

Dynamical Systems for Engineers: Exercise Set 2

Exercise 1

In the special case of a 1-dimensional ODE, the qualitative behavior of a solution can be determined by considering for each value of the state x the sign of the derivative of x . Consider a continuous-time dynamical system, with state $x \in \mathbb{R}$, whose state equation is the nonlinear ordinary differential equation

$$\dot{x}(t) = -x^3(t) + x(t).$$

1. Discuss the qualitative behavior of the solutions of this dynamical system. What are their ω - and α -limit sets? (Hint: try to find the roots of the right hand side of that equation).
2. What are the invariant sets of this system? Give an example of a set that is forward invariant but not invariant.
3. What is (are) the attractor(s) of this system, if any?

Exercise 2

Let $\xi(t)$ be the solution of the k th order ordinary differential equation

$$\frac{d^k \xi}{dt^k}(t) + a_1 \frac{d^{k-1} \xi}{dt^{k-1}}(t) + \dots + a_{k-1} \frac{d \xi}{dt}(t) + a_k \xi(t) = u(t),$$

where $u(t)$ is an input signal, and where $a_i \in \mathbb{R}$ for all $1 \leq i \leq k$. Show that this o.d.e. can be recast under the canonical state equation representation

$$\frac{dx}{dt}(t) = Ax(t) + Bu(t)$$

where x is the state vector. Explicit x , A and B as functions of ξ , $d^i \xi / dt^i$ and a_i for $1 \leq i \leq k$. What is the dimension of this system?

Exercise 3

Consider the autonomous linear system

$$\begin{aligned} \dot{x}_1(t) &= x_1(t) + x_2(t) \\ \dot{x}_2(t) &= 4x_1(t) - 2x_2(t). \end{aligned}$$

1. Characterize the stability of this system.
2. Find the solution of the system subject to the initial conditions $(x_1(0), x_2(0)) = (2, -3)$.
3. Find the solution of the system subject to the initial conditions $(x_1(0), x_2(0)) = (1, -4)$.

Exercise 4: Fibonacci dynamical system

The Fibonacci numbers are given by the recurrence relation

$$\begin{aligned} F_0 &= 0, F_1 = 1 \\ F_{n+2} &= F_{n+1} + F_n, n > 0. \end{aligned}$$

As $n \rightarrow \infty$, the ratio of successive terms of the Fibonacci sequence tends to the golden ratio $\phi \doteq (1 + \sqrt{5})/2$. In this exercise, we study the Fibonacci system and prove that any Fibonacci number can be given from a closed-form expression which is a function of ϕ . In the following, to facilitate the computations, express all the quantities that involve $\sqrt{5}$ as a function of ϕ .

1. Show that the above recurrence relation can be recast under the canonical state equation representation

$$x(t+1) = Ax(t), \quad (1)$$

where x is the state vector with dimension 2. Explicit x and A .

2. Prove that, as expected, system (1) is strongly unstable.
3. Find the solution of system (1) subject to the initial conditions given by the first two Fibonacci numbers, i.e., $(x_1(0), x_2(0)) = (0, 1)$.
4. Given the solution at previous step, show that the n_{th} Fibonacci number is given by

$$F_n = \phi \frac{\phi^n - (1 - \phi)^n}{1 + \phi^2}, n \geq 0.$$

5. Show that

$$\lim_{n \rightarrow \infty} \frac{F_{n+1}}{F_n} = \phi.$$