Dynamical Systems For Engineers
Test 1

School 1&C, Master Course

NAME and First name:

Your answers are to be written in the space provided just after each question, hence if a page
is unstapled, please mark your name on it. There is a total of 7 pages. Your answers and
justifications must be clear, precise and complete. The notation & stands for dz/dt.

Maximum: 20 points

Question 1 (6 points)

Consider a continuous-time dynamical system, with state x € R, whose state equation is
t=—-ar+|z+1—|z—-1],

where o € R is a parameter.

1. (1pt) Does the system admit one unique solution z(t) for each initial state z(0) € R and for

any a € R? Justify your answer.

Solution: Let
t=F(z)=—ax+|z+1] — |z —1]. (1)

The system admits one unique solution z(t), if F'(z) = —ax+ |z + 1| — |z — 1| is continuous and
locally Lipschitz. Clearly, F'(z) is continuous, since it is sum of three continuous functions.

To prove that it is Lipschitz, we show that each term of & = F'(x) in (1) is Lipschitz, the sum
of Lipschitz functions is easily shown to be Lipschitz by the triangle inequality.

1) For the first term of F(z) (i.e., —aux), since |a(x —2')| = |a||(z — 2')|, we can choose k1 = ||
(the slope is |a|).
2) For the second term of F(x) (i.e., |x 4+ 1]), the magnitude of the slope is always less than 1,
so it is Lipschitz.

3) Similarly, for the third term of F'(x) (i.e., —|x — 1), the magnitude of the slope is always less
than 1, so it is Lipschitz.

We conclude that F(x) is Lipschitz and therefore that the system admits a unique solution x(t)
for each initial state z(0) € R and for any a € R.

2. (1.5pt) The origin is an equilibrium of the system for all & € R. Characterize whether it is
asymptotically stable, stable or unstable equilibrium point, as a function of « (i.e., specify the
corresponding range of values « for which your answer is valid). Justify your answer.

Solution:

For |z| < 1, we have # = F(z) = (2 — a)z. Hence, the Jacobian for z = 0 is J(0) = 2 — a.
The origin is an asymptotically stable equilibrium point if & > 2 (since J(0) < 0), and it is an
unstable equilibrium point if o < 2 (since J(0) > 0). For o« = 2 the origin is not an hyperbolic

equilibrium point, but since & = F(x) = 0 for all € [—1, 1] and thus for a neighborhood around
0, the origin is a stable equilibrium point.
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Figure 1: & = F(z) for different values of a.

3. (2pts) Let £(t) denote the solution of this system with initial condition £(0) = 3. What is its
w-limit set S, (&), as a function of « 7 Justify your answer.

Solution:

First, we specify & = F(x) for different values of x.

—ax+2, ifx>1,
t=F(z)=142—-a)z, if|z| <1,
—ax —2, ifx<-1.

The initial condition £(0) = 3 falls in the first range > 1. In this range, for « < 0,2 = F(x) > 0
and £(t) — oo, hence for o < 0, the w-limit set is S,,(§) = 0 (see Figure 1a).

For 0 < a < 2, the w-limit set is S,(§) = {2/a}. The reason is that for x > 2/a we have
= F(x) <0, for 1 <z <2/awehave & = F(x) > 0, and for x = 2/ we have & = F(z) =0
(see Figure 1b).

For a > 2, the w-limit set is S,(§) = {0}, because £(t) — 0 for any £(0) € R (see Figure 1c).

4. (1.5pts) List all the attractors of this system, if any, as a function of . Justify your answer.
Solution:
Recall that
—ax +2, ifxz>1,
=< (2—-a), ifl|z]<]1,
—ax — 2. ifx<-—1.

According to the definition of attractor, for 0 < a < 2 the attractors are {2/«a, —2/a}, be-
cause there exists an open set U around them such that all solutions starting in U converge
to {2/a,—2/a} as t — oo (see Figure 1b). For example, for the attractor 2/a, one consider
U= >1/a,4/a).

For o > 2, as it is seen in 3. any z(0) will eventually converge to the origin 0 as ¢ — oo, hence
the origin is an attractor for a > 2 (see Figure 1c).

For o« = 2, the closed interval [—1, 1] is the only attractor, because it is the smallest compact
set that is forward invariant (since & = 0 for all x € [—1,1]) and surrounded by an open set
U =R\ [—1,1] such that any point starting in &/ will converge to —1 or +1 (depending on the
value of x(0)).



Question 2 (3 points)

Consider an autonomous discrete-time linear system in R? given by

z1(t+1) = axi(t) — xo(t)
l‘g(t—l—l) = xl(t)

where o € R is a parameter. Characterize its stability (i.e. asymptotic stable, stable, weakly
unstable, strongly unstable), as a function of « (i.e., specify the corresponding range of values
a for which your answer is valid). Justify your answer.

Solution:

The matrix that describes the system is

The system is discrete, so we must compare
The characteristic polynomial is x(\) = A(A—a)+1 = A2—aA+1. Its discriminant is A = a?—4.

If o > 2, then A > 0 and A has two distinct eigenvalues Ay = (a + VA)/2. If a > 2, then
Ay > 1. If a < =2, then A_ < —1. In both cases, this means that the system is strongly
unstable.

If |a] < 2, then A < 0 and A has two distinct eigenvalues Ay = (o £ jv/—A)/2. The module of
the eigenvalues is [Ay| = v/(a? + 4 — a2)/4 = 1. This means that the system is stable, but not
asymptotically stable.

If |a] = 2, then A = 0 and A has a single eigenvalue A = «/2. A is not a multiple of the
identity matrix, which means that it is not diagonalizable and therefore it has a Jordan block
of dimension 2. Consequently, the system is weakly unstable.



Question 3 (5 points)

The state equations of an autonomous continuous-time nonlinear system in R? are

.%"1 = —372%‘%
i‘g = iL'iI’

1. (1pt) Does this system have bounded solutions 7 Justify your answer.
Solution:

Let the Lyapunov function be W(x) = x? —1—':1:%. Clearly, W (z) is non-negative for all x € R?
and the level sets of W (z) are bounded. As W (z) = 0 for all € R? (W is non-increasing along
trajectories), the system has bounded solutions.

2. (1pt) Compute all equilibrium points of the system.
Solution:

By setting #1 = 0 and @9 = 0, we see that any point = = (0, x2), where z9 € R, is an equilibrium
point of the system.

3. (1pt) Let £(t) = (&1(t), £2(t)) denote the solution of this system with initial condition £(0) =
(£1(0),&2(0)) = (3,4). What is its w-limit set S,,(§) ? Justify your answer.

Solution:

Using polar coordinate transformation we have, r? = m% + a;% From 1. we know that 7 = 0. For

x9 > 0 and 1 # 0 we have &7 < 0, and for 1 = 0 we have &7 = 0. This means that £(¢) turns
counter-clockwise and converges to the point = = (0,5) (as r = v/32 + 42 needs to remain fixed).

4. (1pt) Does this system have uniformly asymptotically bounded solutions? Justify your
answer.

Solution:

According to the definition of uniformly asymptotically bounded systems, there should be a
B > 0 such that for each x(0) € R?, there is a finite time 7 > 0 such that for all t > T

[z(®)] < B.

However, here since 7 = 0, there is no B for which we can guarantee that for every solution z(t),
|lz(t)|| < B. In fact, for any B > 0 if we choose ||z(0)|| > B then for all ¢ we have ||z(t)|| > B.
Thus, the system does not have uniformly uniformly asymptotically bounded solutions.

5. (1pt) Characterize the stability (i.e., asymptotically stable, stable or unstable) of the equi-
librium points of the system. Justify your answer.

Solution:

Since the equilibrium points z* = (0,z2) are not hyperbolic, we cannot use the linearizion
technique. However, following the same reasoning as in parts 3. and 4., we know that r(t) = r(0)
for all ¢.



Next, let

T2
(p = arctan <) .
T

We find ) )
- T1T2 — T2,
z? + 2%
and after easy computations, ¢ = 7. This means that ¢ consistently increases (i.e.,

x(t) = (z1(t), x2(t)) turns counter-clockwise) and it converges to the equilibrium point that lies
on the line 1 = 0 (and thus ¢ — 0). In other words, if x1(0) > 0 at ¢t = 0, then z(t) — (0,7(0)),
and if 21(0) < 0 at ¢t = 0, then z(t) — (0,—r(0)). As a result, the origin is a stable equilibrium
point, since the distance between the origin and z(¢) remains fixed r(t) = r(0). The other equi-
librium points 2* = (0, z2) for 9 € R\ {0} are unstable: Let x3 > 0 and € > 0; a point z(t) with
initial condition x(0) = (—e¢, z2) will converge to (0, —/73 + e2>, i.e., far from (0,x2). If ¢ > 0
is such that € < 2r(0) we cannot find a 6 > 0 such that for any solution x with [|z(0) — z*|| < 4,
we have for all ¢ > 0 ||z(t) — 2*|| < e. A similar argument holds for zo < 0, € > 0, and a point
x(t) with initial condition z(0) = (4€, z2).



Question 4 (6 points)

Consider an autonomous continuous-time nonlinear system in R? given by

1 = (1 —21)(1+z2)

fL’Q = xi{’—xg.

1. (1.5pts) Find all equilibrium points of this system, and characterize their stability (i.e.
asymptotically stable, stable, unstable).

Solution:
We have

¥1=0 <<= 1(1—21)(14+22)=0 <= 21 =00rz =1o0r zo =—1.

With the condition s = 0, we find three equilibrium point, (0,0), (1,1) and (-1, —1).

The Jacobian can be computed as

J(z) = [(1 + :Eg%il%— 2x1) 331(1_—1 xl)} '

The Jacobian in (0,0)
1 0
sy =15 1]

has a positive eigenvalue 1, thus (0,0) is an unstable equilibrium point.
The Jacobian in (1,1)

-2 0
=3 Y
has two strictly negative eigenvalues -2 and -1, thus (1, 1) is an asymptotically stable equilibrium

point.
The Jacobian in (—1,—1)

has two eigenvalues Ay = (—1 =+ jv/23)/2 that verify ®(A+) < 0, thus (-1, —1) is an asymptoti-
cally stable equilibrium point.

2. (Ipt) Let S1 = {(z1,72) € R? |23 = 0} = {(21,0) | z1 € R}. Is S; forward invariant? Is S
backward invariant? Justify your answer.

Solution:
Let a > 0; if a solution x(t) = (z1(t), z2(t)) is such that z(ty) = (a,0) € S; for some ¢y € R,
then we have

afl(to) = a(l - a)

-%:2(t0) = a37
which means that z3(tg) > 0, i.e., x2(tg + €) > 0 for € > 0 small enough, which means that
x(to +€) ¢ S1: S1 is not forward invariant.

Similarly, z(to — €) ¢ S1: S1 is not backward invariant.
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