Non linear Systems:

Introduction

4.1 Introduction

Linear systems are important as models, but the phenomena in nature and technology that cannot be
modeled by linear systems are abundant. The reasons are either that the linear model is often only
an approximation, which may neglect important factor affecting the dynamics of the system, such
as saturation effects and quantization effects, or more importantly, that the system is intrinsically
nonlinear because the forces and influences on the system are nonlinear, such as gravitational and
electrostatic forces in Physics, or epidemic processes and neuronal activity in Biology.

We return therefore to general nonlinear systems described by (1.3) and (1.4) in continuous-time, and
by (1.7) and (1.8) in discrete-time. In the sequel, we will study most of the time autonomous systems,
i.e. systems without an input signal. They already have a very rich set of possible dynamics. We also
do usually not specify an output signal and limit our attention to the time evolution of the states.
Therefore, we consider systems described by

dx
SE0) = F(a(t) (4.1)
in continuous-time, and by
x(t+1) = F(xz(t)) (4.2)

in discrete-time, where x € R™. n is called the order of the system.

We are interested in particular in the asymptotic behavior of the solutions of (4.1) and (4.2), i.e. in
the behavior as t — +00. As we saw in Chapter 2, in the case of linear autonomous systems, where
F(x) = Az, with A is an n x n matrix, the possible asymptotic behaviors are:

1. Convergence to an asymptotically stable equilibrium point (which is unique if A is invertible
(For hyperbolic systems, the origin is the only possible equilibrium)),

2. Periodic oscillation, depending on the initial condition,

3. Divergence to infinity.
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The different behaviors can be distinguished simply by looking at the eigenvalues of the state matrix
A. The situation for nonlinear systems is much more complex. We introduce the different nonlinear
phenomena by looking at some example systems.

4.2 Examples

4.2.1 Example 1: Iterations of the logistic map

The simplest discrete-time dynamical system is given by the iterations of an interval on the real line.
Given F': I — I with I C R, the corresponding first-order dynamical system is defined by (4.2), with
n = 1. Each initial state x(0) generates a trajectory {(¢,z(t)) | t € N}, which we also write as x(t)
using a shorter notation, when there is no ambiguity. We are interested in the asymptotic properties
of x(t) as t — +oo0. This system is autonomous, i.e. it has no input signal, and no output signal is
specified. As a particular example, we take F(z) = 1 — Az?, which leaves the interval I = [—1,1]
invariant, as long as 0 < A < 2. In fact, we consider f restricted to [—1,1] and take Q@ = [—1,1]. Tt
is usually called the logistic map. Actually, the logistic map is usually the map F(z) = az(1 — x),
where 0 < a < 4 is a parameter. The two maps can be transformed into each other, up to a constant,
by mapping the interval [—1, 1] to the interval [0, 1], using the transformation z = (x 4+ 1)/2. In other
words, we analyze the asymptotic behavior of the solutions of

r(t+1) =1 - \z?(t), (4.3)

which depends on the value of A\. Figure 4.1 shows different trajectories x(t) of the logistic map
system. For A\ = 0.6, all solutions converge to the fixed point of F'. This means that the w-limit set
of any solution is the fixed point, and the fixed point is the unique attractor of the system.

For A = 0.9, the typical solutions asymptotically oscillate between two values, i.e. they converge
towards a cycle (periodic solution) of period 2. Their w-limit sets are composed of the two points of
the period 2 orbit. This is also the unique attractor of the system. There are also some non typical
solutions, e.g. the constant solution at the fixed point. Its w-limit set is obviously the fixed point, but
this is not an attractor.

For A = 1.3, the typical solutions converge towards a cycle of period 4. Their w-limit set is composed
of the 4 points of the 4-periodic orbit, and this is also the attractor of the system.

For A = 1.4009, the typical solutions converge towards a cycle of period 64. Their w-limit set is
composed of the 64 points of the 64-periodic orbit, and this is also the attractor of the system.

Finally, for A = 1.6, the typical solutions have an irregular asymptotic, chaotic behavior. Their w-
limit sets cover a whole interval, and this is also the attractor of the system. There are also many
non-typical solutions that are periodic. Their w-limit sets sets are the corresponding periodic orbits.
They are usually part of the attractor, but by far are not the whole attractor.

4.2.2 Example 2: Van der Pol Oscillator

A relatively simple continuous time system is the Van der Pol oscillator. It is usually described by
the second order differential equation

d*x dz
— () + A (2%(t) — 1) —(¢ t)=0 4.4
which can be recast as a second-order system of two state equations
50'51 = X2 (45)

iy = —x1—A(z] —1) 2. (4.6)
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Figure 4.1: Trajectory z(t) for (0) = —0.9 and A = 0.6 (top left), z(0) = —0.8 and A = 0.9 (top right),
2(0) = —0.85 and A = 1.3 (center), z(0) = —0.791 and A = 1.4009 (bottom left) and =(0) = —0.85
and A = 1.6(bottom right).
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The system has an equilibrium point in (0,0), which may or may not be stable, depending on the
sign of \. When it is stable, the solutions starting not too far from it converge to it, whereas the
solutions starting far from it diverge to infinity. The converging solutions have the equilibrium point
as w-limit set, whereas the diverging solutions have an empty w-limit set. As an exception, there is
also a periodic solution. Its orbit is also its limit set. However, the attractor of the system is just the
equilibrium point. Some orbits of the system with a stable equilibrium at the origin are shown on the
left part of Figure 4.2.

When it is unstable, the trajectories converge to a limit cycle (periodic solution). Their w-limit set
is the orbit of the limit cycle. This is also the attractor of the system. The constant solution at the
equilibrium point is an exception. Its w-limit set obviously is just the equilibrium point. However it
is not part of the attractor. Some orbits of the system with an unstable equilibrium at the origin are
shown on the right part of Figure 4.2.
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Figure 4.2: Some orbits of the Van der Pol oscillator, with A = —0.3 (left): one converging to the
equilibrium point, one periodic and the third one diverging to infinity, and with A = 0.3 (right): both
converging to a limit cycle.

4.2.3 Example 3: Two Coupled Van der Pol Oscillators

We consider the system of two coupled Van der Pol oscillators. The first oscillator is, apart from the
coupling term, identical to (4.5) and (4.6). The second has a different basic oscillation frequency w.
The state equations of the two coupled oscillators read

i o= @ (4.7)
iy = —x1— (2] — 1) 22+ e(mg — 22) (4.8)
i3 = x4 (4.9)
iy = —wlrg— A (2] — 1) 24 +e(z2 — 34). (4.10)

If the coupling constant ¢ is 0 and if A > 0, the two oscillators move independently and approach their
asymptotic periodic solution as in Section 4.2.2. If w # 1, the two periodic solutions have a different
frequency. If the ratio of the two frequencies is irrational, the combined system has a torus as an
attractor, namely the cartesian product of the two periodic orbits.

Let us explain that in more detail:

The two periodic trajectories can be parametrized by an “angle variable” (think of the change of polar
coordinates that we did in (2.44) in the case of a linear system with complex eigenvalues of the state
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matrix). Let

T I3
TW) = | @ T ]

ray = filer)
Ty = falp2)

we can write

where f; : [0,27] — R?, with i € {1,2}, are two continuous, injective functions with f;(27) = f£:(0).
The parametrization can be chosen in such a way that the angles ¢, p2 increase at a constant rate
as functions of time, i.e. p; = 27 (t/T;) with ¢ € {1,2} where Ty, T are two periods (as for example
in (2.46) for the linear system in polar coordinates, with 27/ as the period):

ry(t) = fi(2xt/T1)
zo)(t) = fo(2mt/T>).

In general, a closed curve in R™ is described by a continuous, injective function f : [0, 27] — R™ with
f(2m) = f(0). Similarly, a (2-dimensional) torus in R™ is described by a continuous, injective function
F :[0,27)? — R™ with F(2m,pa) = F(0,¢2) and F(p1,27) = F(p1,0), as shown in Figure 4.3.

Figure 4.3: Parametrization of a close curve (left) and of a torus (right).

From the two closed curves in R?, we can now construct a torus in R* by taking the Cartesian product:
T
Ta| _ |:ZC(1):| _F <<P1> _ [f1(901)} .
3 T(2) ©2 f2(p2)
T4

If we now consider the two corresponding periodic solutions, the combined solution of (4.7)-(4.10)
becomes

xl(t)

wg(ﬁ) . 27Tt/T1 o f1(27Tt/T1)
xggt; = <27rt/T2> = {fg(th/Tg)}
Tq t

If Ty /T5 is a rational number, the solution on the torus is a closed curve and its w-limit set obviously
is this closed curve. However, since any point on the torus can be taken as initial condition leading to
a similar closed curve, the closed curves fill out the whole torus, which is the attractor of the system.

If Ty /T5 is an irrational number, a single solution gets arbitrarily close to any point on the torus.
Hence, its w-limit set is the whole torus and the attractor is also the torus.

A solution of the juxtaposed van der Pol oscillators starting from a state close to the origin is repre-
sented in Figure 4.4. On the left part, x2 is plotted against x;: This is nothing else than the orbit
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of the first oscillator. On the right part, x3 is plotted against x;. This amounts to the combination
of a horizontal and a vertical oscillation at different frequencies. If the ratio T; /7% is irrational, this
2-dimensional projection of the 4-dimensional orbit fills out a rectangle, or rather, gets arbitrarily
close to any point in the rectangle. Of course, a solution of finite length as in this figure cannot fill
out a region. However, it is rather well distributed over the rectangle.

) ;* W" 0‘0" UH‘" |
1 \0/“““‘\ Q w
] ° :"WV 3.'/»,\00 ‘w |
il ; m ' m
% 35 »’&% 2

Figure 4.4: Orbits of two juxtaposed (uncoupled: £ = 0) Van der Pol oscillators, with A = 0.3,w = 7.
State variables xo plotted against 21 (left) and x5 plotted against z1 (right).

Clearly, just juxtaposing two oscillators is a rather artificial construction. However, if we choose a
small positive value for €, we expect (4.7)-(4.10) again to have a torus as an attractor, close to the
torus for € = 0. Indeed, Figure 4.5 shows phase portraits that are very close to those of uncoupled,
juxtaposed oscillators, shown in Figure 4.4. However, when the coupling ¢ becomes strong, the 4-
dimensional system may have asymptotically periodic solutions, as shown in Figure 4.6. This is a
form of synchronization between the two oscillators.
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Figure 4.5: Orbits of two weakly coupled Van der Pol oscillators, with ¢ = 0.001,\A = 0.3,w = 7.
State variables xo plotted against z1 (left) and z3 plotted against z1 (right).
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Figure 4.6: Orbits of two strongly coupled Van der Pol oscillators, with € = 10, A = 0.3,w = 7. State
variables 5 plotted against z1 (left) and x5 plotted against x; (right).

4.2.4 Example 4: Iterations of the Lozi map

Consider the discrete-time system (4.2) for n = 2, with the map F' defined by

1 a—1—alry + x|
F = 4.11
Gy =]t , (11)

which is called the Lozi map. For o = 1.7 and 5 = 0.5 the system has a chaotic behavior. A solution
starting close to its attractor is shown in Figure 4.7. It gives a good idea of the complex geometric
structure of the attractor. It is full of layers and holes. Such geometric objects are also called fractals.
The salient feature of fractals is that they look the same at all scales. On the left of Figure 4.7,
1000 points of the orbit are represented, which give a good idea of the complex geometric structure of
the attractor. On the right 10000 points are plotted. Now the complicated structure is not anymore
visible because of the poor resolution of the picture. However, when we enlarge the little rectangle of
the right of Figure 4.7, the complicated structure of the attractor becomes again visible (Figure 4.8).
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Figure 4.7: Orbits of 1000 iterations (left) and 10000 iterations of the Lozi map, starting close to the
attractor of the system.
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Figure 4.8: Part of the orbit of 10000 iterations of the Lozi map that lies in the small rectangle in the
right of Figure 4.7. Note that this enlargement shows again the layered structure of the attractor.

4.2.5 Example 5: Iterated function systems for generating fractals

Instead of studying the fractals as byproducts of dynamical systems, one can try to generate fractals
with desired properties by suitably choosing the generating dynamical systems. This is usually done
by iterated function systems. These dynamical systems differ from the state equations (4.2) in the
sense that they do not describe the trajectories of points in R™, but the trajectories of sets in R™.

The construction goes as follows. Let M functions F), : R” — R", m =1,..., M be given. They are
contractions, i.e. they map a bounded volume into a smaller volume. Most often, affine mappings are
taken, i.e.

F(x) = Apx + by,

where A,, is an n X n matrix with ||4,,|| < 1 and b,, is an n-dimensional vector. The functions F,
are applied to sets S C R"™, and we write

Fn(S) = {F(z) | 2 € S}.

The trajectory of sets is then constructed by the state equation, where ¢t € N denotes the iteration
number,

S(t+1)=F(SH)U...UFn(S(t)). (4.12)

The functions F, and the initial set S(0) are usually defined in such a way that they all map S(0)
to a subset of itself and that different sets F,(S(¢)) do not overlap. As an example, take as S(0) an
equilateral triangle and map it by F}, Fb, F3 to equilateral triangles of half the original size that are
placed to the 3 corners of the original triangle. The union S(1) calculated according to (4.12) leaves
another triangle of half the original size empty. Repeating the iterations (4.12) ad infinitum leads to
the fractal called the Sierpinsky gasket as the limiting set, as shown in Figure 4.9.

The fractal called the Barnsley fern is generated by the four affine functions F,,, m € {1,2,3,4},

given by
o T\ _ |Tm cgs Om  —Sm SNy, | |21 + em , (4.13)
To T SN ©py  —Sm COS WUy | | T2 fm
where the parameters are given in Table 4.2.5.

The initial set is an upright rectangle with the origin of the coordinate system at the middle of the
lower edge. The surprising resemblance of this and other fractals with objects in nature has lead to
the idea to use iterated function systems to code natural images. Note that only a few numbers have
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Figure 4.9: Fractal called Sierpinsky gasket and the way it is constructed, from the bottom right to
the top left (from H.-O. Peitgen, H.Jiirgens, D.Saupe, Fractals for the classroom, Springer-Verlag,

New York, 1992).

Translation | Rotation (in degrees) Scaling
m | €m f m Pm 7»3/}771, T'm Sm
110 1.6 —-2.5 —2.5 0.85 | 0.85
210 1.6 —49 49 0.3 | 0.34
310 0.44 120 —50 03 | 0.37
410 0 0 0 0 |0.16

Table 4.1: Parameters of the affine functions used to generate the Barnsley fern.
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to be known to reconstruct the whole complicated set of Figure 4.10. Depending on the fractalness of
regions in an image, this method of image coding can achieve quite high compression rates.

Figure 4.10: Fractal called Barnsley fern (from H.-O. Peitgen, H.Jiirgens, D.Saupe, Fractals for the
classroom, Springer-Verlag, New York, 1992).



