0 < \lambda < 1$ with $P = \lambda P_1 + (1-\lambda)P_2$.
- ❑ F is ergodic w.r.t. invariant P if its only invariant sets are Ω and \emptyset .
- ❑ F is mixing if for any two sets $A, B \in \Sigma$,
$$\lim_{N \rightarrow \infty} P(A \cap F^{-(N)}(B)) = P(A)P(B).$$
- ❑ F is mixing $\Rightarrow F$ is ergodic (proof : take $B = A$ an invariant set under F).

Ergodic Transformations

□ Example 1 (continued) : $F = \text{Permutation}$

ω	1	2	3	4	5	6
$F(\omega)$	2	1	4	6	3	5

- $P(\{\omega\}) = 1/6$ if $\omega = 1, 2, 3, 4, 5, 6$.
- F is **not** ergodic for $P \Leftrightarrow$ there is a non trivial $\Omega' \subset \Omega$, $P_1 \neq P_2$ both invariant under F and such that $P_1(\Omega') = 1$, $P_2(\Omega') = 0$ and some $0 < \lambda < 1$ with $P = \lambda P_1 + (1-\lambda)P_2$
- $P_1(\{\omega\}) = 1/2$ if $\omega = 1, 2$ and **0 otherwise** invariant under F
- $P_2(\{\omega\}) = 1/4$ if $\omega = 3, 4, 5, 6$ and **0 otherwise** invariant under F
- $\Omega' = \{1,2\}$ non trivial $\Rightarrow P_1(\Omega') = 1$ and $P_2(\Omega') = 0$
- $P = \lambda P_1 + (1-\lambda)P_2$ for $\lambda = 1/3$
- Therefore F is not ergodic.

Ergodic Transformations

□ Example 1 (continued) : $F = \text{Permutation}$

ω	1	2	3	4	5	6
$F(\omega)$	6	1	2	3	4	5

- $P(\{\omega\}) = 1/6$ if $\omega = 1, 2, 3, 4, 5, 6$ invariant under F .
- The only invariant sets are Ω and $\emptyset \Rightarrow F$ is ergodic.
- Mixing?
- Let $A = B = \{1\}$. Then $F^{-(N)}(B) = \{i\}$ with $i = 1$ if and only if $N \bmod 6 = 0$.
- Therefore $A \cap F^{-(N)}(B) = \{1\}$ if $N \bmod 6 = 0$ and $A \cap F^{-(N)}(B) = \emptyset$ and $\lim_{N \rightarrow \infty} P(A \cap F^{-(N)}(B))$ does not exist.
- Therefore F is not mixing.

Ergodic Transformations

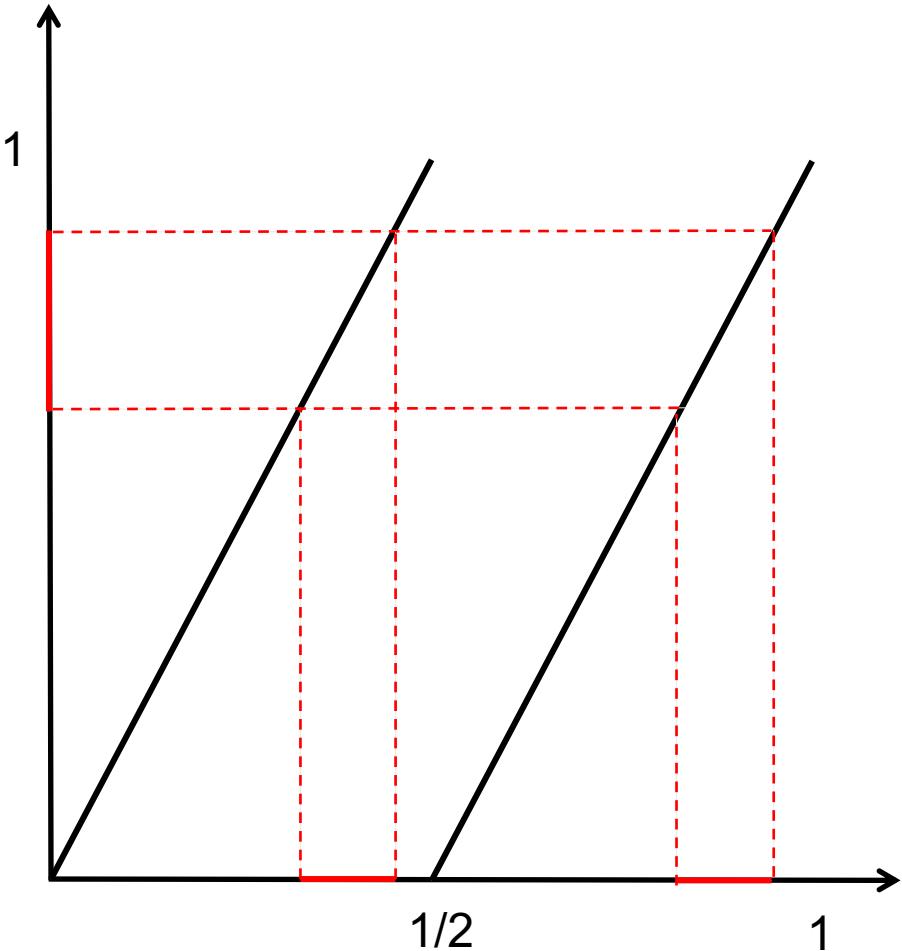
□ Example 2 (continued) : F = Left shift transformation

- $F(\omega_1, \omega_2, \omega_3, \dots) = (\omega_2, \omega_3, \omega_4, \dots)$
- "cylinder" σ -algebra Σ generated by cylinder subsets
$$S_{(i_1, j_1)(i_2, j_2) \dots (i_n, j_n)} = \{\omega | \omega_{i_1} = j_1, \omega_{i_2} = j_2, \dots, \omega_{i_n} = j_n\} \text{ for some finite } n \in \mathbb{N}^*, i_1 < i_2 < \dots < i_n \in \mathbb{N}^* \text{ and } j_1, j_2, \dots, j_n \in \{1, 2, 3, 4, 5, 6\}.$$
- $F^{-1}(S_{(i_1, j_1)(i_2, j_2) \dots (i_n, j_n)}) = S_{(i_1+1, j_1)(i_2+1, j_2) \dots (i_n+1, j_n)}$
- Measure preserving
- Sets $A = S_{(i_1, j_1)(i_2, j_2) \dots (i_n, j_n)}$ and $B = S_{(k_1, l_1)(k_2, l_2) \dots (k_m, l_m)}$
- $F^{-N}(B) = F^{-N}(S_{(k_1, l_1)(k_2, l_2) \dots (k_m, l_m)}) = S_{(k_1+N, l_1)(k_2+N, l_2) \dots (k_m+N, l_m)}$
- Let N be large enough so that $k_1 + N > i_n$
- Then $A \cap F^{-N}(B) = S_{(i_1, j_1)(i_2, j_2) \dots (i_n, j_n)(k_1+N, l_1)(k_2+N, l_2) \dots (k_m+N, l_m)}$
- $P(A \cap F^{-N}(B)) = (1/6)^{n+m} = (1/6)^n \cdot (1/6)^m = P(A)P(B)$
- F is mixing for cylinder sets, can show that it is mixing for all sets in Σ .

Ergodic Transformations

□ Example 3 (continued) : $F =$
Bernoulli map on $\Omega = [0, 1)$

- $F(x) = 2x \bmod 1$.
- Measure preserving
- Binary expansion of $x = (b_1, b_2, b_3, \dots)$
- $x = \sum_{i=1}^{\infty} b_i 2^{-i}$
- $F(x) = 2x \bmod 1 = \sum_{j=1}^{\infty} b_{j+1} 2^{-j} \bmod 1$
- Binary expansion of $F(x) = (b_2, b_3, b_4, \dots)$
- Left shift



Birkhoff Ergodic Theorem

- Probability space (Ω, Σ, P)
- Random variable f is a function $f : \Omega \rightarrow \mathbb{R}$ that is measurable, i.e. such that $f^{-1}(B) \in \Sigma$ for all $B \in \Sigma = \text{Borel } \sigma\text{-algebra of } \mathbb{R}$ (note: can take $\Sigma = \sigma\text{-algebra generated by subsets } (-\infty, b] \text{ for all } b \in \mathbb{R}$).
- Let $F : \Omega \rightarrow \Omega$ be a measure preserving transformation, and P be an invariant measure under $F(\cdot)$.
- Theorem. Let f be a P -integrable random variable (i.e., such that $E[|f|] < \infty$). Then
 - for P -almost all $\omega \in \Omega$ (i.e., except possibly for a set M such that $P(M) = 0$)
$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} f(F^{(n)}(\omega))$$
 exists.

- if in addition F is ergodic, then for P -almost all $\omega \in \Omega$

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} f(F^{(n)}(\omega)) = \int_{\Omega} f(\omega) dP(\omega)$$

Temporal
average

Expected
value $E[f]$

Elements from the Theory of Ergodic Dynamical Systems.

□ Probability Space (Ω, Σ, P)

- Sample space Ω
- Sigma-algebra Σ
- Probability measure P

□ Transformations $F: \Omega \rightarrow \Omega$

- Measurable
- Measure-preserving
- Invariant set

□ Ergodic Transformations $F: \Omega \rightarrow \Omega$

- Ergodic transformation
- Mixing transformations
- Birkhoff Ergodic Theorem

□ Back to Lyapunov Exponents.

Lyapunov Exponents for 1-dim Maps

- $x(t+1) = F(x(t))$ with $F: \mathbb{R} \rightarrow \mathbb{R}$ continuously differentiable (C^1)

- Let us set $\alpha(t)$ such that $\frac{|\Delta x(t)|}{|\Delta x(0)|} = e^{\alpha(t) \cdot t}$. Then

$$\alpha(t) = \frac{1}{t} \ln \frac{|\Delta x(t)|}{|\Delta x(0)|} \approx \frac{1}{t} \sum_{\tau=0}^{t-1} \ln \left| \frac{\partial F}{\partial x}(x(\tau)) \right|$$

- $\alpha(t)$ is the time-average exponential speed of growth or contraction in $[0, t]$ along solution $x(t)$. Can be computed along any solution $x(t)$.
- If the limit exists,

$$\alpha = \lim_{t \rightarrow \infty} \frac{1}{t} \sum_{\tau=0}^{t-1} \ln \left| \frac{\partial F}{\partial x}(x(\tau)) \right|$$

is the Lyapunov exponent of solution $x(t)$.

- How to compute it?
 - Predict long term behavior of $x(t)$ from deterministically chosen $x(0)$? Difficult, even impossible in a chaotic system when initial data have limited precision.
 - Predict long term behavior of $x(t)$ from randomly chosen $x(0)$? Use tools from ergodic theory.

Lyapunov Exponents for 1-dim Maps

- If the limit exists, the Lyapunov exponent of solution $x(t)$ is

$$\alpha = \lim_{t \rightarrow \infty} \frac{1}{t} \sum_{\tau=0}^{t-1} \ln \left| \frac{\partial F}{\partial x} (x(\tau)) \right|$$

- Birkhoff's Theorem (i): Let f be a P -integrable random variable. If $F: \Omega \rightarrow \Omega$ is a measure preserving transformation (i.e., P is an invariant measure under $F(\cdot)$), then for P -almost all $\omega \in \Omega$

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} f(F^{(n)}(\omega)) \text{ exists.}$$

- Pick $\Omega = \mathbb{R}$, $f = \ln \left| \frac{\partial F}{\partial x} \right|$ and $\omega = x$.
- Theorem (i): If P is an invariant measure under $F(\cdot)$, then for P -almost all solutions, then the Lyapunov exponent of solution $x(t)$ exists.

Lyapunov Exponents for 1-dim Maps

- If the limit exists, the Lyapunov exponent of solution $x(t)$ is

$$\alpha = \lim_{t \rightarrow \infty} \frac{1}{t} \sum_{\tau=0}^{t-1} \ln \left| \frac{\partial F}{\partial x} (x(\tau)) \right|$$

- Birkhoff's Theorem (ii): Let f be a P -integrable random variable. If $F: \Omega \rightarrow \Omega$ is (in addition) an ergodic transformation (i.e., P is an ergodic measure with respect to $F(\cdot)$), then for P -almost all $\omega \in \Omega$

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} f(F^{(n)}(\omega)) = \int_{\Omega} f(\omega) dP((\omega))$$

- Pick $\Omega = \mathbb{R}$, $f = \ln \left| \frac{\partial F}{\partial x} \right|$ and $\omega = x$.
- Theorem (ii): If P is (in addition) an ergodic measure under $F(\cdot)$, then for P -almost all solutions,

$$\alpha = \int_{-\infty}^{\infty} \ln \left| \frac{\partial F}{\partial x} (x) \right| dP(x)$$

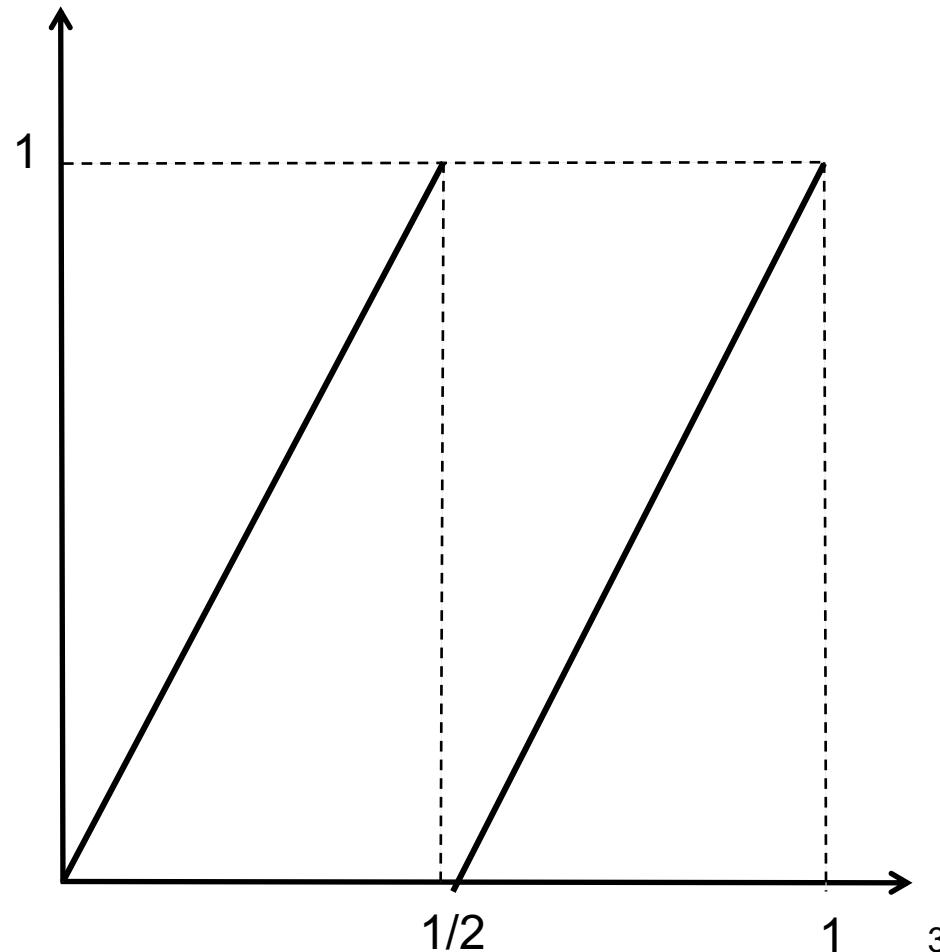
- If the ergodic invariant measure is given by a density $\rho(x)$

$$\alpha = \int_{-\infty}^{\infty} \ln \left| \frac{\partial F}{\partial x} (x) \right| \rho(x) dx$$

Mixing Property of Bernoulli Map

$$x(t+1) = 2x(t) \pmod{1}$$

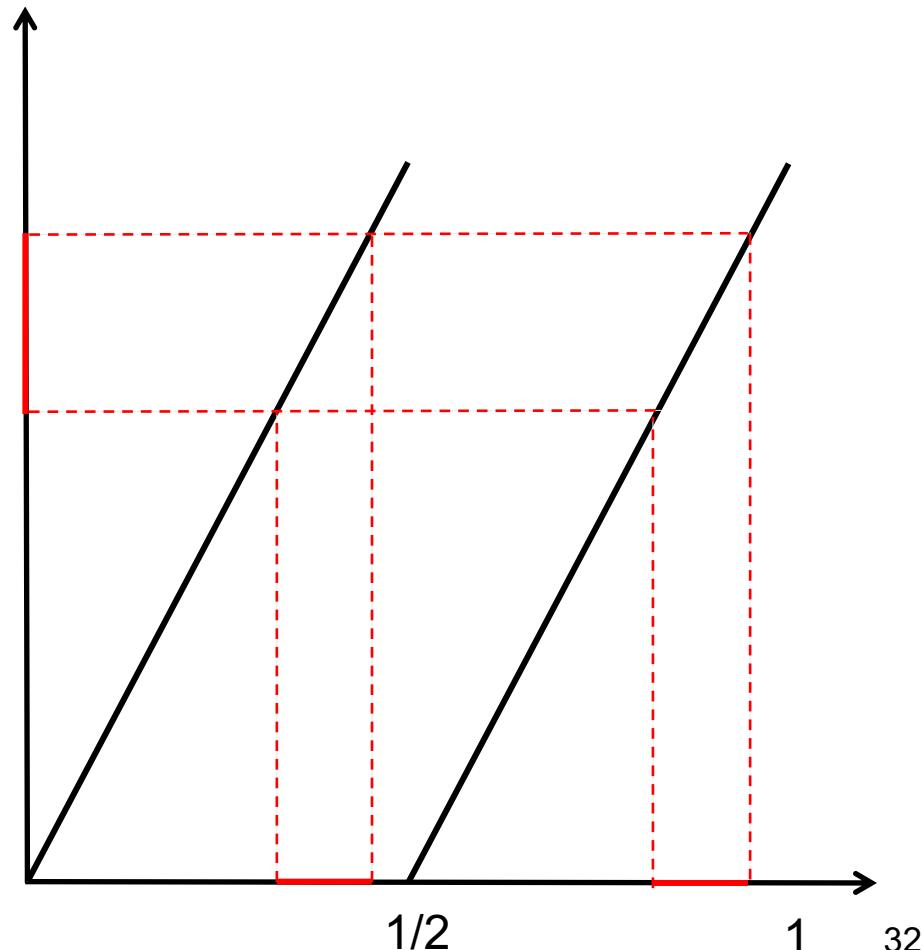
- $P([a,b)) = |b-a|$.
- P is called the Lebesgue measure.
- $dP(x) = dx$



Mixing Property of Bernoulli Map

$$x(t+1) = 2x(t) \pmod{1}$$

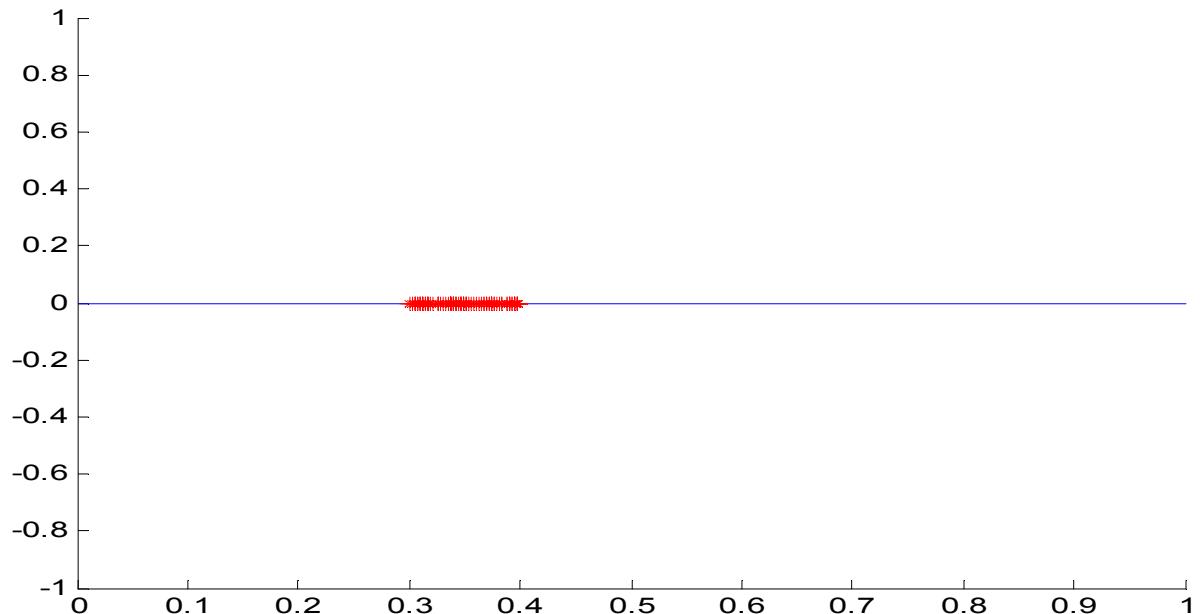
- ◻ $P([a,b)) = |b-a|$.
- ◻ P is invariant under $F(\cdot)$.
- ◻ $dP(x) = dx$



Mixing Property of Bernoulli Map

$$x(t+1) = 2x(t) \pmod{1}$$

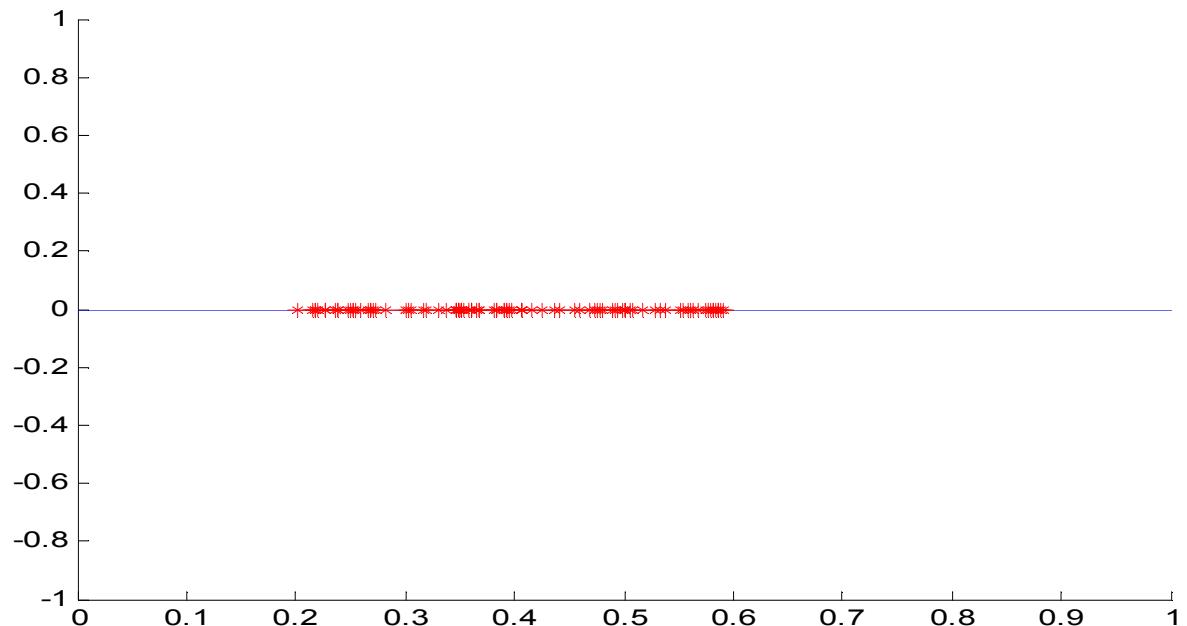
- 100 points chosen randomly in $A=[0.3,0.4]$



Mixing Property of Bernoulli Map

$$x(t+1) = 2x(t) \pmod{1}$$

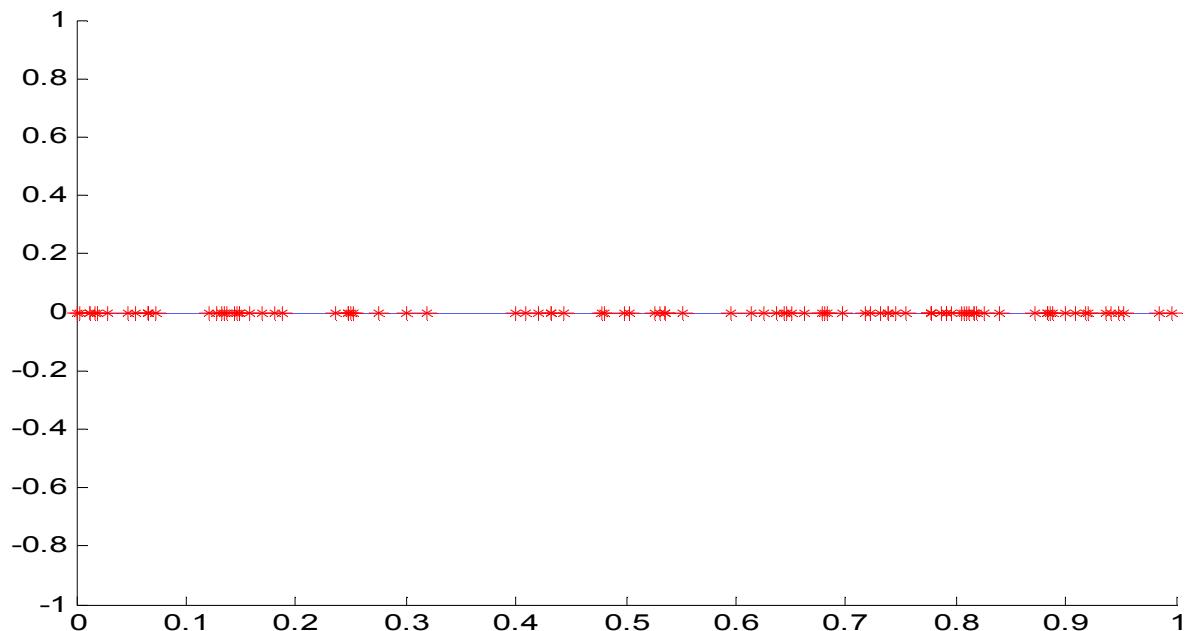
- Position of the 100 points after 2 iterations



Mixing Property of Bernoulli Map

$$x(t+1) = 2x(t) \pmod{1}$$

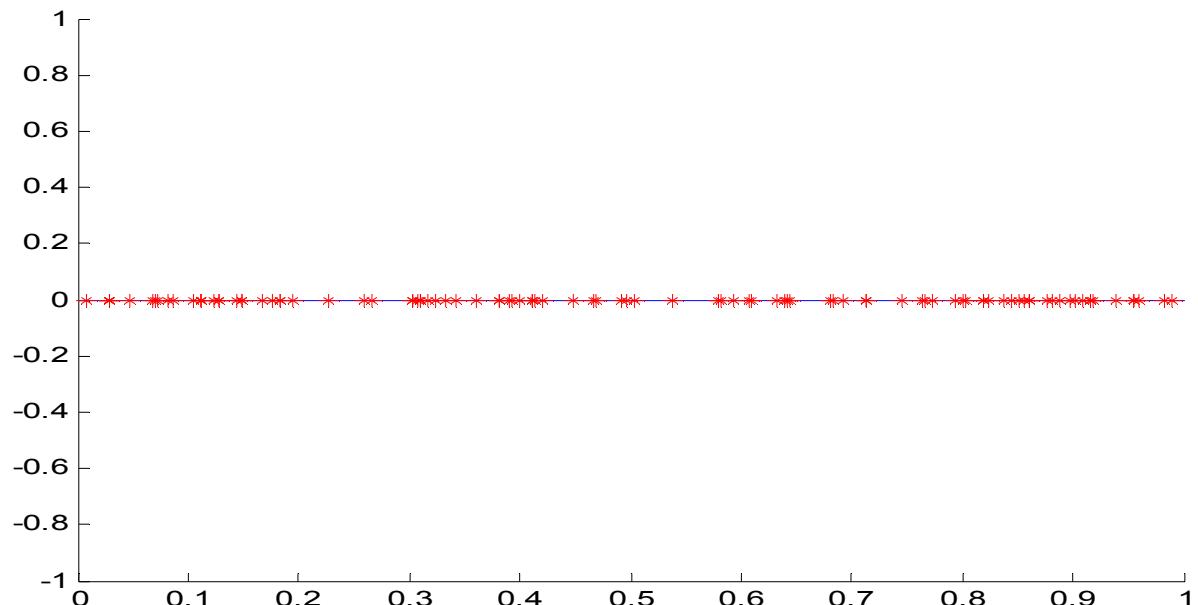
- Position of the 100 points after 5 iterations



Mixing Property of Bernoulli Map

$$x(t+1) = 2x(t) \pmod{1}$$

- Position of the 100 points after 10 iterations
- F is mixing for P
-> P is ergodic with respect to $F(\cdot)$.



Lyapunov Exponents of Bernoulli Map

- Theorem (ii): If P is an ergodic measure under $F(\cdot)$, then for P -almost all solutions,

$$\alpha = \int_{-\infty}^{\infty} \ln \left| \frac{\partial F}{\partial x} (x) \right| dP(x)$$

- Bernoulli map:

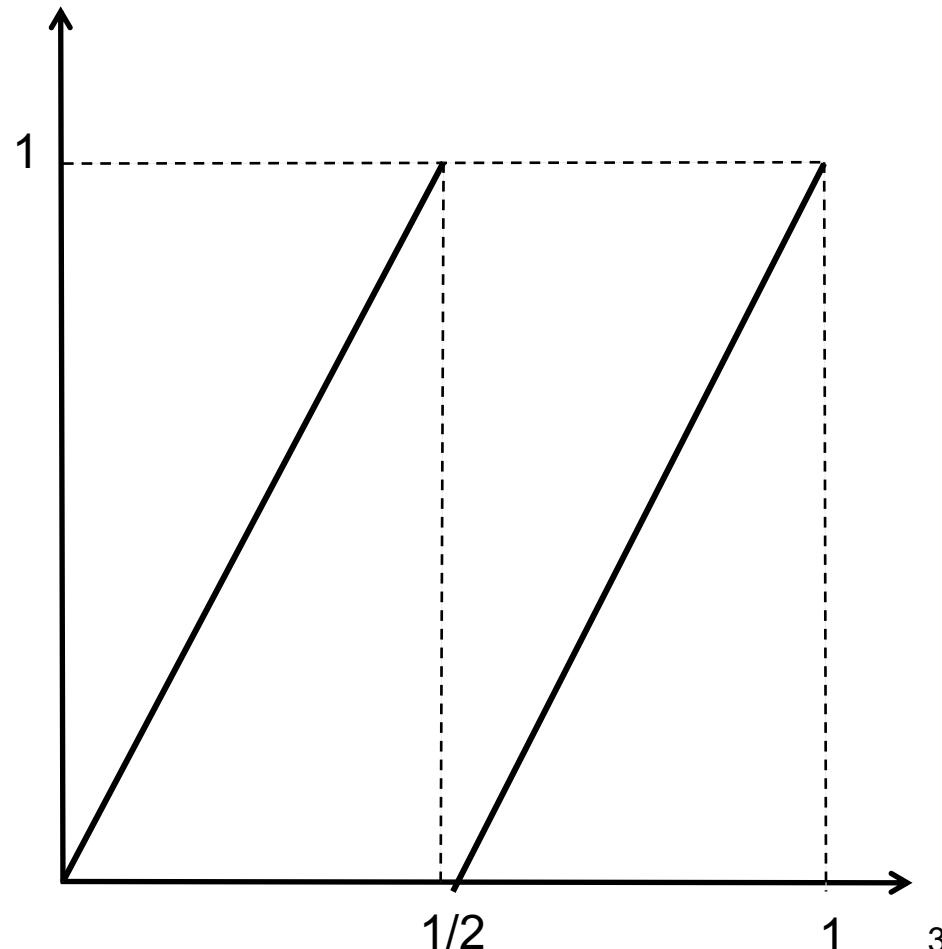
$$x(t+1) = 2x(t) \bmod 1$$

- $\Omega = [0,1)$
- $\frac{\partial F}{\partial x} (x) = 2$ for all $x \in \Omega \setminus \{1/2\}$
- $dP(x) = dx$

- Therefore

$$\alpha = \int_0^1 \ln 2 \, dx = \ln 2 > 0$$

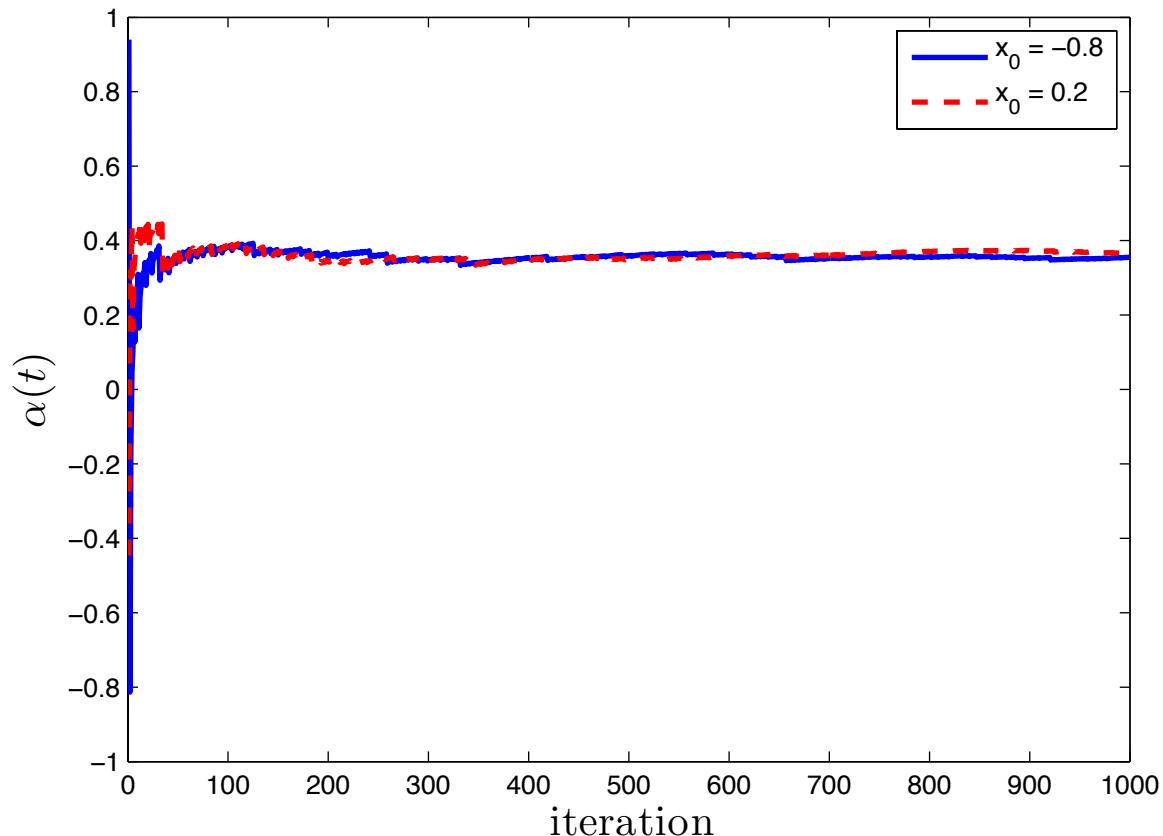
and the system is chaotic.



Lyapunov Exponent of Logistic Map

$$x(t+1) = 1 - \lambda x^2(t)$$

□ $\lambda = 1.6$

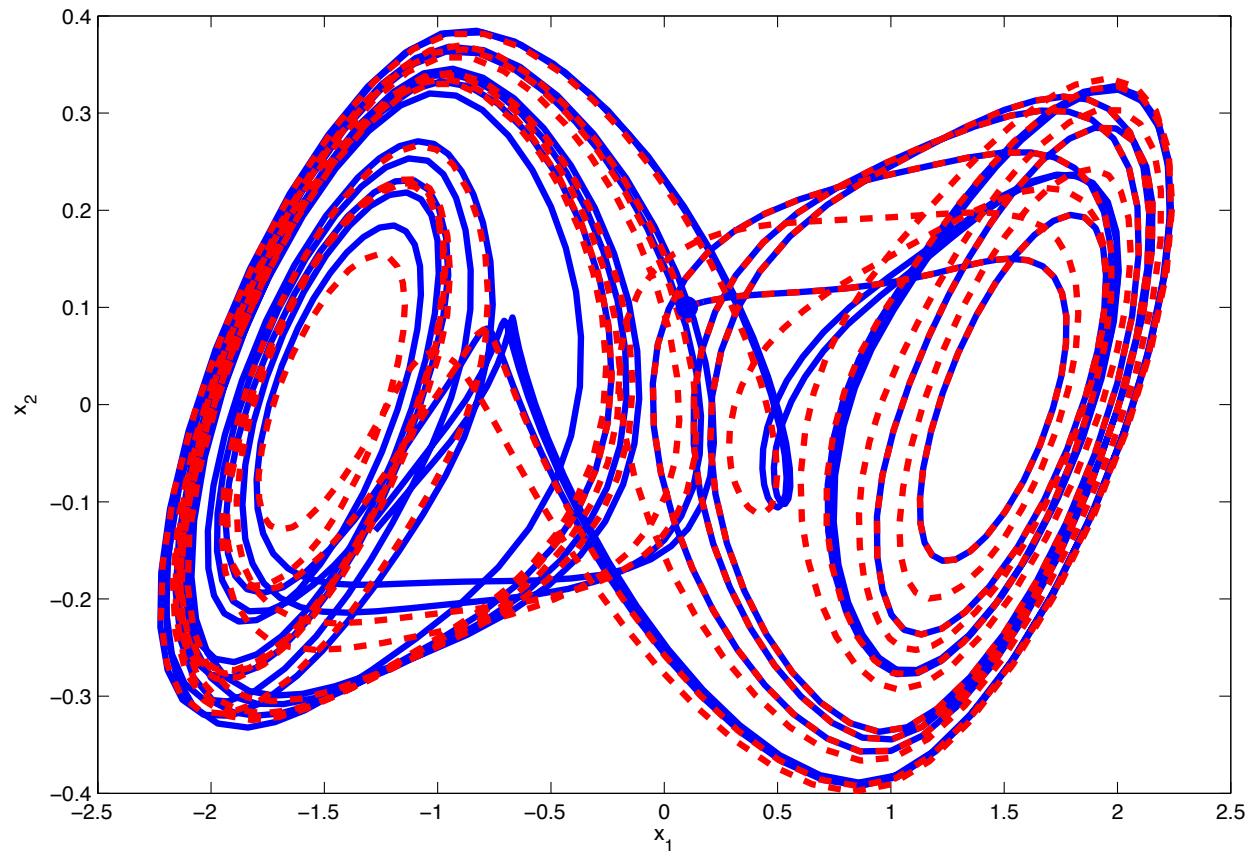


Property 2: Sensitivity to initial conditions

$$\dot{x}_1 = \alpha(-x_1 - f(x_1) + x_2)$$

$$\dot{x}_2 = x_1 - x_2 + x_3$$

$$\dot{x}_3 = -\beta x_2$$

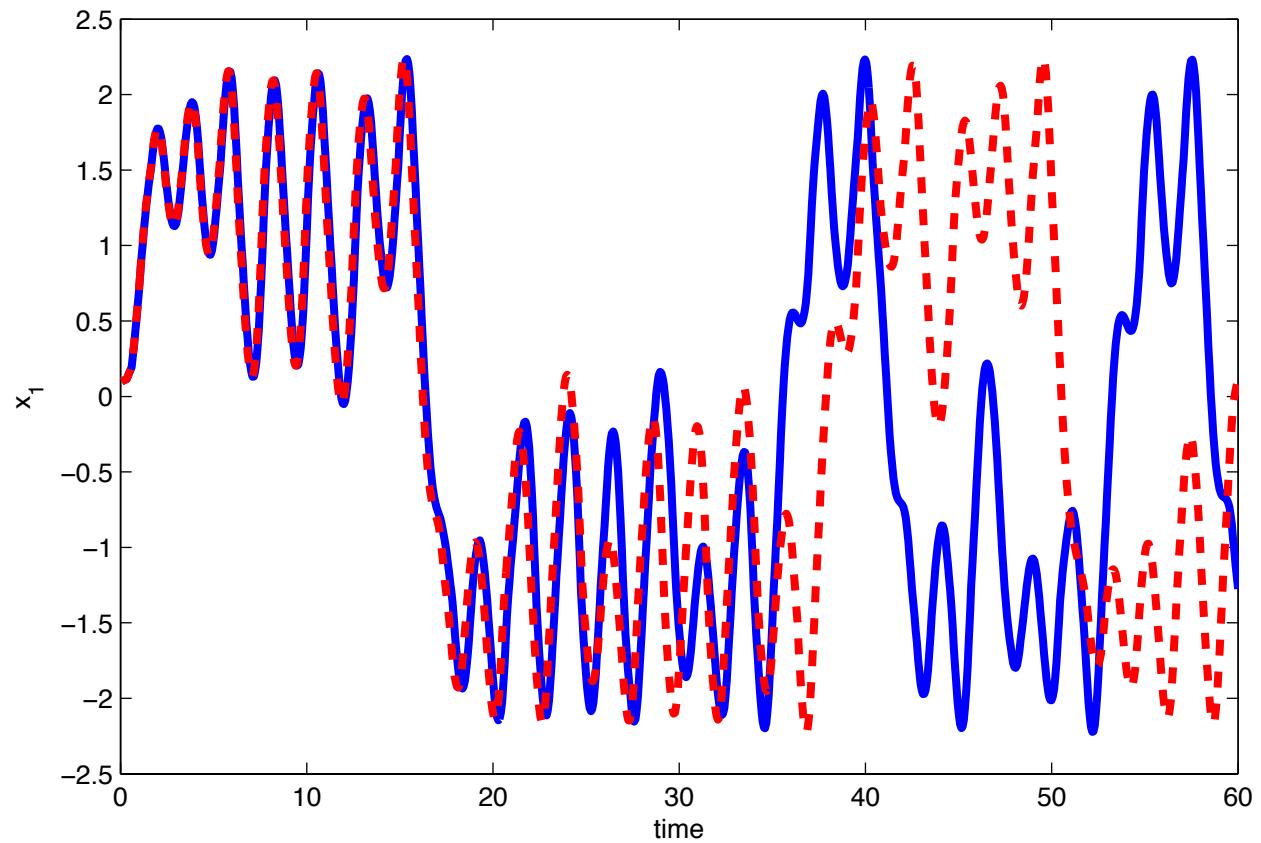


Property 2: Sensitivity to initial conditions

$$\dot{x}_1 = \alpha(-x_1 - f(x_1) + x_2)$$

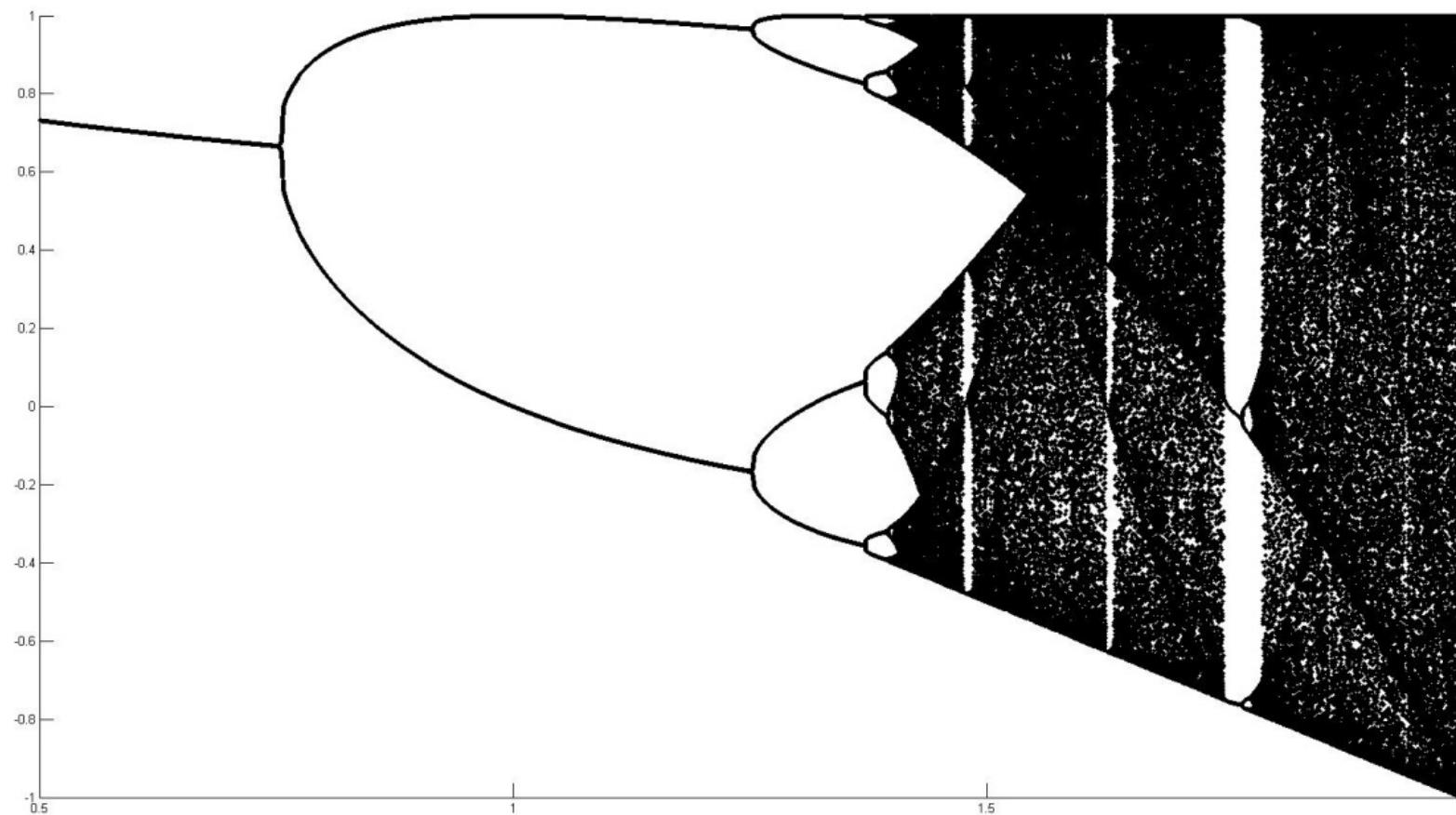
$$\dot{x}_2 = x_1 - x_2 + x_3$$

$$\dot{x}_3 = -\beta x_2$$



Property 3: Dense set of periodic solutions

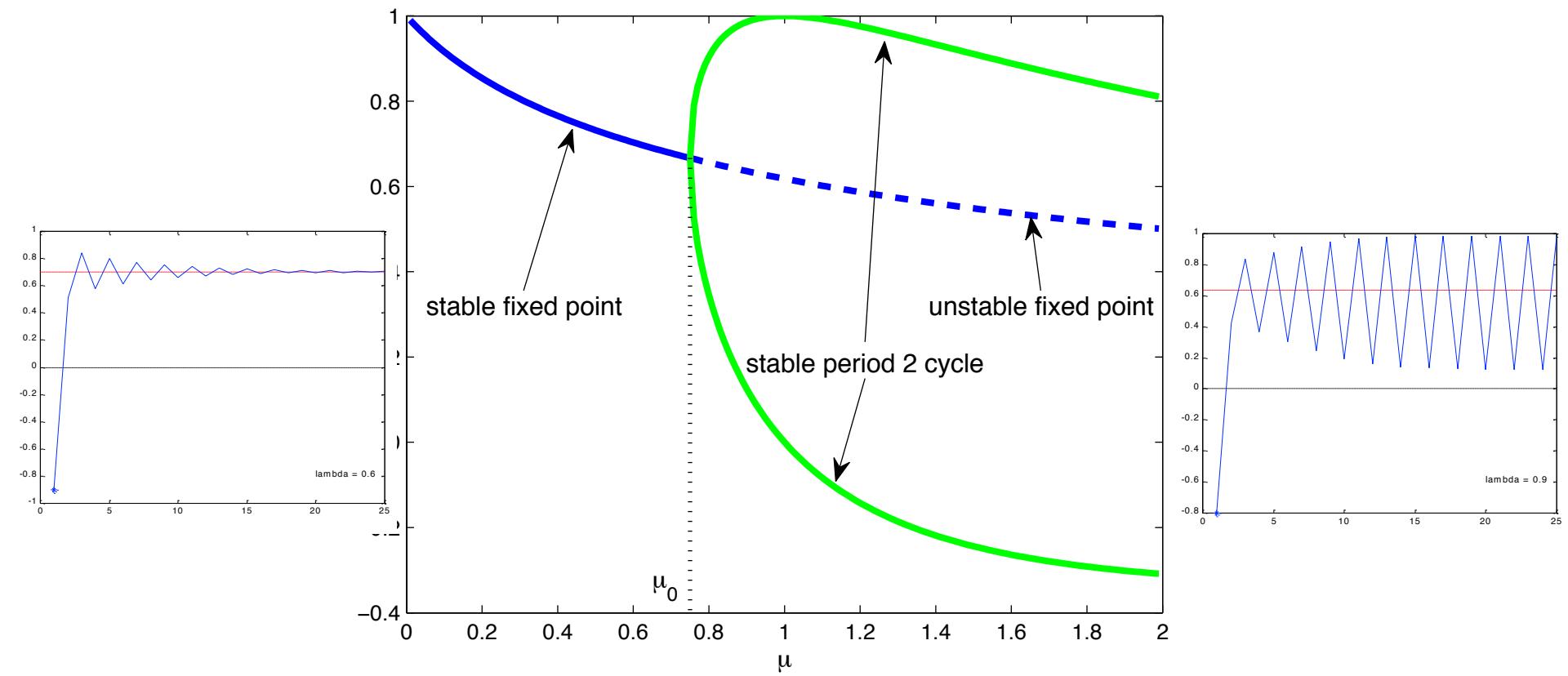
$$x(t+1) = 1 - \lambda x^2(t)$$



Remember: Flip Bifurcation of Logistic Map

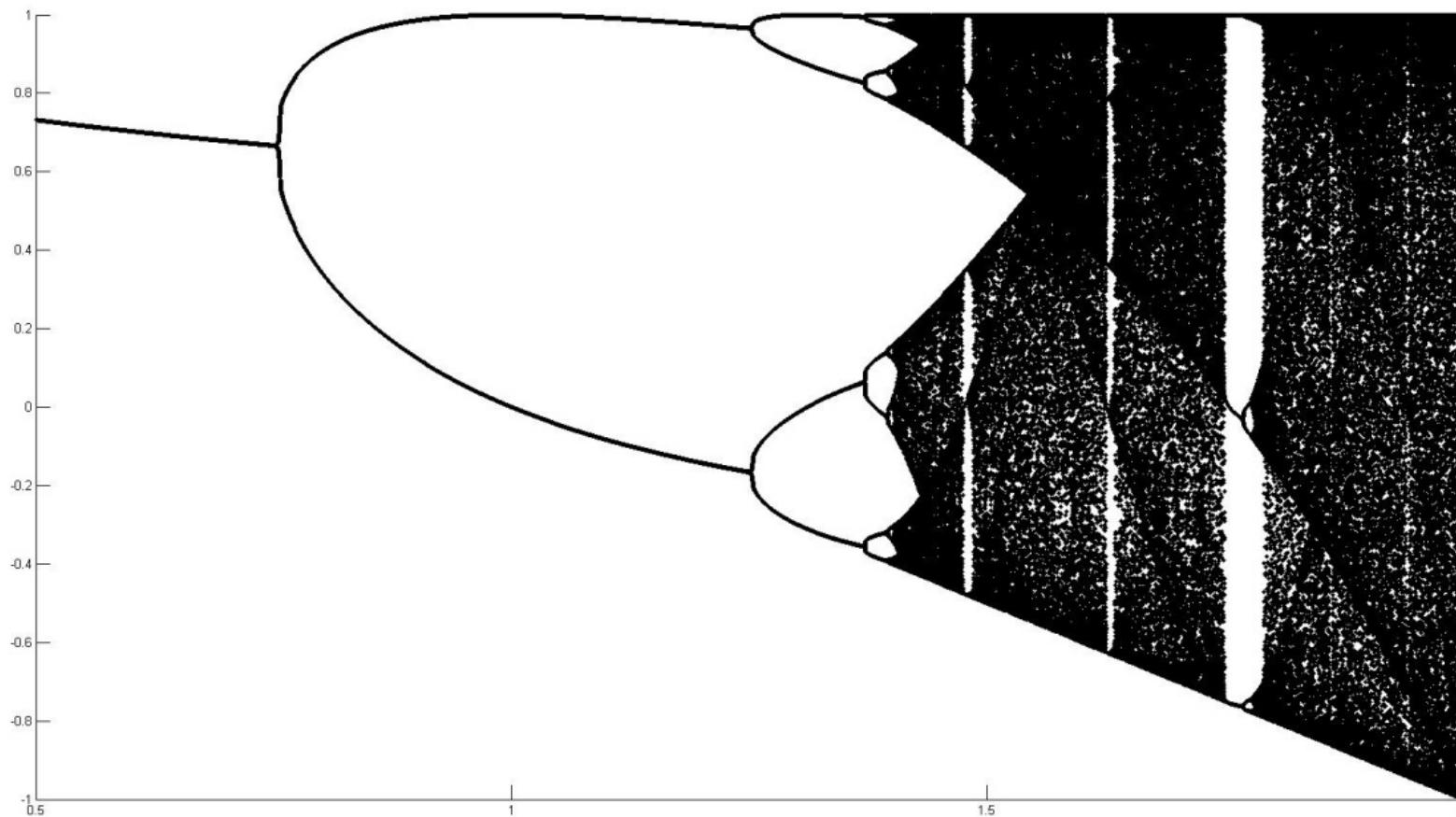
$$x(t+1) = 1 - \lambda x^2(t)$$

Flip bifurcation at $\lambda = \mu_0 = 0.75$



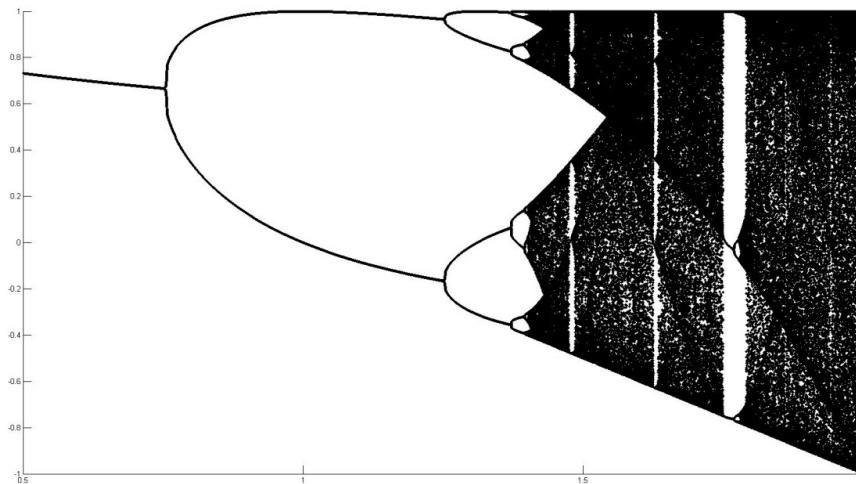
Cascade of Period Doubling Bifurcations

- Period Doubling Bifurcations: $1 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow \dots \rightarrow 2^n$
- Ratio of distances between consecutive bifurcation points = $4.669\dots$ = Feigenbaum constant.
- Windows in chaos, largest one with a stable 3-periodic solution, followed by new period doubling cascade: $3 \rightarrow 6 \rightarrow 12 \rightarrow 24 \rightarrow \dots$



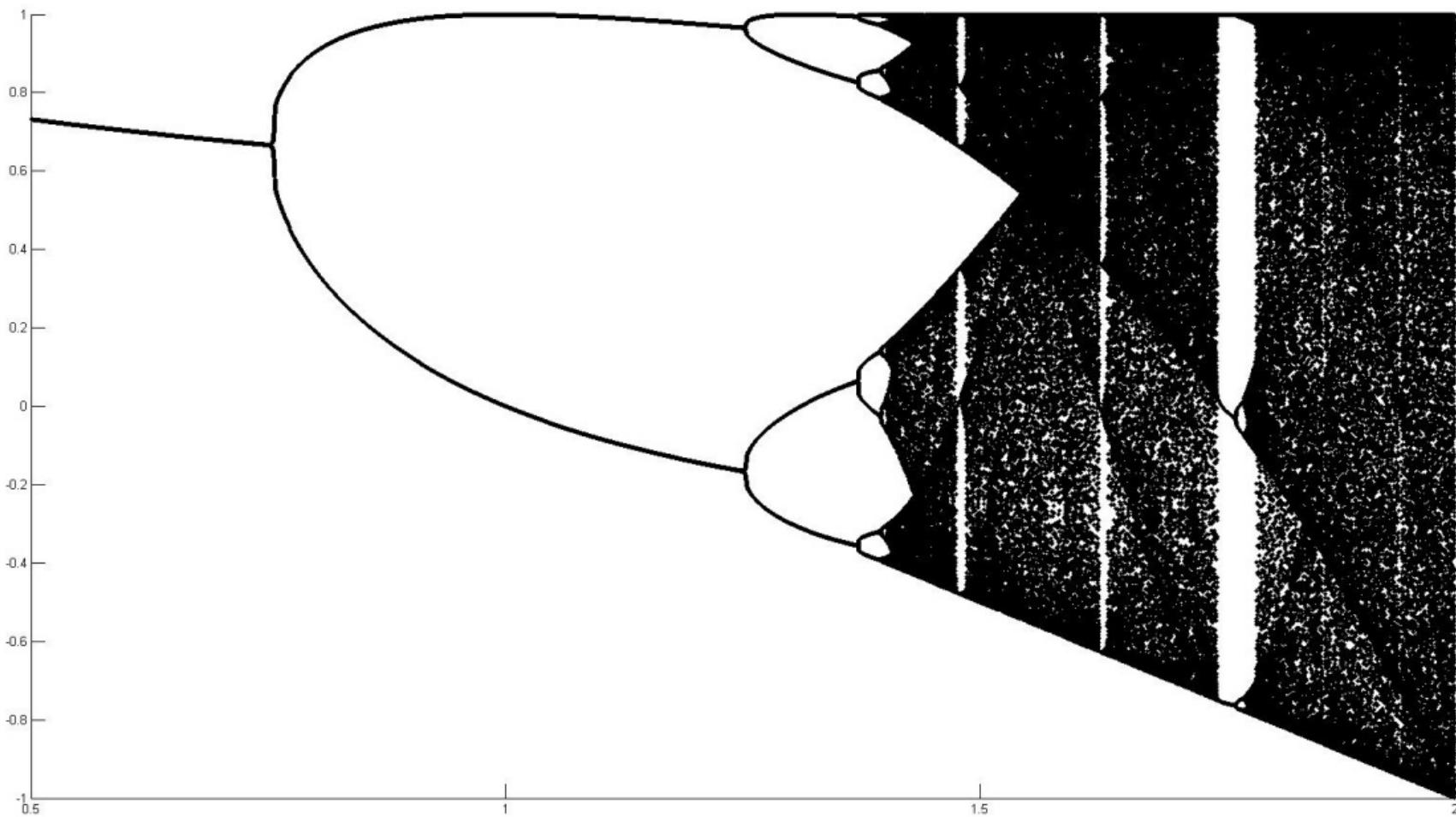
Sarkovskii's Theorem

- Sarkovskii's ordering of natural numbers:
$$3 \triangleright 5 \triangleright 7 \triangleright \dots \triangleright 2 \cdot 3 \triangleright 2 \cdot 5 \triangleright 2 \cdot 7 \triangleright \dots \triangleright 2^2 \cdot 3 \triangleright 2^2 \cdot 5 \triangleright 2^2 \cdot 7 \triangleright \dots$$
$$\triangleright 2^n \cdot 3 \triangleright 2^n \cdot 5 \triangleright 2^n \cdot 7 \triangleright \dots \triangleright 2^3 \triangleright 2^2 \triangleright 2 \triangleright 1.$$
where $a \triangleright b$ means a precedes b in the order.
- Theorem: Suppose that F is a continuous function having a point x^* of period m : $F^m(x^*) = x^*$. Then it has a point with period n if $m \triangleright n$.
- In particular, if $x = F(x)$ has a 3-periodic solution ($m = 3$), then it has a periodic solution of every possible period.
- "Period three implies chaos," by Li and Yorke, 1975.
- With some windows in chaos where a periodic solution may be stable.



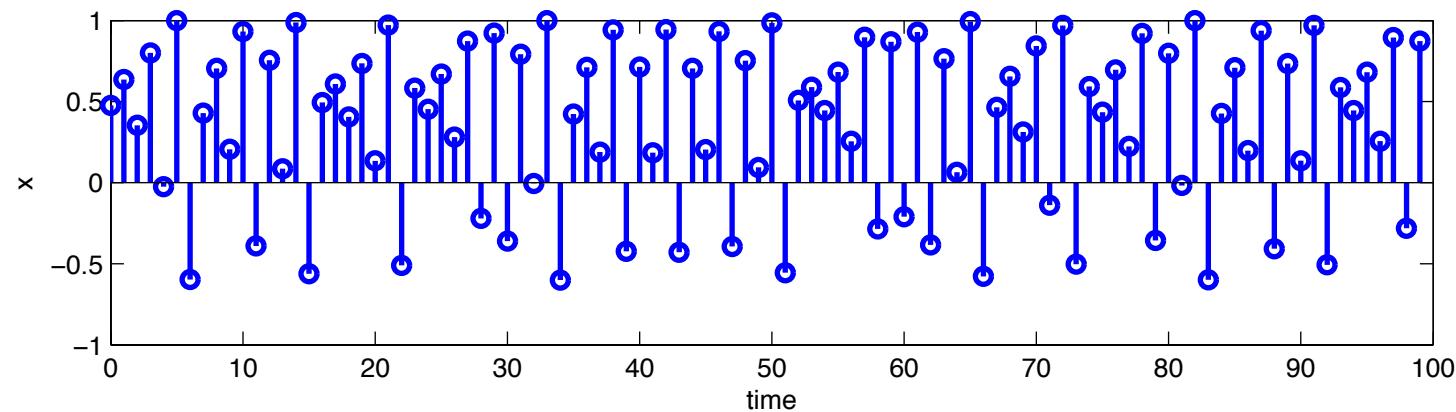
Period Doubling Route to Chaos

$$x(t+1) = 1 - \lambda x^2(t)$$



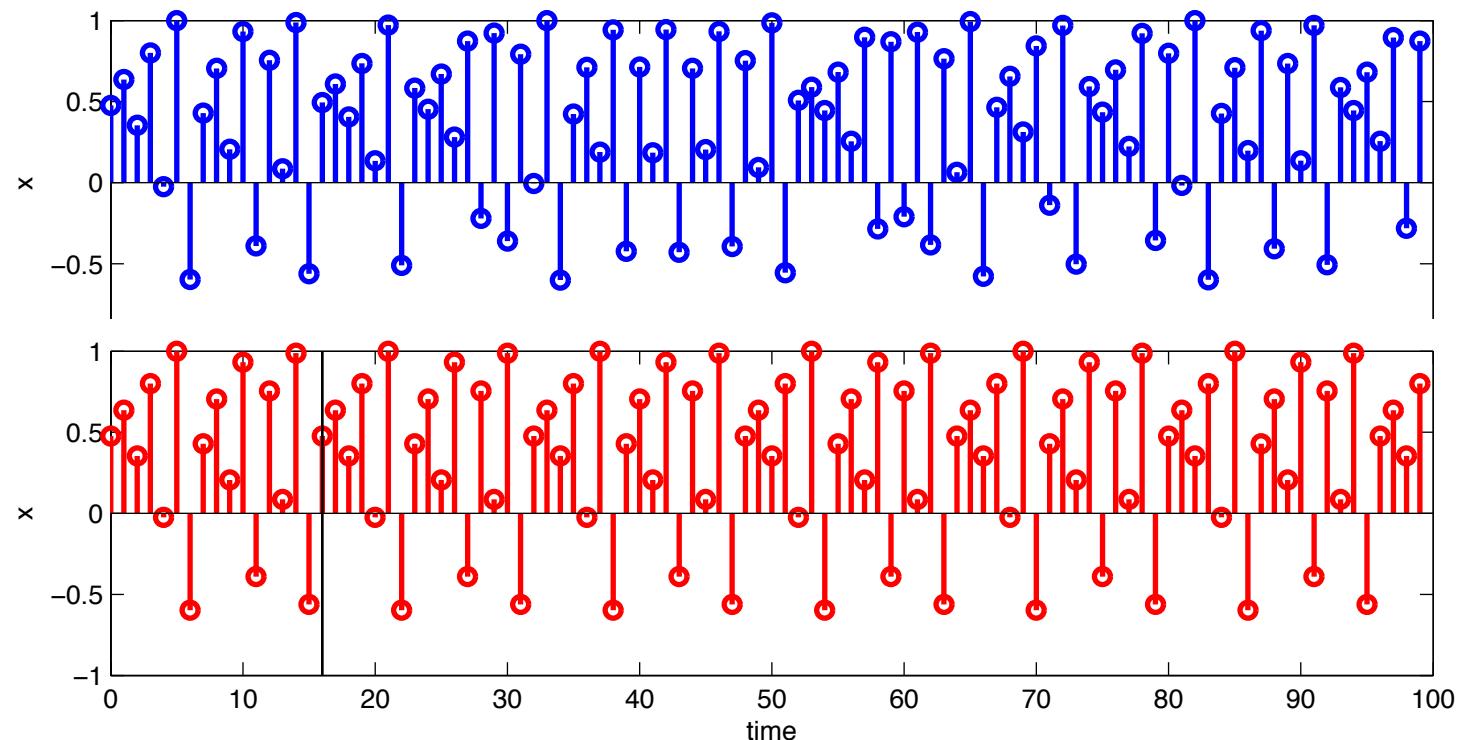
Property 3: Dense set of periodic solutions

$$x(t+1) = 1 - \lambda x^2(t)$$



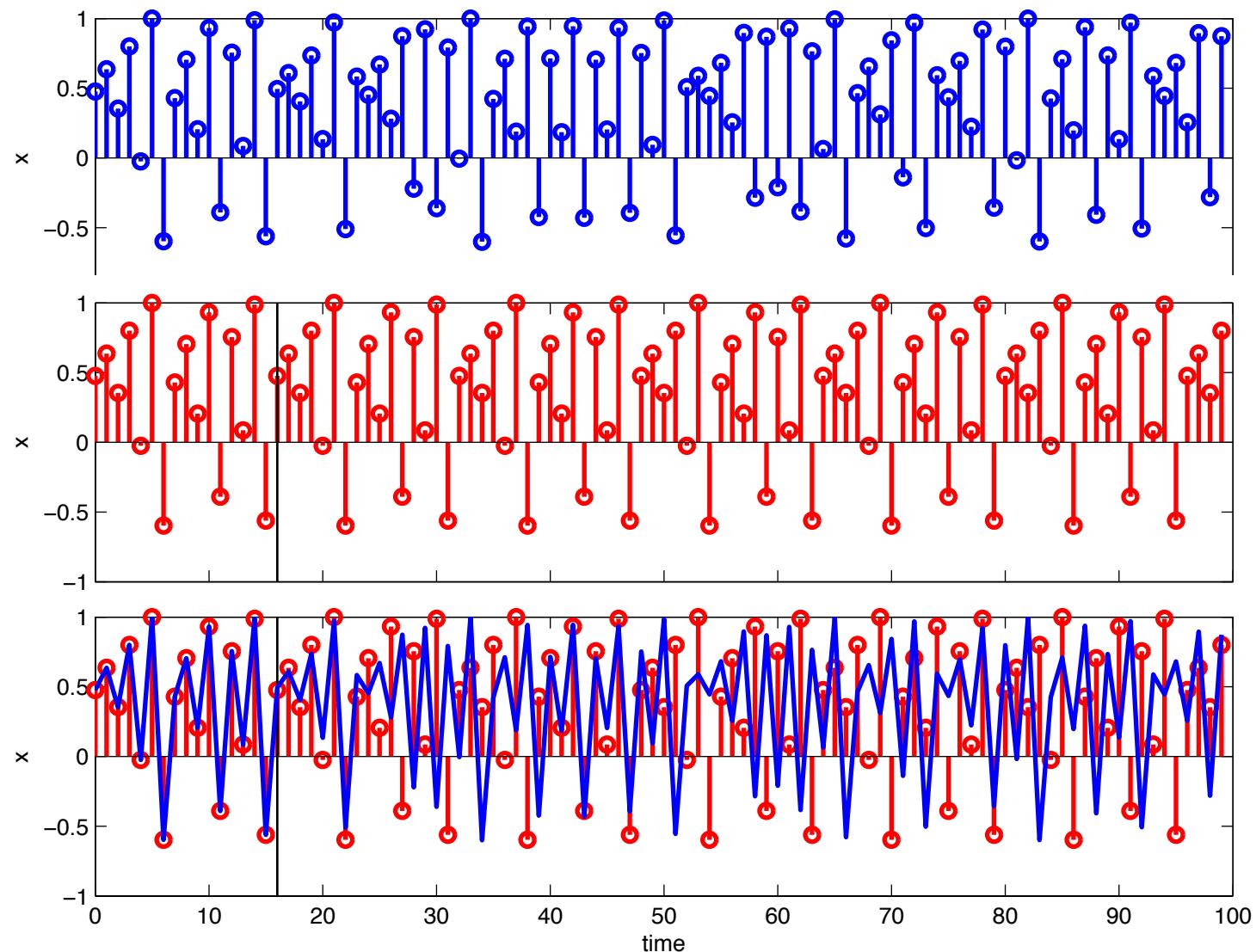
Property 3: Dense set of periodic solutions

$$x(t+1) = 1 - \lambda x^2(t)$$



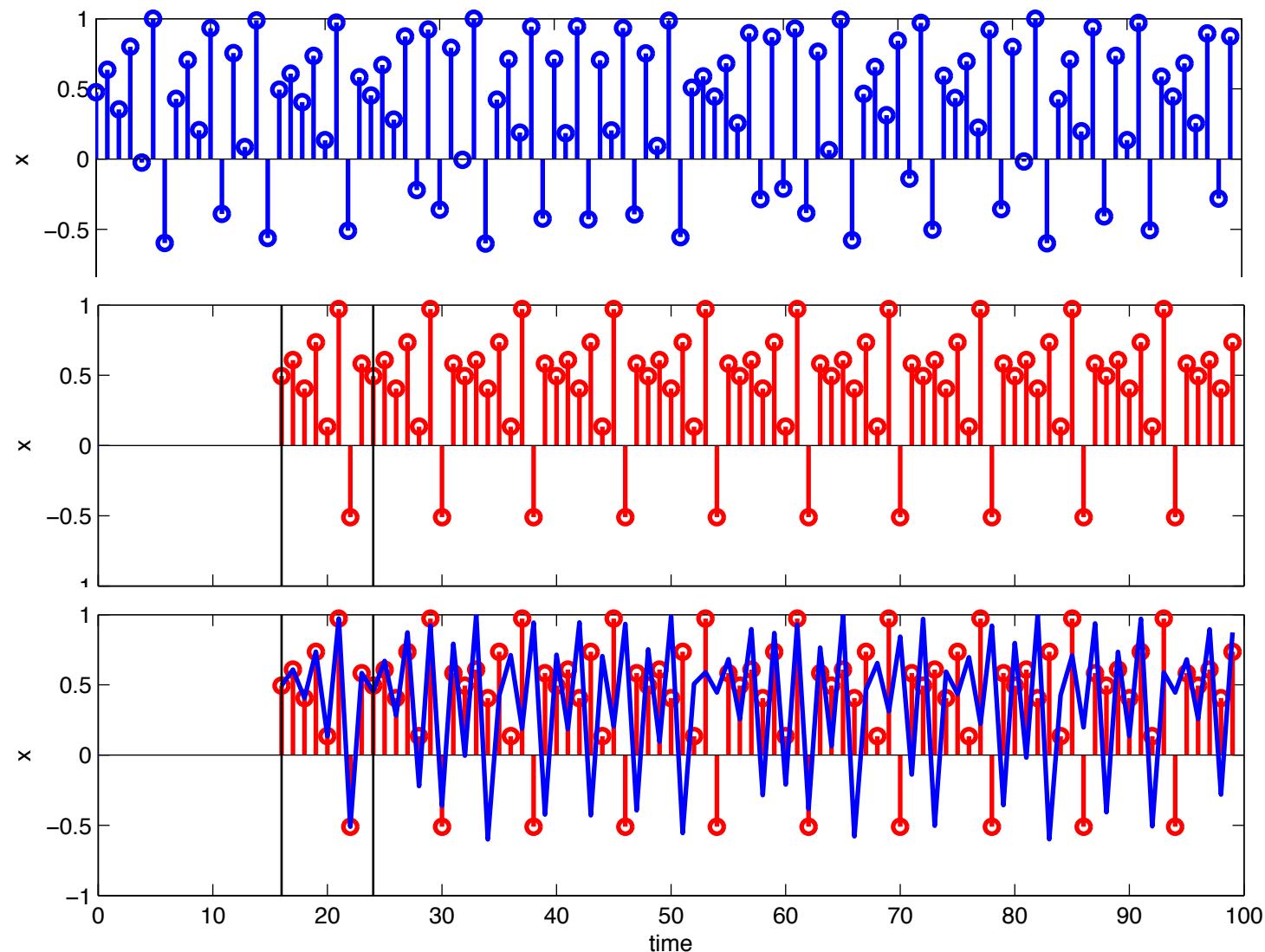
Property 3: Dense set of periodic solutions

$$x(t+1) = 1 - \lambda x^2(t)$$



Property 3: Dense set of periodic solutions

$$x(t+1) = 1 - \lambda x^2(t)$$



Property 3: Dense set of periodic solutions

$$x(t+1) = 1 - \lambda x^2(t)$$

