Periodic Solutions in Planar

Systems

6.1 Limit Cycle

It is in general easy to find equilibrium points of a continuous-time system, it is in general difficult to
find periodic solutions, even by simulation. For 2-dim systems, there are however two useful theorems
that can be used to predict the presence or the absence of periodic solutions. In this chapter, we
consider therefore only systems of the form

1 = Fi(z1,22) (6.1)

iQ = Fg(xl,CﬂQ)‘

We are looking for non-trivial periodic solutions of such systems, i.e. for T-periodic solutions with
T > 0. The orbit of such solution, which we denote by T, is called a cycle. It is called a limit
cycle if it is the a-limit set or w-limit set of some solution whose initial condition is not on the cycle.
Asymptotically stable and unstable periodic orbits are examples of limit cycles. Conversely, the orbits
of a center of a linear system are cycles, but not limit cycles.

Let us first recall the following result, which establishes the link between periodic solutions and closes

orbits of a continuous-time 2-dim system.

Theorem 6.1 (Closed Orbit). Let I be the orbit of the solution £(t) of (6.1)-(6.2) starting from
£(0) = &. Then (1) is a non-trivial periodic solution of (6.1)-(6.2) if and only if T is a closed curve
containing no equilibrium point.
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Proof:

(=) If £(¢) is a T-periodic solution, with 7" > 0, then (¢t +7T') = £(¢t) for all ¢t € R and in particular
&(T) = €(0) = &, making the orbit of £(t) the closed curve I'. Tts omega-limit set is also I'. If T
was containing an equilibrium point, the omega-limit set of £ would that equilibrium point, and
not the closed curve I'. Therefore I' is a closed curve containing no equilibrium point.

(<) Suppose that the orbit I' is a closed curve containing no equilibrium point. Let us pick a
point & € T, and let us consider the solution &(¢) of (6.1)-(6.2) with initial condition £(0) = &.
Then &(t) moves along T' with velocity £(t) # 0 since there is no equilibrium on I'. As F(z) =
(Fy (21, 22), Fo(x1,22)), the norm of the velocity is

[ém]|, = 1P, = R @0, e0) + Baw,e0). (6.3)

Let Finin denote the minimum of the right hand side of (6.3) over I'. Note that Fi,i, > 0 because
&(t) # 0. Therefore, there is some 0 < T < 1/Fy,i, such that £(T) = & = £(0), which yields that
¢ is T-periodic.

6.2 Absence of a periodic solution

A connected domain D, of R? is a set in which every two points in D, can be connected by a curve lying
entirely within D,. A set D C R? is simply connected if it is connected, and if any curve between two
points can be continuously contracted, staying within D, into another curve with the same endpoints.
More intuitively, a set D C R? is simply connected if it is connected and has no holes in it. For
instance, an annular region is connected but not simply connected. An ellipse, a rectangle, etc are
simply connected.
The divergence of function F(x) = (Fy(x1,x2), Fo(x1,x2)) is defined as the quantity
or, 0Fy
divF(z) = —(x1,22) + — (21, x2). 6.4
(z) axl(l 2) 8:52(1 2) (6.4)

Theorem 6.2 (Bendixson’s Theorem). Let D be a simply connected of R? such that the divergence
of F, given by (6.4), is not identically zero over any subregion of D, and does not change sign in D.
Then D does not contain any cycle of (6.1)-(6.2).

Proof:

Suppose that J is a closed orbit of (6.1)-(6.2). Then for each point z = (x1,22) € J, F(x) is
tangent to J. Let n(z) denote the outward directed unit vector that is orthogonal to j at x (i.e
orthogonal to F(x)). Then n® (z)F(x) = 0 for all z € J, and thus

/ n (z)F(x)dz = 0.
J

The divergence theorem of Gauss allows us to write

/JnT(x)F(x)dx://S divF (x1, xe)dx1dxs

where S is the area enclosed by J. For the two members of this equation to be zero, one would need
either to have that divF(z) = 0 for all x € S, or that divF(x) changes sign over the region S. But
since S C D, neither can happen. Therefore D does not contain any closed orbit of (6.1)-(6.2).
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Example 1
Consider the system (from S. Sastry, p. 43)

. 2
T = T2+ T175

. 2
Ty = —IT1+ T{T2.

The linearization of this system around (0, 0) is inconclusive, because the eigenvalues of the Jacobian
matrix are +j5. However,
divF(z) = 23 + 23

and we see that divF'(z) > 0 whenever (x1,z2) # (0,0). Therefore this system has no periodic solution
(other than the trivial solution (z1, 2z2) = (0,0)).

Example 2

Consider now the system

¥ = —xo+ax(2f 423 1)

x1 + ary(z? + 22— 1)

)
with a # 0. One can compute that

divF(z) = 2o (2 (2] + 23) — 1)
Let Dy be the disk

1
Di = {(1‘1,1‘2) S Rz | x% +I% < 2} .
Observe that divF(z) is not identically zero on any subregion of D; (but at the equilibrium (0,0)),
and is of the same sign on D;. Since D; is simply connected, this system has no periodic solution in
D; (other than the trivial solution (x1,z2) = (0,0)).

Now, let Dy be the annular region
2 1 2 2
Dy = (xl,x2)€R|§<x1+x2<2 .

divF(x) is again everywhere non zero and of the same sign on Ds. However, D is connected, but not
simply connected, and we cannot apply Bendixson’s theorem for this region.

6.3 Existence of a periodic solution

The following theorem is given without proof. Remember that a compact set is a set that is both
closed and bounded.

Theorem 6.3 (Poincaré-Bendixson’s Theorem). Let x(t) be a solution of (6.1)-(6.2), and let S,
denote its w-limit set. If S,, is contained in a compact region M C R?, and if M does not contain
any equilibrium point of the system, then S, is a cycle of (6.1)-(6.2).

The difficulty of the application of the theorem is to find a region M that is forward invariant (and
thus contains the w-limit set of the solution), without containing any equilibrium point. Often, the
best approach is to find a compact region M, without any equilibrium, such that all solutions enter
in it and do not leave it. In practice, M is often an annular region surrounding an equilibrium.
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The theorem allows us to conclude that every compact and forward-invariant set M contains either
an equilibrium point or a cycle. We cannot say however that the only w-limit sets of points in M are
equilibrium points or cycles. Indeed, the w-limit sets of points in M may also be a union of orbits
connecting many equilibrium points (a union of finitely many saddle connections).

We can also show that any cycle encloses an equilibrium point.

Finally, we can also extend Theorem 6.3 by inverting time, which amounts to replacing the w-limit
set S, of the solution x(¢) by its a-limit set S,. The region M is then backward invariant.
Example 1

Consider again the system

B = —xo 4 az (2 + x% -1

fy = x4+ awg(ri+ai—1)
with a < 0. Let 0 < e < 1 and let M be the annular region

M={(z1,22) €ER* |1 —e <ai+a5<l+e}.

Let
ro= (xf—k:c%)l/z
T2
¢ = arctan ()
1
Then
M={(r,p) eRy x[0,2n] |1 —e<r® <1+¢}
and

= ar(r* — 1).

We see that if » < 1, then 77 > 0 and therefore all solutions that start from 0 < r(0) < 1 — ¢ must
enter M at some time ¢t > 0. Likewise, if 7 > 1, then 7 < 0 and therefore all solutions that start from
r(0) > 1+ € must enter M at some time ¢’ > 0. Therefore M contains the w-limit set of all solutions
of the system (but the origin), it is thus forward invariant. Since it does not contain any equilibrium
point, it must contain a periodic solution.

Example 2

Consider the system (from T. Kapitula, p. 54):
B = Py — 2o+ x1(327 + 223)
iy = a1+ Py + x2(327 + 273)

with 8 < 0, and let us make a change of polar coordinates

ro= (274 mg)l/z
T2
¢ = arctan () .
T
Then the system becomes
Po= r(B+(2+ COSQ((p)) r2)

Sb:
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Let 0 < ¢ < 1 and let M be the annular region

M = {($1,$2)€R2|—i<$%+$g<—2f_g}
B

= {(r,¢)6R+x[0,2ﬂ]|<r2< p }

3—¢ 72—&—5

Since 7(8 + 2r?) < 7 < r(B + 3r2), M is backward invariant (the vector field points outwards on the
boundary of M). Since it does not contain any equilibrium point, it must contain a periodic solution.



