

# Dynamical Systems for Engineers: Exercise Set 10

## Exercise 1

Consider the autonomous nonlinear system

$$\begin{aligned}\dot{x}_1 &= -x_2 + \lambda x_1(x_1^2 + x_2^2 - 1) \\ \dot{x}_2 &= x_1 + \lambda x_2(x_1^2 + x_2^2 - 1).\end{aligned}$$

1. By applying the Poincaré-Bendixson theorem, check that if  $\lambda < 0$ , this system has a periodic solution in  $\mathcal{M} = \{(x_1, x_2) \in \mathbb{R}^2 \mid 1 - \varepsilon < r^2 < 1 + \varepsilon\}$ . Verify that this periodic solution is  $\xi(t) = (\cos t, \sin t)$  (up to a time shift  $0 \leq \tau < 2\pi$ , i.e. any function  $x_\tau(t) = \xi(t + \tau)$  is also a periodic solution), and that it exists for any  $\lambda \in \mathbb{R}$ .

2. Write the variational equations of this system

$$\dot{M}(t) = J(\xi(t)) M(t) \quad (1)$$

in the coordinates  $(x_1, x_2)$ .

3. In the polar coordinates  $(r, \theta) \in \mathbb{R}^+ \times [0, 2\pi)$ , defined by

$$r = (x_1^2 + x_2^2)^{1/2} \quad (2)$$

$$\varphi = \arctan\left(\frac{x_2}{x_1}\right), \quad (3)$$

the system is easier to analyze. Let  $\xi_{\text{polar}}(t)$  denote the periodic solution  $\xi(t)$  expressed in the polar coordinates. Write the variational equation of the system

$$\dot{M}_{\text{polar}}(t) = J(\xi_{\text{polar}}(t)) M_{\text{polar}}(t) \quad (4)$$

in the polar coordinates (??), (??).

4. Compute the Floquet multipliers of this periodic solution, and deduce the parameter range  $\lambda$  for which it is (un)stable.

## Exercise 2

We consider the following planar system:

$$\begin{aligned}\dot{x}_1 &= x_1 - x_2 - x_1^3 \\ \dot{x}_2 &= x_1 + x_2 - x_2^3.\end{aligned}$$

1. Does this system have a periodic solution that lies within the region

$$\mathcal{M}_1 = \{x = (x_1, x_2) \in \mathbb{R}^2 \mid \|x\| < 2/3\} ?$$

2. Find an annular region

$$\mathcal{M}_2 = \{x = (x_1, x_2) \in \mathbb{R}^2 \mid r_2 < \|x\| < r_1\}$$

where the system has a periodic solution. Hint: think of the polar change of variables (??), (??).