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Observability and

Controllability in Linear

Systems

Chapter 2 focused on the stability of a linear system whose state equations are given by (2.1). In
this chapter, we focus more on the input-output relation of the system, and will answer a couple of
questions linked to the observability of the internal state of the system from the input and output
of the system, and to the possibility to drive the system to a prescribed state by applying a chosen
input.
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40 CHAPTER 3. OBSERVABILITY AND CONTROLLABILITY IN LINEAR SYSTEMS

3.1 Observability

3.1.1 Introduction

If we know the state equations (2.2) (or (2.3)) of the system and the input signal u at time t, and if
we observe the output signal y at time t, can we determine the state x at time t? Remember that the
output y(t) is obtained from (2.2), which we recall here:

y(t) = Cx(t) +Du(t).

If C is invertible, then the answer to this question is positive. However, in general, C is not invertible.
Actually, in the case we consider in this chapter, the output signal is univariate (has scalar values;
the output space is Θ = R) and the states are of arbitrary dimension n, the matrix C is 1×n and for
any n > 1 is certainly not invertible. Therefore, we have to modify the question.

If we know the state equations (2.2) (or (2.3) of the system and the input signal u during the time
interval [t, t + T ], and if we observe the output signal y during the same time interval [t, t + T ], can
we determine the state x at time t?

Since we consider only time-invariant systems, we can set t = 0 without loss of generality. Let us start
by answering the question with a particular example, before moving to the general answer.

3.1.2 Example: Mass-spring system in Newtonian mechanics

Let us return to system introduced in Section 1.3.1, which is a mass m attached to a wall by a spring
of constant k, and to which an external force f(t) is applied to pull the mass away from the wall, as
shown in Figure 1.1. The input signal is the external force f(t), the state equations are given by (1.1)
and (1.2), which are recalled here

dx1
dt

(t) = x2(t) (3.1)

dx2
dt

(t) = − k

m
x1(t) +

1

m
f(t) (3.2)

y(t) = x1(t). (3.3)

The solution starting from arbitrary solutions is given by (1.16) and (1.17), which read

y(t) = x1(t) =

(
x1(0)−

f

k

)
cos(ωt) +

x2(0)

ω
sin(ωt) +

f

k

x2(t) = −
(
x1(0)−

f

k

)
ω sin(ωt) + x2(0) cos(ωt)

with ω =
√
k/m. It follows that

x1(0) = y(0)

x2(0) = −ω
(
y
( π
2ω

)
− f

k

)
.

Therefore, if we choose T = π/2ω, we can find the initial state. The answer to the question is positive.

We can actually decrease T , because, we can observe that

x1(0) = y(0)

x2(0) = ẏ(0)

and in order to determine ẏ(0), it is sufficient to know y(t) for t ∈ [0, ε] for any ε > 0 because

ẏ(0) = lim
δ→0

y(δ)− y(0)

δ
.
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3.1.3 Definition

The previous discussion leads to the following definition of observable system, as a system where the
initial state can be inferred from knowing the output y(t) (and input u(t) is this one is nonzero) which
is the following.

Definition 3.1 (Observability). A system is observable if there exists a finite time T > 0 such that
the free response signal in the time interval [0, T ] determines the initial state x(0).

Knowing x(0) (and the input u(t)) we can then recover the state at all times t ≥ 0.

3.1.4 Criterion

We are now going to state a necessary and sufficient condition for a linear system to be observable,
which will be expressed in terms of the observability matrix of the linear system, constructed from
the matrices A and C of the “ABCD” representation of a linear system:

Mo =


C
CA
...

CAn−1

 . (3.4)

Theorem 3.1. A linear system is observable if and only if the rank of its observability matrix Mo is
n.

The theorem holds both for linear continuous-time systems and discrete-time systems. For continuous-
time systems, the initial state can be determined from the free response in an arbitrarily small time
interval t ∈ [0, ε], for any ε > 0. For discrete-time systems, the initial state can be determined from
the first n samples of the output signal of the free response. We prove the theorem for continuous-time
systems when the dimension of the output space is 1; the proof for discrete-time systems is similar
(with the derivative dky/dtk(0) replaced by y(t− k)).

Proof:

(⇐) Because of (2.10) and of (2.11), the free response y(t) = CeAtx(0) and therefore

y(0) = Cx(0)

dy

dt
(0) = CAx(0)

d2y

dt2
(0) = CA2x(0)

...
dn−1y

dtn−1
(0) = CAn−1x(0)

whence

x(0) =M−1
0 ·


y(0)

dy
dt y(0)
d2y
dt2 (0)

...
dn−1y
dtn−1 (0)

 .
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It is sufficient to know the output signal y(t) for t ∈ [0, ε] for an arbitrarily small ε > 0. This
proves the first part of the theorem.

(⇒) We prove the necessity of the condition by contradiction. Suppose that Mo is non invertible.
Then there is a vector v ̸= 0 such that

C
CA
...

CAn−1

 · v =


0
0
...
0

 . (3.5)

Let us pick the initial condition x(0) as this vector v. If C = 0 then y(t) = 0 for all time t ∈ R+

and clearly, x(0) = v cannot be recovered from y. Let C ̸= 0 and let V be the subspace of all
vectors in Rn that are orthogonal to the row vectors of C; the dimension of V is at most n − 1
because C ̸= 0. Now, (3.5) yields that x(0), Ax(0), . . . , An−1x(0) ∈ V. These n vectors cannot be
linearly independent, because the dimension of of V is at most n− 1.

(i) We can then apply the Cayley-Hamilton theorem to prove that Ak with k ≥ n can always
be written as a linear combination of In, A,A

2, . . . , An−1 and therefore that Akx(0) is a linear
combination of x(0), Ax(0), . . . , An−1x(0). Therefore Akx(0) ∈ V for all k ≥ n.

(ii) An alternative way to recover the same result if we do not want to invoke the Cayley-Hamilton
theorem, is to find that since x(0), Ax(0), . . . , An−1x(0) are not linearly independent, there are real
constants µ0, . . . , µn−1 such that

n−1∑
i=0

µiA
ix(0) = 0.

Let m ≤ n− 1 be such that µm ̸= 0 and µi = 0 for m+ 1 ≤ i ≤ n− 1. Then

Amx(0) = −
m−1∑
i=0

µi

µm
Aix(0). (3.6)

Multiplying this equation by A, and using it later to replace Amx(0), we get

Am+1x(0) = −
m−1∑
i=0

µi

µm
Ai+1x(0)

= −
m∑
j=1

µj−1

µm
Ajx(0)

= −µm−1

µm
Amx(0)−

m−1∑
j=1

µj−1

µm
Ajx(0)

=
µm−1

µm

m−1∑
j=0

µj

µm
Ajx(0)−

m−1∑
j=1

µj−1

µm
Ajx(0)

=

m−1∑
j=0

µm−1µj − µmµj−1

µ2
m

Ajx(0)

where we have set µ−1 = 0. This shows that Am+1x(0) is a linear combination of Aix(0) for
0 ≤ i ≤ m− 1 and is therefore belonging to V. Repeating this argument, we find that Akx(0) is a
linear combination of Aix(0) for 0 ≤ i ≤ m− 1 and is therefore belonging to V for all k ∈ N.
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Using either (i) or (ii), we have therefore that Akx(0) ∈ V for all k ∈ N, which yields that

exp(At)x(0) =

(
In + tA+

t2

2!
A2 +

t3

3!
A3 + . . .

)
x(0)

= x(0) + t(Ax(0)) +
t2

2!
(A2x(0)) +

t3

3!
(A3x(0)) + . . .

and therefore that exp(At)x(0) ∈ V as well. This means that the output signal y is identically zero
when the initial state x(0) is chosen as a vector v verifying (3.5). As a result, the initial state x(0)
cannot be found from y if Mo is not invertible. This contradicts the assumption that the system
is observable. Consequently, Mo must be invertible.

■

An alternative result that can be used to verify that a system is observable is the PBH (Popov-
Belevitch-Hautus) test, which is as follows. Remember that the rank of a matrix is the maximum
number of linearly independent rows, or the maximum number of linearly independent columns, of
this matrix. We state and prove the theorem when the eigenvalues of A are real; it is also valid when
the eigenvalues of A are complex but one needs then to take s ∈ C and adapt the proof of the theorem
accordingly.

Theorem 3.2. Suppose that all the eigenvalues of A are real and that at least one is nonzero. A
linear system is observable if and only if for all s ∈ R, the matrix

No =

[
sIn −A

C

]
. (3.7)

has full rank (i.e. its rank is equal to n).

Proof:

(⇒) Suppose that the rank of No is less than n for some s ∈ R. Then there is a nonzero vector
v ∈ Rn such that [

sIn −A
C

]
· v =

[
sv −Av
Cv

]
=

[
0
0

]
whence Av = sv and Cv = 0. Therefore

Cv = 0

CAv = C(sv) = sCv = 0

CA2v = CA(Av) = CA(sv) = sCAv = 0

...

CAn−1v = 0,

which shows that there is a nonzero vector v such thatMov = 0, implying thatMo is non invertible.
This is impossible because the system is observable, and because of Theorem 3.1.

(⇐) Suppose that the system is non observable, and let v be an eigenvector of A, with the corre-
sponding eigenvalue λ ̸= 0. Then (i) (sIn −A)v = 0 for s = λ, and (ii) λCv = C(λv) = CAv = 0,
which yields that Cv = 0. Therefore Nov = 0, which shows that the rank of N0 is less than n.

■

In general, A is a regular matrix (i.e. its rank is n), and it suffices therefore to verify the rank of No

when s is an eigenvalue of A. When s is not an eigenvalue of A, the rank of sIn −A is always n and
so is then the rank of No because of (3.7).
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Finally, a last criterion is stated in terms of the observability Gramian, which is defined as

Wot =

∫ t

0

exp(AT τ)CTC exp(Aτ)dτ (3.8)

or continuous-time linear time-invariant systems and by

Wot =

t−1∑
τ=0

(AT )τCTCAτ (3.9)

for discrete-time linear time-invariant systems. The following criterion, which is equivalent to Theo-
rem 3.1, can be stated in terms of the observability Gramian:

Theorem 3.3. A linear system is observable if and only if its observability Gramian Wot is invertible
at all times t.

3.1.5 Examples

Example 1: Mass-spring system in Newtonian mechanics

The matrices A and C of the system given by (3.1), (3.2) and (3.3) are

A =

[
0 1

−k/m 0

]
C =

[
1 0

]
,

from which we compute

Mo =

[
1 0
0 1

]
,

which is clearly invertible. This confirms the observability of the system.

Example 2: A BIBO stable system with an unstable free system

The matrices A and C of the system given by (2.37), (2.38) and (2.39) are

A =

[
1 0
1 −1

]
C =

[
1 1

]
,

from which we compute

Mo =

[
1 1
2 −1

]
,

which is invertible. The system is observable.

Example 3: Free Frictionless Motion

Consider the free frictionless motion, whose state equations are

dx1
dt

(t) = x2(t)

dx2
dt

(t) = 0

with the output y(t) = x1(t) denoting the position of the mass at time t. The matrices A and C of
the system are

A =

[
0 1
0 0

]
C =

[
1 0

]
,
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from which we compute

Mo =

[
1 0
0 1

]
which is clearly invertible. The system is observable. If instead the output is the speed, i.e. y(t) =
x2(t), then C = [0 1] and

Mo =

[
0 1
0 0

]
which is not invertible. The system is not observable (and indeed, it impossible to recover the initial
position x1(0) by only observing the speed).

3.2 Controllability

3.2.1 Definition

If we know the state equations (2.2) (or (2.3)) of the system, can we bring the state from a value x(0)
to another value x(T ) in a finite time T by applying a chosen input signal u during the time interval
[0, T ]? This question is addressed here. It can be viewed as the dual question to that of observability.

Definition 3.2 (Controllability). A system is (completely) controllable if there is a finite time T such
that it can be brought from any initial state x(0) = x0 to any state x(T ) = x1 by applying a suitable
input signal u(t) for t ∈ [0, T ].

Formally speaking, this definition applies only to a completely controllable system. A system is often
said to be (simply) controllable if it can be brought from any initial state x(0) = x0 to the origin (i.e
x(T ) = 0) in a finite time T by applying a suitable input signal u during the time interval [0, T ]. A
system is reachable if it can be brought from the initial state x(0) = 0 to an arbitrary state x(T ) = x1
in a finite time T by applying a suitable input signal u during the time interval [0, T ]. It can be easily
shown that for continuous-time systems, as well as discrete-time systems with an invertible state
matrix A, reachability is equivalent to controllability, and this implies that reachable and controllable
system verify Defintion 3.2. We will speak of controllable systems from now on to designate completely
controllable systems.

3.2.2 Criterion

We can now state a necessary and sufficient condition for a linear system to be controllable, which will
be expressed in terms of the controllability matrix of the linear system, constructed from the matrices
A and B of the “ABCD” representation of a linear system, as follows:

Mc =
[
B AB . . . An−1B

]
. (3.10)

Theorem 3.4. A linear system is controllable if and only if the rank of its controllability matrix Mc

is n.

The theorem holds both for linear continuous-time systems and discrete-time systems. We give a
short proof for discrete-time systems when the dimension of the output space is 1; the proof for
continuous-time systems is similar but slightly more complex.

Proof:
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(⇐) Because of (2.7),

x(t)−Atx(0) =

t−1∑
τ=0

At−τ−1Bu(τ)

= At−1Bu(0) +At−2Bu(1) + . . .+ABu(t− 2) +Bu(t− 1)

=
[
B AB . . . At−2B At−1B

]
·


u(t− 1)
u(t− 2)

...
u(1)
u(0)


For t = n,

[
B AB . . . At−2B At−1B

]
is the square matrix Mc. If it is invertible, the input

that drives the system from x(0) = x0 to x(T ) = x1 in T = n time steps is given by
u(n− 1)
u(n− 2)

...
u(1)
u(0)

 =M−1
c · (x1 −Anx0) .

(⇒) : If Mc is not invertible, the columns of Mc are linearly dependent and the range of Mc (the
subspace of Rn that is spanned by these columns) is not the whole space Rn. State vectors that
are not in the range can therefore not be obtained by any input signal within time n. To prove
that it cannot be obtained even after time n, we prove in an analogous fashion as for observability
(or use the Cayley Hamilton theorem), that all column vectors of the form AtB for t ∈ N are linear
combinations of the vectors AjB for 0 ≤ j ≤ n − 1 . Therefore, they all belong to the range of
Mc and therefore any state not in this range cannot be reached by applying an input signal, even
when waiting for a long time.

■

Similarly to observability, an alternative result that can be used to verify that a system is controllable
is the PBH (Popov-Belevitch-Hautus) test, which is as follows. We state the theorem when the
eigenvalues of A are real; it is also valid when the eigenvalues of A are complex but one needs then to
take s ∈ C and adapt the proof of the theorem accordingly.

Theorem 3.5. Suppose that all the eigenvalues of A are real and that at least one is nonzero. A
linear system is controllable if and only if for all s ∈ R, the matrix

Nc =
[
sIn −A B

]
. (3.11)

has full rank (i.e. its rank is equal to n).

Finally, a last criterion is stated in terms of the controllability Gramian, which is defined as

Wct =

∫ t

0

exp(Aτ)BBT exp(AT τ)dτ (3.12)

for continuous-time linear time-invariant systems and by

Wct =

t−1∑
τ=0

AτBBT (Aτ )
T

(3.13)

for discrete-time linear time-invariant systems. The following criterion, which is equivalent to Theo-
rem 3.4, can be stated in terms of the controllability Gramian:
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Theorem 3.6. A linear system is controlable if and only if its controllability GramianWct is invertible
at all times t.

We note that no constraint is posed on the input signal u transferring the state x from x0 at time 0 to
a x1 at time T . It makes sense to look for the minimum energy input that controls the system from
x0 at time 0 to x1 at time t1, i.e. the input u⋆(·) that minimizes, for a continuous-time system,∫ t1

0

∥u(τ)∥22dτ (3.14)

where ∥u(τ)∥2 = uT (τ) · u(t), with a similar expression in discrete-time. This is called minimum
energy control, and the solution is given by using the controllability Gramian, which we state and
prove for continuous-time systems.

Theorem 3.7. The minimal energy input that transfers a linear continuous-time controllable system
from x(0) = x0 at time 0 to x(t1) = x1 at time t1 is

u⋆(t) = −BT exp(AT (t1 − t))W−1
ct1 (exp(At1)x0 − x1) (3.15)

for 0 ≤ t ≤ t1, where Wct1 is the controllability Gramian given by (3.12).

Proof:

The solution of the system at time t1 is

x(t1) = eAt1x(0) +

∫ t1

0

eA(t1−τ)Bu(τ)dτ (3.16)

By setting x(0) = x0 and by plugging (3.15) in (3.16), we find that x(t1) = x1, hence the input
u⋆(·) transfers x0 at time 0 to x1 at time t1.

Now, let u(·) be another input that transfers x0 at time 0 to x1 at time t1. Denote by x =
e−At1x1 − x0. Because x(0) = x0 and x(t1) = x1 in (3.16), we can express x as

x =

∫ t

0

e−AτBu(τ)dτ

and as

x =

∫ t

0

e−AτBu⋆(τ)dτ,

so that substracting both equations yields

0 =

∫ t

0

e−AτB (u(τ)− u⋆(τ)) dτ. (3.17)

Now, we have that∫ t1

0

∥u(τ)∥2dτ =

∫ t1

0

∥u(τ)− u⋆(τ) + u⋆(τ)∥2dτ

=

∫ t1

0

∥u(τ)− u⋆(τ)∥2dτ +
∫ t1

0

∥u⋆(τ)∥2dτ + 2

∫ t1

0

(u(τ)− u⋆(τ))
T
u⋆(τ)dτ

=

∫ t1

0

∥u(τ)− u⋆(τ)∥2dτ +
∫ t1

0

∥u⋆(τ)∥2dτ
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because of (3.17) yields that∫ t1

0

(u(τ)− u⋆(τ))
T
u⋆(τ)dτ

= −
(∫ t1

0

(u(τ)− u⋆(τ))
T
BT exp(AT (t1 − τ))dτ

)
W−1

ct1 (exp(At1)x0 − x1)

= − exp(At1)

(∫ t1

0

exp(−Aτ)B (u(τ)− u⋆(τ)) dτ

)
W−1

ct1 (exp(At1)x0 − x1)

= 0.

Therefore, for any u(·) transferring x0 at time 0 to x1 at time t1,∫ t1

0

∥u(τ)∥2dτ ≥
∫ t1

0

∥u⋆(τ)∥2dτ,

which proves the claim.

■

3.2.3 Examples

Example 1: Mass-spring system in Newtonian mechanics

The matrices A and B of the system given by (3.1) and (3.2) are

A =

[
0 1

−k/m 0

]
B =

[
0

1/m

]
,

from which we compute

Mc =

[
0 1/m

1/m 1/m

]
,

which is invertible. The system is controllable.

Example 2: A BIBO stable system with an unstable free system

The matrices A and B of the system given by (2.37) and (2.38) are

A =

[
1 0
1 −1

]
B =

[
0
1

]
,

from which we compute

Mc =

[
0 0
1 −1

]
,

which is not invertible. The system is not controllable. Indeed, remember that the system is not only
observable but also BIBO stable, hence any input signal will result in a bounded response. However
we saw that the free stable is unstable. One can expect therefore that there are non zero initial states
that will lead to solutions diverging to infinity, and that no input can bring these solutions to zero.

3.3 Connection with Transfer Functions

The transfer function of the last example with the system given by (2.37) and (2.38), which we just
shown to be uncontrollable, was computed in the previous chapter, and reads

H(s) =
1

s+ 1
.
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It has one pole in s = −1, hence it is BIBO stable. However, we saw that the natural frequencies of
the systems, given by the eigenvalues of A, are λ1 = −1 and λ2 = 1. If we explicit the computation
of the transfer function from (2.34), we find that

H(s) = C(sIn −A)−1B +D

=
[
1 1

]
·
[
s− 1 0
−1 s+ 1

]−1

·
[
0
1

]
=

s− 1

(s− 1)(s+ 1)

=
1

s+ 1
.

The pole in −1 also appears as a zero of the numerator of H(s), and is therefore cancelled: one
speaks of a pole-zero cancellation. As a result, the degree of the denominator of H(s) is smaller than
the order n = 2 of the system. This is always the symptom that the system is unobservable and/or
uncontrollable, in the sense of the following theorem, which we do not prove here.

Theorem 3.8. Consider a continuous-time linear system with an input-output transfer function H(s).
If H(s) has a pole-zero cancellation, then the system is unobservable and/or uncontrollable. Con-
versely, if H(s) does not have a pole-zero cancellation, then the system is observable and controllable.

The same result holds for a discrete-time system with transfer function H(z) given by (2.35).


