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Chaos (A Short Introduction)

In addition to simple attractors such as equilibrium and fixed points, and closed periodic orbits, a
dynamical system may have “strange”, “chaotic” attractors that exhibit a much more complex shape.
The system is said to exhibit chaos if, loosely speaking, its solutions are bounded, are asymptotically
irregular and aperiodic, with a strong dependence on the initial conditions. In this last chapter,
we briefly and superficially survey some of the main features of a chaotic system, the most well
known examples of such system being the Lorenz system (in continuous time), the logistic, Bernouilli
(doubling) and tent maps (in discrete time).
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Figure 8.1: 200 iterations of the logistic map (8.1) with λ = 1.6, starting at x(0) = 0.86.
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Figure 8.2: Chua’s circuit (left) with the characteristic of the nonlinear resistor RN (right).
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8.1 First Property: Irregular and Aperiodic Trajectories

At first sight, this is the most striking property of chaos. A system with very simple state equations
can have very complicated trajectories is the logistic map F (x) = 1− λx2 whose iterations

x(t+ 1) = 1− λx2(t) (8.1)

for λ = 1.6 are shown in Figure 8.1.

Autonomous continuous time systems can also have irregular, non-periodic asymptotic behavior. Be-
cause of Poincaré-Bendixson’s theorem, 2-dimensional continuous-time systems can have as asymp-
totic behavior only constant (equilibrium points) and periodic solutions, the simplest continuous-time
chaotic systems have dimension 3. The most famous example is the Lorenz system (Lorenz, 1963)
originating from atmospheric physics, and another famous example is Chua’s circuit, formulated in
terms of electronics. Let us consider the latter. The circuit diagram is drawn in Figure 8.2. All the
components of this circuit are linear, except the nonlinear resistor RN whose characteristic i = g(v1)
given on the right of Figure 8.2.

The state equations of this circuit are

C1
dv1
dt

=
1

R
(v2 − v1)− g(v1)

C2
dv2
dt

= − 1

R
(v2 − v1) + iL

C2
diL
dt

= −v2.

Normalize the currents and voltages as x1 = v1/v0, x2 = v2/v0, x3 = RiL/v0, where v0 is the voltage
where the characteristic of the nonlinear resistor has a breakpoint, the system of equations becomes

ẋ1 = α(−x1 − f(x1) + x2) (8.2)

ẋ2 = x1 − x2 + x3 (8.3)

ẋ3 = −βx2. (8.4)

where α = C2/C1, β = R2C2/L and the piecewise characteristic g(·) of the nonlinear resistor becomes

f(x) =

 m1x−m0 +m1 if x < −1
m0x if −1 ≤ x ≤ 1
m1x+m0 −m1 if x > 1,

where m0 < m1 < 0. For the standard choice α = 9, β = 100/7, m0 = −8/7, m0 = −5/7,
the trajectories are irregular, non-periodic, as shown in Figure 8.3, although nothing in the state
equations indicates the presence of such complex solutions at first sight.

Chaotic systems have irregular, aperiodic solutions, but such solutions are not an unmistakable sign
of chaos. The signal

y(t) = sin(2t) + 0.7 cos(2πt) + 1.3 sin(
√
2t) (8.5)

is shown in Figure 8.4. It looks irregular, and it is not periodic, since the frequencies in the sin and
cos functions do not have rational ratios. Such signals are called quasi-periodic. The signal (8.5) is
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Figure 8.3: Projection of the orbit of Chua’s circuit with the parameters α = 9, β = 100/7,m0 = −8/7,
m0 = −5/7 onto the (x1, x2)-plane. The time interval represented is [0, 200] and the initial state is
(x1(0), x2(0), x3(0)) = (0.1, 0.1, 0.1) (left). The trajectory of the state component x1(t) as a function
of time t (right).

the output signal of the linear autonomous continuous-time system

ẋ1 = 2x2

ẋ2 = −2x1

ẋ3 = 2πx4

ẋ4 = −2πx3

ẋ5 =
√
2x6

ẋ6 = −
√
2x5

y = x1 + x3 + x5.

This system has its eigenfrequencies on the imaginary axis (they are ±2j,±2πj,±
√
2j) and therefore

it is stable (without being asymptotically stable). Thus, it clearly would not be reasonable to classify
this system as being chaotic.

8.2 Second Property: Sensitivity to initial Conditions

8.2.1 Introduction and Observations

The property that characterizes chaos best is the so-called sensitivity to initial conditions, together
with the property that the solutions are bounded. In its weakest form, this simply means that
all solutions are unstable. Therefore, loosely speaking, any two solutions that start close together
will eventually separate from each other. In a stronger form, it is required that this separation is
exponentially fast, at least as long as they are close.

Unstable linear systems have also sensitivity to initial conditions, but almost all their solutions are
unbounded. In general, nonlinear systems with bounded solutions may have simultaneously stable
and unstable solutions, the unstable ones being the exception. As an example, take a 2-dimensional
continuous-time system with two asymptotically stable equilibrium points, which are (topologically
equivalent to) stable focus, and one unstable equilibrium point, which is (topologically equivalent to)
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Figure 8.4: Quasi periodic signal given by (8.5) in the time interval [0, 50] starting from the initial
state (0, 1, 0.7, 0, 0,−1.3).

a saddle point. The basins of attraction of the stable focuses are separated by the stable manifold of
the saddle point. All solutions are asymptotically stable, except those that are starting on the stable
manifold of the unstable equilibrium point (a saddle point). They converge to the saddle point, but an
arbitrarily small perturbation off the stable manifold will cause such a solution to converge to either
of the stable equilibrium points and thus become asymptotically stable.

It is not difficult to imagine that when all solutions are repelling each other and when they nevertheless
stay in a bounded region of the state space (or at least those that start in a bounded region) they
must have a very disordered behavior (the first property of chaos).

The sensitivity to initial conditions is illustrated in Figure 8.5 for the iterations of the logistic map
(8.1) and in Figure 8.6 for Chua’s circuit. Figure 8.5 shows for the exponentially fast separation
of trajectories that start from close initial conditions. Two trajectories of the logistic map system
starting close drift exponentially fast apart. When the initial separation is 10−3 and it takes about 10
iterations until the separation becomes visible, whereas if the initial separation is 10−6, and it takes
about 30 iterations until the two trajectories can be distinguished in the plot.
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Figure 8.5: Trajectories of the logistic map starting at -0.85 (blue) and -0.85085 (red) at time t =
0 (left). Within the resolution of this figure, they are indistinguishable until about time t = 15.
Trajectories starting at -0.85 (blue) and -0.85000085 (red) at time t = 0 (left). Within the resolution
of this figure, they are indistinguishable until about time t = 35. If the two trajectories were continued
in time, they would become less and less correlated.
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While the attractor of the logistic map system in the case of chaotic behavior covers part of the
interval [−1, 1], in the case of Chua’s circuit it is a complex lower dimensional geometric object, whose
dimension is strictly less than 3, and that can be seen in a 2-dimensional projection in Figure 8.6 to
a certain approximation. This attractor governs the asymptotic behavior of the solutions. There are
infinitely many solutions in the attractor. Even if their asymptotic behavior is not unique, the long
time behavior of the solutions is nevertheless similar, as seen in Figure 8.6, showing two solutions
starting at two initial states whose first component is different by 10−3. They separate rapidly, but
their general aspect is similar.
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Figure 8.6: Projection of two orbits of Chua’s circuit with standard parameters, starting from the
initial state (0.1, 0.1, 0.1) (blue) and (0.1001, 0.1, 0.1) (red). For a short time, the two orbits cannot
be distinguished in the figure, but then they become different. The general nature of both orbits is
however the same (left). The two trajectories of the state component x1(t) as a function of time t
(right).

8.2.2 Lyapunov Exponents for 1-dim. Maps

Since sensitivity to initial conditions is such an important property, is it possible to quantify it?
Yes, it is possible to compute the exponential speed of separation of two nearby solutions, as long
as they remain close and the linear approximation of the time evolution of the differences is valid.
This naturally recalls the use of the variational equations that were successful in deciding the stability
or instability of periodic solutions. In fact, exactly the same formalism can be applied to arbitrary
solutions, not only periodic ones.

Definition and Computation

We discuss here only 1-dimensional discrete-time systems

x(t+ 1) = F (x(t)) (8.6)

where F : R → R is continuously differentiable.

Let x(t) be an arbitrary solution, and x̃(t) be another solution such that |∆x(0)| = |x̃(0) − x(0)| is
small. Then the time evolution of the increment ∆x(t) = x̃(t) − x(t) = Φ(t, x̃(0)) − Φ(t, x(0)) is, up
to first order approximation, given by

∆x(t) =M(t)∆x(0) (8.7)
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where M(t) is the Jacobian matrix of Φ with respect to x0 at the point x(0) and for a given time t,
which is here

M(t) =
dΦ

dx0
(t, x(0))

and is given by the solution of the variational equation

M(t+ 1) =
dF

dx
(x(t))M(t) (8.8)

with M(0) = 1, since here the Jacobian matrix J(x(t)) of F at x(t) is given by

J (x(t)) =
dF

dx
(x(t)).

Iterating (8.15), we find that

M(t) =
dF

dx
(x(t− 1)) · dF

dx
(x(t− 2)) · · · dF

dx
(x(1)) · dF

dx
(x(0)),

and therefore the relative growth or shrinking of the increment is given, to a first order approximation,
by

|∆x(t)|
|∆x(0)|

≈
∣∣∣∣dFdx (x(t− 1))

∣∣∣∣ · ∣∣∣∣dFdx (x(t− 2))

∣∣∣∣ · · · ∣∣∣∣dFdx (x(1))

∣∣∣∣ · ∣∣∣∣dFdx (x(0))

∣∣∣∣ .
We are here interested in the exponential speed or convergence of the two solutions and therefore we
set

|∆x(t)|
|∆x(0)|

≈ exp(α(t)t)

and therefore

α(t) ≈ 1

t

t−1∑
τ=0

ln

∣∣∣∣dFdx (x(τ))

∣∣∣∣
represents the (time-)average exponential speed of growth or contraction in the time interval [0, t]
along the solution x(t). It can be calculated along any solution x(t), and its limit for t → ∞, if it
exists, is the Lyapunov exponent of x(t).

Definition 8.1. The Lyapunov exponent of a solution x(t) of the autonomous 1-dim discrete-time
system (8.6) is given by

α = lim
t→∞

1

t

t−1∑
τ=0

ln

∣∣∣∣dFdx (x(τ))

∣∣∣∣ (8.9)

if the limit exists.

To compute the limit (8.9), it is useful to use probabilistic methods and tools from ergodic theory.
Instead of attempting to make a prediction of the long-term behavior of a solution from a deter-
ministically chosen initial condition, which is anyway impossible in a chaotic system when the initial
data have limited accuracy, we predict the average long-term behavior of a solution from a randomly
chosen initial condition. Instead of a single trajectory, all trajectories are considered simultaneously,
weighted with a probability measure P . If the system is ergodic, we can then approximate the long
term behavior of a typical solution by any single solution with asymptotically good accuracy. The
main ingredients of ergodic theory of dynamical system are summarized in Section 8.4, a more detailed
treatment goes however beyond the introductory treatment of this chapter, and the interested reader
is referred to e.g. the textbook by M. Pollicott and M. Yuri, Dynamical systems and ergodic theory,
Cambridge University Press, 1998.
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The following theorem, which is an application of Birkhoff’s ergodic theorem (Theorem 8.5), states
that the limit in (8.9) exists and its value if P is an invariant measure under F (·) (which means that
P (F−1(A)) = P (A) for any subset A ⊆ Σ, where Σ is a σ-algebra on Ω, where F−1(·) is the inverse
transformation of F (·) and where Ω ⊆ R is the state space of the system; see Section 8.4. A subset A
of the σ-algebra of subsets of Ω corresponds to an event in probabilistic terms). If in addition F (·) is
an ergodic transformation, then the limit does not depend on the solution x(t) used in (8.9).

Theorem 8.1. If P is an invariant measure under F (·), then for P -almost all solutions x(t), the
Lyapunov exponent (8.9) exists. If, in addition, P is ergodic with respect to F (·), then for P -almost
all solutions, the Lyapunov exponent (8.9) is the same and its value is given by

α =

∫ ∞

−∞
ln

∣∣∣∣dFdx (x)

∣∣∣∣ dP (x). (8.10)

The proof follows by applying Theorem 8.5 for Ω = R and f = ln |dF/dx|.
If the ergodic invariant measure is given by a density ρ(x), i.e. dP (x) = ρ(x)dx, then (8.10) becomes

α =

∫ ∞

−∞
ln

∣∣∣∣dFdx (x)

∣∣∣∣ ρ(x)dx. (8.11)

This means that if we choose an initial condition at random on the real line (or in an interval Ω, if
the system and the invariant measure is restricted to an interval Ω), we will obtain, by calculating
the right hand side of (8.11) for sufficiently large t, a good approximation of the Lyapunov exponent.
Since determining an invariant measure most of the time cannot be done explicitly, this is in fact the
way Lyapunov exponents are computed.

Clearly, a positive Lyapunov exponent of a solution x(t) implies that the solution is unstable, whereas
a negative one implies that the solution is asymptotically stable. However, a solution with a 0
Lyapunov exponent can be unstable, stable or even asymptotically stable. In fact, the Lyapunov
exponent distinguishes only exponential speeds of expansion or contraction, but not anything slower.

Examples of Lyapunov Exponents

Fixed Point. When the solution x(t) converges to a fixed point x, then (8.9) implies that its
Lyapunov exponent equals

α = ln

∣∣∣∣dFdx (x)

∣∣∣∣ . (8.12)

This implies that all solutions starting in the basin of attraction of an asymptotically stable fixed
point have the same (negative) Lyapunov exponent.

Periodic Solution. Similarly, when the solution x(t) converges to the T -periodic solution ξ =
(ξ1, ξ2, . . . , ξT ) then (8.9) becomes

α =
1

T

T∑
i=1

ln

∣∣∣∣dFdx (ξi)

∣∣∣∣ . (8.13)

Again, if the periodic solution is asymptotically stable, then all solutions starting in the basin of
attraction of this solution, as well as a cyclic permutation of it, have the same (negative) Lyapunov
exponent.

These two examples show that the notion of Lyapunov exponent is not really interesting for fixed
points and periodic solutions, since it coincides with the notion of eigenvalue of the Jacobian or a
product of Jacobians (here just numbers). However, it is a good tool to distinguish between chaotic
and non-chaotic behavior, as shown by the following examples.
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Bernouilli Map. The Bernouilli map F (·) on Ω = [0, 1[= [0, 1) is defined by

F (x) = 2x mod 1 =

{
2x if 0 ≤ x < 1/2
2x− 1 if 1/2 ≤ x < 1.

(8.14)

Let P be the measure specified by the intervals, such that for any 0 ≤ a ≤ b ≤ 1, P ([a, b]) = P ([a, b)) =
P ((a, b]) = P ((a, b)) = b− a (hence dP (x) = dx: this is the Lebesgue measure). It is invariant under
F (·) since the total length of the two intervals of the pre-image of [a, b] is (b − a) (see Section 8.4).
The function (8.14) has a discontinuity at x = 1/2, but (Lebesgue-) almost all trajectories do not pass
through this point.

Therefore the Lyapunov exponent of almost all trajectories exists, and since dF/dx(x) = 2 for all
x ∈ Ω \ {1/2}, the Lyapunov exponent α = ln 2 is for almost all trajectories. As this is a positive
number, the behavior of the system is chaotic because the state space is compact (all solutions remain
bounded for all time t ∈ N).

Logistic Map.

Figure 8.7 (left) displays the Lyapunov exponent α(t) of a few solutions of the logistic map (8.1)
for λ = 0.9, where there is an asymptotically stable period-2 solution (to be precise, there are two
of them). The theoretical (negative) value for the solutions converging to the 2-periodic solution
according to (8.13) is indicated by a horizontal black line. The only exception is the solution starting
exactly at the unstable fixed point (or at its other pre-image), which is indicated by the horizontal red
line. It remains constant at a positive value, as it should be. How is this compatible with Theorem 8.1?
The fact is that the two exceptional initial points, i.e. the unstable fixed point and its pre-image,
have Lebesgue measure 0 and thus for Lebesgue-almost all initial points in the interval [−1, 1], we get
the same value for the Lyapunov exponent, namely the value corresponding to the period-2 solution.
This is the case for the two other solutions shown in the figure, which nicely converge to this value,
with respective initial conditions at x(0) = 0.37 (blue) and x(0) = x − 0.0001 ≃ 0.548903, where
x = (−1 +

√
1 + 4λ)/(2λ) is the (unstable) fixed point of the map for λ = 1.6 (Magenta). Since the

initial point is so close to the unstable fixed point, but that both have different Lyapunov exponents,
the convergence to the Lyapunov exponent of the 2-periodic solution is longer.

Figure 8.7 (right) displays the Lyapunov exponent α(t) of two solutions of the logistic map (8.1) for
λ = 1.6, one starting at x(0) = −0.8 and the other at x(0) = 0.2. They appear to converge to the
same positive asymptotic value. One could choose many other initial points at random to obtain the
same positive asymptotic value. This is an indication of chaos. Note that the two functions are not
very smooth. This is also typical of chaos. It comes from the fact that within the chaotic attractor
there are infinitely many unstable periodic solutions, as we will see in Section 8.3, each one with a
somewhat different Lyapunov exponent. Even though the set of initial points that lead to periodic
solutions has Lebesgue measure 0, these solutions are everywhere present and perturb the numerical
computation of the Lyapunov exponent of the chaotic solutions.

8.2.3 Lyapunov Exponents for Higher Dimensional Systems

We can generalize the notion of Lyapunov exponent to higher dimensional discrete-time and to
continuous-time systems using the same basic ideas and constructions. We again consider two close
solutions x̃(t) and x(t) of the dynamical system, and we define the increments ∆x(t) = x̃(t)−x(t). Up
to first order approximation, the time evolution of the increments is given by the variational equations

M(t+ 1) = J (x(t))M(t) (8.15)

for a discrete-time map and by

Ṁ(t) = J (x(t))M(t) (8.16)
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Figure 8.7: Computation of the Lyapunov exponent α(t) when λ = 0.9 (left) and λ = 1.6 (right).

for a continuous-time dynamical system, with J (x(t)) = ∂F/∂x(x(t)) and M(0) = In in both cases.
One has then

∆x(t) ≈M(t)∆x(0). (8.17)

Therefore, the expansion or contraction of the initial increment vector is approximated by

∥∆x(t)∥2

∥∆x(0)∥2
=

∆xT (t)∆x(t)

∆xT (0)∆x(0)
=

∆xT (0)MT (t)M(t)∆x(0)

∆xT (0)∆x(0)
.

and is thus dictated by the matrixMT (t)M(t), which describes different exponential expansion/contraction
in different directions in state space. Since MT (t)M(t) is a positive definite matrix, the matrix

Λ(t) =
1

2t
ln
(
MT (t)M(t)

)
is well defined. Taking its limit for t → ∞, if it exists, gives the Lyapunov exponents of the solution
x(t).

Definition 8.2. The Lyapunov exponents of a solution x(t) of an autonomous n-dim system are the
eigenvalues of the matrix

Λ = lim
t→∞

1

2t
ln
(
MT (t)M(t)

)
(8.18)

if the limit exists, where M(t) is the solution of the variational equations (8.15) or (8.16).

For a 1-dim system, the matrix (8.18) becomes the scalar (8.9); the factor 2 in (8.18) comes from
the squares used in the above expressions. In contrast, the expansion or contraction of the initial
increment leading to (8.9) was the absolute value of a scalar (and not its square).

One can similarly generalize Theorem 8.1, using Oseledec’s ergodic theorem, which is itself an extension
of Birkhoff’s ergodic theorem. The only part of Theorem 8.1 that does not generalize is (8.10)

Theorem 8.2. If P is an invariant measure with respect to a dynamical systems, then for P -almost
all solutions x(t), the Lyapunov exponents given by the eigenvalues of (8.18) exist. If, in addition, P
is ergodic, then for P -almost all solutions, the Lyapunov exponents are the same.

In general, invariant measures cannot be determined explicitly in most dynamical systems. Therefore,
one chooses a solution at random and one computes the Lyapunov exponents by applying Defini-
tion 8.2. The presence of at least one positive Lyapunov exponent indicates the presence of chaos.
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In the case of Chua’s circuit with the standard parameters, one obtains α1 = 0.23, α2 = 0 and
α3 = −1.75.

Here, the positive value of α1 indicates chaos.

One should note that continuous systems with bounded solutions have always a zero Lyapunov expo-
nent, which corresponds to increments in the direction of the solution. Indeed let x̃(t) = x(t+ τ) for
some small τ > 0. Then

∆x(0) = x(τ)− x(0) ≈ dx

dt
(0) · τ = F (x(0)) · τ

∆x(t) = x(t+ τ)− x(t) ≈ dx

dt
(t) · τ = F (x(t)) · τ

The solution x(t) being bounded, so is F (x(t)) and therefore, this increment neither expands expo-
nentially nor contracts exponentially, yielding a zero Lyapunov exponent, which is here α2.

Finally, it can be shown that volumes in state space contract/expand with exponential speed α1+α2+
. . .+ αn . In the case of Chua’s circuit with standard parameters this sum is α1 + α2 + α3 = −1.52,
which indicates an exponentially fast contraction of volumes. Therefore, the attractor cannot occupy a
positive volume in the state space R3. In fact, it is a complicated lower dimensional geometric object.
The 2-dimensional projection of a typical trajectory, as represented on the left part of Figure 8.3, gives
only a poor glimpse of the “thin” and complicated geometry, full of layers and holes of the attractor
in R3. Such attractors are loosely called strange attractors.

The computation of Lyapunov exponents is a challenge for numerical analysis. On the one hand,
convergence is slow because of the perturbation by unstable periodic solutions, and on the other
hand, M(t) in (8.18) either grows or shrinks exponentially fast and becomes singular. There is a
considerable literature on this subject.

8.3 Third Property: Presence of a Dense Set of (Unstable) Peri-
odic Solutions

8.3.1 The Period-Doubling Road to Chaos

The asymptotic behavior of the iterations of the logistic map (8.1) as a function of the parameter λ is
visualized in the bifurcation diagram of Figure 8.8. For each value of λ between 0.5 and 2, the solution
x(t) is computed from suitable initial states x(0). After a number of iterations such that the transient
effects have died out, 200 points are represented vertically. Thus, an asymptotically stable T -periodic
solution will be represented by the T points of its orbit. One can clearly see the flip bifurcation at
λ = 0.75 where the fixed point becomes unstable and an asymptotically stable 2-periodic solution is
born; another flip bifurcation at λ = 1.25 where the 2-periodic bifurcation becomes unstable and an
asymptotically stable 4-periodic solution is born, etc.

This process of flip bifurcation continues indefinitely, and the values of the parameter λ at the bifur-
cation points are (the values λn for n ≥ 3 must be computed numerically)

λ1 = 0.75, λ2 = 1.25, λ3 ≈ 1.368099, λ4 ≈ 1.394050, λ5 ≈ 1.399631, . . . ,

Observe that as this sequence {λn} converges to a specific value λ∞ ≈ 1.401155. Moreover, we see
that the sequence

λn − λn−1

λn+1 − λn
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also converges to a specific value δ, which is known as the Feigenbaum constant

lim
n→∞

λn − λn−1

λn+1 − λn
= δ ≈ 4.669202. (8.19)

Indeed this constant δ is universal because it does not depend on the particular map, but it is the
same for a large class of maps containing unimodal maps on an interval Ω = [a, b] (which are maps
such that F (a) = F (b) = 0 and with a unique critical point between a and b).

Period doubling has been empirically observed in real systems (temperature of a box of liquid heated
from below, with a transition between motionless liquid, heated only by conduction, and liquid subject
to convection with different variation speed following a period doubling cascade of bifurcations). The
number extracted from the sequence of period doubling bifurcations was in good agreement with the
Feigenbaum constant (8.19).

After approximately λ = λ∞ ≈ 1.401155, chaos appears where all 200 points are distinct.

Figure 8.8: Bifurcation diagram of the logistic map system. From the left, it clearly shows the
succession of asymptotically stable 2n-periodic solutions, followed by chaos and other asymptotically
stable periodic solutions in the windows in chaos.

8.3.2 Sarkoviskii’s Ordering

Sweeping Figure 8.8 from small values of λ to large values of λ, we have have thus a succession of
asymptotically stable 2n-periodic solutions until λ = λ∞ ≈ 1.401155, after which chaos appears. In
the same parameter region, however, there are also small subintervals where there is no chaos, but
again asymptotically stable periodic solutions. They are called windows in chaos. The largest window
contains a 3-periodic solution that undergoes again a cascade of flip bifurcations that create 6−, 12−,
24−, . . .-periodic solutions. After the flip bifurcations from a T -periodic to a 2T -periodic solution,
the asymptotically stable T -periodic solution continues to exist, but becomes unstable. Therefore, in
the chaotic region, infinitely many unstable periodic solutions are present.

One also observes that the window with the 3-periodic solution is not only the largest, but is also
the last one to appear. This is a consequence of a remarkable theorem proven by Sarkoviskii, which
shows that for a large class of 1-d maps, which includes the logistic map, periodic solutions appear
in a particular order that starts with 3 and the odd integers and ends by powers of 2, in the sense
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that if an m-periodic solution exists, then all l-periodic solutions exist as well if l appears after m in
Sarkoviskii’s ordering, which is the following ( m ▷ l means that m appears before l in that ordering.

Definition 8.3. Sarkoviskii’s ordering of the set of natural numbers N∗ is

3 ▷ 5 ▷ 7 ▷ 9 ▷ . . . ▷ 2 · 3 ▷ 2 · 5 ▷ 2 · 7 ▷ · · · ▷ 22 · 3 ▷ 22 · 5 ▷ 22 · 7 ▷ · · · ▷ 2m · 3 ▷ 2m · 5 ▷ 2m · 7 ▷ · · · ▷ 23 ▷ 22 ▷ 2 ▷ 1.

In particular, we see that 3 is the first element in Sarkoviskii’s ordering, yielding that the system
admits m-periodic solutions of all orders m ∈ N⋆ if there exists a 3-periodic solution. This lead to a
paper by Li and Yorke entitled “Period three implies Chaos”, and the following theorem.

Theorem 8.3. Let Ω be an interval and F : Ω → Ω be a continuous function. If the system x(t+1) =
F (x(t)) has a 3-periodic solution, then it has an m-periodic solution for all m ∈ N⋆.

The proof of this theorem relies on the intermediate value theorem, which states that if F (·) : [a, b] → R
is a continuous function, then for any y between F (a) and F (b) (i.e., such that either F (a) ≤ y ≤ F (b)
or F (b) ≤ y ≤ F (a)), there exists c ∈ [a, b] such that F (c) = y (Note: we denote by F ([a, b]) the image
of [a, b].

The two following lemma extends the intermediate value theorem from a single point y ∈ F ([a, b]) to
an interval I ⊂ F ([a, b]).

Lemma 8.1. Let X be an interval and F : X → R be a continuous function. For any closed interval
I ⊂ F (X), there is a closed interval J ⊂ X such that F (J) = I.

Lemma 8.2. Let X be an interval and F : X → X be a continuous function. Let {In;n ∈ N} a
sequence of closed and bounded intervals such that In ⊆ X and In+1 ⊆ F (In) for all n ∈ N. Then there
is a sequence of closed and bounded intervals {Jn;n ∈ N} such that Jn+1 ⊆ Jn ⊆ I0 and F (n)(Jn) = In
for all n ∈ N.

Proof:

We proof this lemma by induction on n ∈ N.
For n = 0, define J0 = I0. Then clearly, F (0)(J0) = J0 = I0.

Next, let n ≥ 1 and suppose that F (n−1)(Jn−1) = In−1. The assumption in the lemma implying
that In ⊆ F (In−1), we get that In ⊆ F (In−1) = F (F (n−1)(Jn−1)) = F (n)(In−1). Since F (n)(·)
is a continuous function from In−1 to R, Lemma 8.1 applied to function F (n)(·) and interval
In ⊆ F (n)(In−1) implies that there is a closed interval Jn ⊂ Jn−1 such that F (n)(Jn) = In.

■

We can prove Theorem 8.3.

Proof:

Suppose that the system has a 3-cycle {ξ, F (ξ), F (2)(ξ)}. We can rename these elements as {a, b =
F (a), c = F (b)} and without loss of generality, assume a < b < c. Either F (a) = b or F (a) = c.
Suppose Let J = [a, b] and L = [b, c], and for any integer k ∈ N∗, let us define a sequence of closed
intervals {In;n ∈ N} such that In = L for n ∈ {0, 1, . . . , k − 2}, Ik−1 = L. and then In+k = In for
all n ∈ N⋆.

If k = 1, then In = L for all or all n ∈ N∗. Since F (a) = b and F (b) = c, the intermediate value
theorem implies that J = [a, b] ⊆ F ([b, c]) = F (L) and similarly, since F (c) = a and F (b) = c, that
L = [b, c] ⊆ F ([a, b]) = F (J).

Therefore for any k ∈ N∗, we can apply Lemma 8.2 to produce a sequence of closed and bounded
intervals {Jn;n ∈ N} such that Jk ⊆ J0 = L and F (k)(Jk) = Ik = L. Consequently, L ⊆ F (k)(L).
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Now the system x(t + 1) = F (k)(x(t)) admits always a fixed point in L because again of the
intermediate value theorem, which apply to the continuous function F (k) : L → L. This fixed
point of the system with the map F (k) corresponds to a k-periodic solution of the original system
with the map F .

■

8.3.3 Dense Set of Periodic Solutions and Definition of Chaos

The orbits of the unstable periodic solutions are actually dense in the chaotic attractors. This is
illustrated in the following figures. The chaotic trajectory in Figure 8.9 is first approximated by 16-
periodic trajectory (Figure 8.10), then by an 8-periodic trajectory (Figure 8.11) and then then by a
trajectory of period 11 (Figure 8.12). This can be continued. Thus, the chaotic trajectory navigates
between the periodic trajectories, getting close to one, then to another, etc.
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Figure 8.9: Trajectory (chaotic) of the logistic map system with λ = 1.6 starting at x(1) = 0.4772.
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Figure 8.10: Approximation of a portion of a chaotic trajectory by a periodic trajectory. Top: 16-
periodic trajectory of the same system. Bottom: Superposition of the chaotic and of the 16-periodic
trajectories. In the resolution of this figure, both trajectories are almost indistinguishable from time
t = 1 to t = 18. After that they separate visibly.

There are many possible definitions of chaos. As we saw in the previous subsection, the sensitivity
to initial conditions measured by a positive Lyapunov exponent for almost all solutions is a good
indicator that a system is chaotic, provided some other conditions are met, such as a compact state
space (so that all solutions will remain bounded). However it might problematic to use in a definition,
because it is a necessary but not always sufficient condition for a system to be chaotic.

One of the most widely accepted definitions of chaotic system for a 1-dimensional discrete-time system
x(t + 1) = F (x(t)) over a finite interval I = [a, b], due to R. Devaney (An Introduction To Chaotic
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Figure 8.11: Approximation of a portion of a chaotic trajectory by a periodic trajectory (continued).
Top: 8-periodic trajectory. Bottom: Superposition of the chaotic and of the 8-periodic trajectories.
They are indistinguishable in this figure from t = 17 to t = 25.
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Figure 8.12: Approximation of a portion of a chaotic trajectory by a periodic trajectory (continued).
Top: 11-periodic trajectory. Bottom: superposition of the chaotic trajectory and the 11-periodic
trajectory. In this figure they are indistinguishable from t = 25 until t = 37.
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Dynamical Systems, CRC Press, 1989) requires the existence of a dense set of periodic solutions and
of the transitivity of the map F .

We call ξ a m-periodic point of F if and only if F (m)(ξ) = ξ, and its prime or minimal period is the
smallest integer m ∈ N∗ that verifies this equality.

Remember that a set A ⊂ B is dense in B if any point of B is either a point of A, or is arbitrary close
to a point of B. More formally, A ⊂ B is dense in B if for each point x ∈ B and each ε > 0, there
exists y ∈ A such that ∥x − y∥ < ε. If B is an interval, A is dense in B if for each point x ∈ B and
each ε > 0 the open interval (x− ε, x+ ε) contains a point y ∈ A

A transitive map has points that will eventually move under iterations of the system, from one arbi-
trarily small sub-interval of I to any other small sub-interval of I. More formally, F is (topologically)
transitive, if for any two open subsets U1 and U2 of I, there is some point x0 ∈ U1 and some m ∈ N∗

such that F (m)(x0) ∈ U2.

Definition 8.4. Let Ω be the interval Ω = [a, b] and F : Ω → Ω. The system x(t + 1) = F (x(t)) is
chaotic if and only if

1. Periodic points of F are dense in the interval Ω = [a, b];

2. F is (topologically) transitive;

3. F has sensitive dependence on Ω, i.e., there is some sensitivity constant β > 0 such that for any
point x0 ∈ Ω and any open sub-interval U containing x0, there is some y0 ∈ U and T ∈ N∗ such
that

∣∣F (T )(x0)− F (T )(y0)
∣∣ > β.

Quite surprisingly, the third condition is implied by the two first conditions (J. Banks et al, “On
Devaney’s definition of chaos”, The American mathematical monthly, vol. 99(4), pp. 332–334, 1992),
and hence is redundant in the definition. Let us apply this definition to the Bernouilli map given by
(8.14)

Bernouilli Map (continued)

Since the Bernouilli map F (·) on Ω = [0, 1) is defined by

F (x) = 2x mod 1 =

{
2x if 0 ≤ x < 1/2
2x− 1 if 1/2 ≤ x < 1.

we find that

F (m)(x) = 2mx mod 1 =


2mx if 0 ≤ x < 1/2m

2mx− 1 if 1/2m ≤ x < 2/2m

· · ·
2mx− 2m−1 if (2m − 1)/2m ≤ x < 1

Since F (m)(·) maps each of the sub-intervals Ik = [k/2m, (k+1)/2m) for k ∈ {0, 1, 2, . . . , 2m− 1} onto
the interval Ω = [0, 1), its graph crosses the diagonal line F (x) = x inside Ω×Ω at some point in this
interval, and therefore there is an m-periodic point of F in each of the the sub-intervals Ik. Since the
length of each of these intervals is 1/2m, it follows that any point x ∈ Ω can be made arbitrarily close
to an m-periodic point of F if we take m large enough. Therefore the set of the periodic points of F
is dense in the interval Ω = [0, 1).

Let U1 ⊆ Ω be any open interval in Ω = [0, 1). By taking again m large enough, we can always find
some k ∈ {0, 1, 2, . . . , 2m − 1} such that the interval Ik = [k/2m, (k + 1)/2m) ⊂ U1. Therefore the
image of U1 through F

(m) is the whole interval Ω = [0, 1): F (m)(U1) = Ω. Hence, for any open interval
U2 ⊆ Ω, we can find a point x0 ∈ U1 such that F (m)(x0) ∈ U2, which shows that F is (topologically)
transitive.

Therefore the Bernouilli Map is chaotic.
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8.3.4 Topological Conjugacy

Topological conjugacy allows to map one chaotic system to another, and therefore to conclude that
the system x(t + 1) = G(x(t)) is chaotic if the system x(t + 1) = F (x(t)) is chaotic and the maps F
and G are topologically conjugate.

Definition 8.5. Let I and J be two intervals, and consider the two maps F : I → I and G : J → J .
The maps F and G are conjugate if there is a homeomorphism H : I → J such that

H ◦ F = G ◦H.

In other words, for all x ∈ I, H(F (x)) = G(H(x)). This implies by induction that for all t ∈ N∗,

H(F (t)(x)) = (H ◦ F )((F (t−1))(x)) = (G ◦H)((F (t−1))(x)) = G(H(F (t−1))(x) = . . . = G(t)(H(x)),

so that the conjugacy takes orbits of the system x(t+1) = F (x(t)) onto orbits of the system x(t+1) =
G(x(t)). Similarly, H−1 takes orbits of the system x(t + 1) = G(x(t)) onto orbits of the system
x(t+ 1) = F (x(t)).

Theorem 8.4. Let I and J be two closed intervals of finite lengths. If F : I → I and G : J → J
are conjugate via H, then the system x(t+1) = G(x(t)) is chaotic if the system x(t+1) = F (x(t)) is
chaotic.

Proof:

Since the system x(t + 1) = F (x(t)) is chaotic, periodic points of F are dense in I and F is
transitive.

(i) Let U be an open sub-interval of J , and let us consider the open set H−1(U) ⊆ I. Periodic
points of F are dense in I, hence there is at least one periodic point ξ of F which is in H−1(U).
Let m be its period. Then conjugacy implies that

G(m)(H(ξ)) = H(F (m)(ξ)) = H(ξ),

which yields that H(ξ) is an m-periodic point of G. As H(ξ) ∈ U , it shows that any open sub-
interval U ⊂ J contains an m-periodic point of G, hence that the periodic points of G are dense
in J .

(ii) Let U1 and U2 be any two open sub-intervals of J . Then H−1(U1) and H
−1(U2) are two open

subsets of I. Since F is transitive, there is some point x1 ∈ H−1(U1) and some m ∈ N∗ such that
F (m)(x1) ∈ H−1(U2). But then H(x1) ∈ U1 and by conjugacy G(m)(H(x1)) = H(F (m)(x1)) ∈ U2,
which shows that G is also transitive.

Combining (i) and (ii) yields that x(t+ 1) = G(x(t)) is chaotic.

■

The requirement that the conjugacy H is one-to-one (bijective) can be relaxed and replaced by the
requirement that the conjugacy H is a continuousm-to-one function (for some finitem) Definition 8.5.
We say then that F and G are semi-conjugate. Semi-conjugacy still maps cycle to cycle, but without
preserving their minimal periods, and preserves chaotic behavior on intervals of finite length.

A Variant of the Logistic Map with λ = 4.

Let us consider a variant of the logistic map Fλ(x) = λx(1 − x) (which is itself conjugate with the
variant of logistic map given in (8.1)). When λ = 4, its iterations are given by

x(t+ 1) = 4x(t)(1− x(t)) (8.20)
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and the state space is Ω = [0, 1]. Then one can check that the logistic map F4(x) = 4x(1 − x) and
the Bernouilli map F (·) given by (8.14) are semi-conjugate, with conjugacy H(x) = (1− cos(2πx))/2,
which maps the interval Ω = [0, 1] in a two-to-one fashion over Ω = [0, 1], except at 1/2, which is the
only point mapped to H(1/2) = 1. One computes indeed that H(F (x)) = G(H(x)). Therefore the
system (8.20) is chaotic.

8.3.5 Symbolic Analysis

We will new consider the shift map S : Ω → Ω that acts on binary sequences of 0’s and 1’s, and which
is therefore defined on a state space Ω that is the set of all binary sequences. A “point” ω ∈ Ω is
therefore an infinite binary sequence of the form ω = (ω0, ω1, ω2, ω3 . . .). The distance between two
points a, b ∈ Ω is given by

d(a, b) =

∞∑
i=0

|ai − bi| · 2−i. (8.21)

It is easy to check that (8.21) verifies the three requirements to be a distance function, and that it
always converge to a value between 0 and 2. Moreover, if ai = bi for 0 ≤ i ≤ m, then (8.21) becomes

d(a, b) =

∞∑
i=m+1

|ai − bi| · 2−i ≤ 2−(m+1)
∞∑
j=0

2−j = 2−m

and conversely, if for some m ∈ N∗, d(a, b) ≤ 2−m, then we must have ai = bi for 0 ≤ i ≤ m as
otherwise, if ai ̸= bi for some 0 ≤ i ≤ m, d(a, b) ≥ |ai − bi| · 2−i = 2−i ≥ 2−m.

The (left) shift map S : Ω → Ω is defined by

S(ω0, ω1, ω2, ω3 . . .) = (ω1, ω2, ω3, ω4 . . .). (8.22)

The shift map S has two fixed points, which we denote by 0 = (0, 0, 0, . . .) and 1 = (1, 1, 1, . . .). Its
k-periodic solutions (also called k-periodic points) are obtained by repeating blocks of length k, and
are denoted by

s0s1 . . . sk = (s0, s1, s2, . . . , sk, s0, s1, s2, . . . , sk, . . .).

The shift map defines a mixing transformation (see Example 2 in Section 8.4), and is chaotic, which
can be assessed using the different methods introduced in the previous sections.

(i) One can follow a direct approach to show that the map is transitive and that its periodic points
are dense in Ω.

To show transitivity, we can construct a sequence s⋆ that will come arbitrarily close to another other
sequence a ∈ Ω by successively listing in s⋆ all possible blocks of 0’s and 1’s of all possible lengths,
starting from length 1 (0 and 1), then 2 (00, 01, 10, 11), 3 and so forth:

s⋆ = (0, 1, 00, 01, 10, 11, 000, 001, . . .). (8.23)

Let a = (a0, a1, a2, . . .) ∈ Ω. Because of the construction of s⋆, the first m bits a0, a1, a2, . . . , am of a
will be found in a block located in the sequence (8.23) – more precisely, between the (2m − 1)th and
2(2m − 1)th blocks of the sequence (8.23). Therefore there is some k, with (2m − 1) ≤ k ≤ 2(2m − 1),
such that the kth iterate of the shift map will output a sequence starting with a0, a1, a2, . . . , am, i.e.,

S(k)(s⋆) = (a0, a1, a2, . . . , am, s
⋆
m+1, s

⋆
m+2, . . .),

whose distance from a is therefore

d(a, S(k)(s⋆)) =

∞∑
i=m+1

|ai − s⋆i | · 2−i ≤ 2−m.
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This shows that the orbit of s⋆ will come arbitrarily close to any point a ∈ Ω, since we can pick
m as large as we want. In particular, it will pass through any two open subsets U1, U2 ⊆ Ω, which
establishes transitivity.

Any open subset of Ω contains a sequence a = (a0, a1, a2, . . .) whose distance with the m-periodic
point

a0a1 . . . am = (a0, a1, a2, . . . , am, a0, a1, a2, . . . , am, . . .)

is

d(a, S(m)(a0a1 . . . am)) =

∞∑
i=m+1

|ai − ai−m| · 2−i ≤ 2−m.

This shows that any point a = (a0, a1, a2, . . .) ∈ Ω is arbitrarily close to anm-periodic point a0a1 . . . am
of the shift map by taking m large enough, hence that the set of periodic points of S is dense in Ω.

(ii) We can also follow an indirect approach that couples, by conjugacy, the (left) shift map S on
the set of binary sequences Ω with the Bernoulli map F on the interval [0, 1) given by (8.14). The
homeomorphism H : [0, 1) → Ω is then simply the binary expansion of a real x ∈ [0, 1) in the sequence
(0, b1, b2, . . .), and which is defined by

x =

∞∑
i=1

bi2
−i, (8.24)

so that H(x) = (0, b1, b2, . . .) (note that b0 = 0 because 0 ≤ x < 1), and H−1(0, b1, b2, . . .) =∑∞
i=1 bi2

−i. Clearly H is one-to-one, continuous and with continuous inverse.

We show that H ◦ F = H ◦ S. Indeed, on the one hand

F (x) = 2x mod 1 =

∞∑
i=1

bi2
−i+1 mod 1 =

(
b1 +

∞∑
i=2

bi2
−i+1

)
mod 1 =

( ∞∑
i=2

bi2
−i+1

)
mod 1,

whence

F (x) =

∞∑
j=1

bj+12
−j mod 1, (8.25)

which implies that H(F (x)) = (b1, b2, b3, . . .). On the other hand, if the binary expansion of x is
H(x) = (0, b1, b2, . . .), then the left shift is S(H(x)) = (b1, b2, . . .). This also shows that S is chaotic
since F is chaotic.

A Variant of the Logistic Map with λ > 4

The conjugacy of other maps with the shift map allows to use the simplicity of the trajectories in
the latter map, which is called symbolic analysis. This is the case of the variant of the logistic map
Fλ = λx(1− x) when the parameter λ is no longer 4 like in (8.20), but larger than 4

x(t+ 1) = λx(t)(1− x(t)) (8.26)

Unlike the case of 0 < λ ≤ 4, the interval I = [0, 1) is no longer forward invariant when λ > 4. Indeed,
if x(t) ∈ A0 where

A0 =

(
1

2
−

√
λ2 − 4λ

2λ
,
1

2
+

√
λ2 − 4λ

2λ

)
,

then Fλ(x) = λx(1 − x) > 1 and F t
λ(x) < 0 for all t ≥ 2, so that all trajectories diverge to −∞.

The same applies of course to the pre-image A1 = F−1
λ (A0) of A0, as all trajectories in A1 will also

eventually diverge to −∞ after transiting in A0. Now, A1 consists of two open sub-intervals, one on
each side of A0. We proceed next with the pre-image of A1 and we see that the pre-image of each of the
two sub-intervals of A1 is again a pair of disjoint open sub-intervals, so that A2 = F−1

λ (A1) = F−2
λ (A0)
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consists of four disjoint open sub-intervals. Let Am = F−m
λ (A0) be mth pre-image of A0: Am consists

of 2m disjoint open sub-intervals of I = [0, 1). The set of points whose orbits remain in I = [0, 1) is
therefore given by

Λ = I \
∞⋃

m=0

Am.

We limit ourselves to the set of points that are in the invariant set Λ, whose dynamics can be captured
by symbolic analysis. Let I0 and I1 denote the two closed intervals

I0 =

[
0,

1

2
−

√
λ2 − 4λ

2λ

]
and I1 =

[
1

2
+

√
λ2 − 4λ

2λ
, 1

]

so that I0 is located to the left of A0, I1 is located to the right of A0, and I0 ∪ I1 = I \ A0. Let

x0 ∈ Λ. Then x(t) = F
(t)
λ (x0) ∈ Λ ⊂ I0 ∪ I1 for all t ∈ N and we can associate a binary sequence

b = (b0, b1, b2, . . .) to this trajectory x(t), t ∈ N by setting bt = 0 if and only if x(t) ∈ Λ∩ I0 and bt = 1
if and only if x(t) ∈ Λ ∩ I1. We denote by B this map from Λ to the set of all binary sequences Ω.

It takes some work to show that B is continuous and one-to-one if λ > 2 + 2
√
5, and considerable

work to show it when 4 < λ ≤ 2 + 2
√
5, and we skip this part.

We only show that B ◦ Fλ = S ◦B where S is the left shift map given by (8.22). Observe that if the
binary sequence corresponding to x0 is B(x0) = (b0, b1, b2, . . .), then it means that x(0) = x0 ∈ Ib0 ,

x(1) = Fλ(x0) ∈ Ib1 , x(2) = F
(2)
λ (x0) ∈ Ib2 , and so on. Therefore, since Fλ(x0) ∈ Ib1 , F

(2)
λ (x0) ∈ Ib2 ,

etc, it yields that B(Fλ(x0)) = (b1, b2, . . .), and thus that B(Fλ(x0)) = S(B(x0)) for all x0 ∈ Λ. This
shows that the logistic map Fλ given by (8.26) and the shift map S given by (8.22) are conjugate, and
therefore that (8.26) is a chaotic system if λ > 4.
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8.4 Appendix: Some Elements from the Theory of Ergodic Dy-
namical Systems

This appendix is a summary of useful notions in Ergodic Theory, from the chapter authored by Ali
Ajdari Rad and Martin Hasler.

8.4.1 Probability Space

Let us first recall the notion of a probability space and make a few definitions.

Definition 8.6 (Probability Space). A probability space (Ω,Σ, P ) is composed of:

• the sample space Ω. The elements of Ω are the (outcomes of the) elementary (atomic) events;

• a σ-algebra Σ on Ω, which is a collection of subsets of Ω, which contains ∅ and Ω, and which
is closed under the countable set operations of union, intersection and set complement. The
elements of Σ are the events;

• a probability measure P : Σ → [0, 1], which assigns to each event a real between 0 and 1, and
which has the properties that P (∅) = 0 and that if Σi ∈ Σ, with i ∈ N, is a countable collection
of disjoint sets in Σ, then

P

( ∞⋃
i=0

Σi

)
=

∞∑
i=0

P (Σi) . (8.27)

Let us make first some remarks about σ-algebras.

• Because of de Morgan’s laws in set theory, stating that the complement of the countable union
of sets is the intersection of their complements, and vice-versa:⋃

i

Σi =
⋂
i

Σi⋂
i

Σi =
⋃
i

Σi,

it is sufficient for a collection of subsets of Ω to contain∅ and to be closed under complementation
and countable unions, to be a σ-algebra.

• If Ω is a countable set, we can take as Σ the power set of all its subsets: it is the largest σ-algebra
on Ω. For a countable set, we will take the power set of its subsets as the default σ-algebra on
the set. There are however other σ-algebras that can be defined on the set. For example, we
can also take Σ = {∅,Ω}: it is the smallest σ-algebra on Ω.

• If A is any (collection of) subset(s) of Ω, the σ-algebra generated by A is the smallest σ-algebra
on Ω that contains A. For example, if Ω = {a, b, c} then the σ-algebra on Ω generated by
subset {a} is Σ = {∅, {a}, {b, c}, {a, b, c}. Note that it contains ∅ and Ω, and that the union,
intersection and complement of any subset in Σ is another element of Σ, implying that it is
indeed a σ-algebra on Ω.

• If Ω is a non countable set, we need to specify the σ-algebra. For example, if Ω = R or a finite
open interval in R, a natural choice is the σ-algebra generated by the collection of all open
intervals in R.

Let us make next some remarks about P measures on the σ-algebra Σ.
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• The measure P is in general a function P : Σ → [0,∞], which is such that P (∅) = 0 and which
satisfies the countable additivity condition (8.27) for any countable collection of disjoint sets in
Σ. For example, if Ω = R or a finite open interval in R, the Lebesgue measure on the σ-algebra
generated by the collection of all open intervals is their length, i.e. P ((a, b)) = b − a for any
open interval (a, b) ∈ Σ. Since the complement and countable union of open intervals are also in
Σ, it yields that P ([a, b]) = P ([a, b)) = P ((a, b]) = b− a as well. The space (Ω,Σ, P ) is a metric
space. When P (Ω) = 1, then P is called a probability measure and the metric space (Ω,Σ, P )
is a probability space - this is the default setting with which we work in this chapter and in
Definition 8.6.

• If (Ω,Σ, P ) is a probability space, and if A ∈ Σ, then P (A) is the probability that A occurs.

Example 1: Single Die Throwing

The probability space (Ω,Σ, P ) describes the experiment of throwing a die once. An elementary event
is the outcome of the experiment. Hence

• Ω = {1, 2, 3, 4, 5, 6};

• Σ is the power set of Ω (i.e., the set of all its subsets);

• P is the uniform distribution on Ω: P ({1}) = P ({2}) = . . . = P ({6}) = 1/6.

Example 2: Repeated Die Throwing

The probability space (Ω,Σ, P ) describes the experiment of throwing a die repeatedly. An elementary
event is the sequence of outcomes when the die is thrown over and over and over again. Hence

• Ω = {ω | ω = (ω1, ω2, . . .), ωi ∈ {1, 2, 3, 4, 5, 6}};

• Σ is the σ-algebra generated by the sets obtained by fixing a finite set of coordinates. Such
elementary events, called cylinder sets, have the form

S(i1,j1)(i2,j2)...(in,jn) = {ω | ωi1 = j1, ωi2 = j2, ..., ωin = jn}, (8.28)

for some finite n ∈ N∗, where i1, i2, . . . , in are n natural numbers satisfying i1 < i2 < . . . < in
and where j1, j2, . . . , jn ∈ {1, 2, 3, 4, 5, 6};

• P is defined by its specification for the cylinder sets:

P
(
S(i1,j1)(i2,j2)...(in,jn)

)
=

(
1

6

)n

. (8.29)

Example 3: Uniform Distribution on the Unit Interval

We consider the interval [0, 1) = [0, 1[ with the Lebesgue measure. The probability space (Ω,Σ, P )
describes the experiment of picking a point uniformly at random in the interval [0, 1). Hence

• Ω = [0, 1);

• Σ is the smallest σ-algebra containing the intervals [a, b], [a, b), (a, b], (a, b) for any 0 ≤ a ≤ b ≤ 1
(which is known as the Borel σ-algebra of the interval [0, 1));

• P is the Lebesgue measure defined by P ([a, b]) = P ([a, b)) = P ((a, b]) = P ((a, b)) = b − a (for
any 0 ≤ a ≤ b ≤ 1). It is the measure given by the length of intervals.
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8.4.2 Measurable and Measure-Preserving Transformations

One can define functions between probability spaces (Ω,Σ, P ) and (Ω′,Σ′, P ′). A measurable function
is a mapping f : Ω → Ω′ such that f−1(A′) = A for all A′ ∈ Σ′. For example, a measurable function
f : Ω → R is called a random variable.

A function F from Ω onto Ω (i.e. F : Ω → Ω) is called a transformation on Ω. Functions arising in
the right hand side of the state equations of dynamical systems are such transformations, they can
enjoy a number of important properties, which we now review.

Definition 8.7 (Measurable, Invariant Transformations, Invariant Sets). Let (Ω,Σ, P ) be a probability
space and F : Ω → Ω be a given transformation.

• F is measurable if F−1(A) ∈ Σ for all A ∈ Σ.

• F is measure preserving if F is measurable and if P (F−1(A)) = P (A) for all A ∈ Σ. One also
says that P is an invariant measure under F .

• A set A ∈ Σ is an invariant set under F if F−1(A) = A.

Some remarks about invariant measures and sets:

• Note that we use the inverse of F rather than F itself in Definition 8.7. When F is bijective, this
is equivalent to using directly F in the definition. However, if F is not bijective, the definition
could lead to undesirable constraints. Indeed, if F is not bijective, one can possibly find two
different sets A1 and A2 with the same image , hence F (A1) = F (A2) = F (A1 ∪ A2). If F is
measure preserving, with a definition that would have declared the transformation to be measure
preserving if P (F (A)) = P (A) for all A ∈ Σ, then P (A1) = P (F (A1)) = P (F (A1 ∪ A2)) =
P (A1 ∪ A2), even though A1 ⊊ A1 ∪ A2, which is not a desirable constraint, and explains why
F−1 is used in the definition rather than F .

• The notion of invariant measure is equivalent to that of stationarity in terms of stochastic
processes.

• Note the difference between an invariantmeasure under F , and an invariant set under F . Clearly,
if a set is invariant under F , its measure is also invariant, but the converse is not true.

• The empty set ∅ and the whole space Ω are always invariant, they are called the trivial invariant
sets.

Example 1 (continued)

Let F1 and F2 be the two permutations given in Table 8.1. From Definition 8.7, one can see that
F1 and F2 are both measurable and measure-preserving. F2 has no other invariant set than the
trivial invariant sets ∅ and Ω = {1, 2, 3, 4, 5, 6}, contrary to F1 which has also {1, 2, 3, 4} and {5, 6}
as non-trivial invariant sets.

ω 1 2 3 4 5 6
F1(ω) 3 4 1 2 6 5

ω 1 2 3 4 5 6
F2(ω) 2 3 4 5 6 1

Table 8.1: Permutations F1 (left) and F2 (right).
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Example 2 (continued)

Let F be the left shift transformation:

F ((ω1, ω2, . . .)) = (ω2, ω3, . . .).

Clearly

F−1
(
S(i1,j1)(i2,j2)...(in,jn)

)
= S(i1+1,j1)(i2+1,j2)...(in+1,jn)

By extension from the cylinder sets to the whole σ-algebra Σ that is generated by them, this implies
that F is measurable and because of (8.29), is also measure preserving.

The cylinder sets (8.28) are never left-shift invariant. An example of a left-shift invariant set is
{ω | there exists n ≥ 1 such that ωi = 1 for all i ≥ n}.

Example 3 (continued)

In general, invariant measures cannot be determined explicitly in most dynamical systems. An excep-
tion is the Bernouilli map F (·) on Ω = [0, 1), defined by (8.14), which we recall here

F (x) = 2x mod 1 =

{
2x if 0 ≤ x < 1/2
2x− 1 if 1/2 ≤ x < 1.

The inverse image or pre-image of the interval [a, b] is

F−1([a, b]) =

[
a

2
,
b

2

]
∪
[
a+ 1

2
,
b+ 1

2

]
, (8.30)

which yields that F is measurable. Since the total length of the two intervals of the pre-image of [a, b]
is (b − a), F is also measure preserving. Finally, (8.30) also implies that any interval other than the
empty interval, or the whole of [0, 1), is never invariant under the Bernoulli map. An example of an
invariant set is the set of all rational numbers in [0, 1), i.e. Q ∩ [0, 1).

8.4.3 Ergodic Transformations

Roughly speaking, a measure-preserving transformation F is ergodic if computing a statistics (e.g., the
mean) along the multiple iterations of one trajectory of x(t+1) = F (x(t)), starting from a particular
point, or computing it over the entire set of initial conditions but for only one iteration, gives the same
result. Intuitively, consider the following real-life example 1. Suppose you want to find out what the
most visited parks in a city are. One idea is to take a snapshot at a particular time, to see how many
people are in this moment in park A, how many are in park B and so on. Another idea is to look at
one individual and to follow him/her for a certain period of time, e.g. a year, and to observe how often
the individual is going to park A, how often (s)he is going to park B and so on. The former method
provides a statistical analysis over the entire ensemble of people at a certain moment in time, and the
latter gives the statistical analysis for one person over a long period of time. The first one may not
be representative for a longer period of time, whereas the second one may not be representative for
all the people. The ensemble is ergodic if the two methods for computing the statistics give the same
result. We now state the formal definition of an ergodic transformation.

Definition 8.8 (Ergodic Transformation). Let (Ω,Σ, P ) be a probability space and F : Ω → Ω be
a measure preserving transformation. F is an ergodic transformation if for every set A ∈ Σ that is
invariant under F , either P (A) = 0 or P (A) = 1. One also says that P is an ergodic measure for F .

1taken from Vlad Tarko, “What is Ergodicity?”, http://archive.news.softpedia.com/news/What-is-ergodicity-15686.shtml



8.4. APPENDIX: SOME ELEMENTS FROMTHE THEORYOF ERGODIC DYNAMICAL SYSTEMS139

Some remarks about ergodic transformations:

• One can show that an invariant measure is ergodic if and only if it cannot be decomposed as
the convex combination of two orthogonal measures. More formally, F is not ergodic if and
only if there exist a non trivial invariant set Ω1 ⊂ Ω, two probability measures P1 ̸= P2 that
are invariant under F such that P1(Ω1) = 1 and P2(Ω1) = 0, and a real 0 < λ < 1 such that
P = λP1 + (1− λ)P2.

• A transformation whose only invariant sets are the trivial invariant sets ∅ and Ω is ergodic with
respect to any invariant measure.

A stronger property than ergodicity is mixing.

Definition 8.9 (Mixing Transformation). Let (Ω,Σ, P ) be a probability space and F : Ω → Ω be a
measure preserving transformation. F is a mixing transformation for P if for every sets A,B ∈ Σ

lim
N→∞

P
(
A ∩ F−N (B)

)
= P (A)P (B). (8.31)

• The meaning of Definition 8.9 is the following. If we consider all trajectories that start in A ∈ Σ
and check where they are after N iterations, it turns out that they are distributed over the whole
space Ω approximately according to the probability measure P when the number of iterations
N is large, and this property is independent of A.

• The mixing property is indeed stronger than ergodicity. Suppose a probability space (Ω,Σ, P )
and a measure preserving transformation F : Ω → Ω are given. If F is mixing, then F is ergodic.
To prove this property, let A be an invariant set under F . Then F−N (A) = A and thus

lim
N→∞

P (A ∩ F−N (A)) = lim
N→∞

P (A) = P (A).

Hence, it follows from (8.31) with B = A that P (A) = P 2(A), which is only possible if P (A) = 0
or P (A) = 1. This proves that F is ergodic.

Equipped with these definitions, one can the state the main theorem of ergodic theory.

Theorem 8.5 (Birkhoff’s Ergodic Theorem). Let (Ω,Σ, P ) be a probability space and F : Ω → Ω be a
measure preserving transformation. Let f : Ω → R be a P -integrable random variable (i.e., such that
the expectation of |g| is finite). Then for P -almost ω ∈ Ω the limit

lim
N→∞

1

N

N−1∑
n=0

f (Fn(ω))

exists. If, in addition, F is ergodic, then for P -almost ω ∈ Ω

lim
N→∞

1

N

N−1∑
n=0

f (Fn(ω)) =

∫
Ω

f(ω)dP (ω). (8.32)

Some remarks about Birkhoff’s Ergodic Theorem.

• In the theorem, taking P -almost ω ∈ Ω means all ω ∈ Ω except possibly a set M of measure
zero (i.e. such that P (M) = 0).
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• The integral on the right hand side of (8.32) is the Lebesgue integral, which extends the Riemann
integral that is seen in first year calculus courses, to a more general class of functions, such as
discontinuous functions (a typical example is the indicator function of rational numbers (i.e.
f(ω) = 1 if ω ∈ Q and f(ω) = 0 otherwise), whose Lebesgue integral is zero but which is not
Riemann integrable). In probabilistic terms,∫

Ω

f(ω)dP (ω) = E[f ]

where E is the expectation operator, which is here applied to the random variable f .

• The meaning of the theorem is that for almost all initial conditions of the discrete-time dynamical
system generated by the iterations of F , the average of the function f along the trajectory issued
from one initial condition (the left hand side of (8.32)) is equal to its expected value with respect
to the invariant probability measure P (the right hand side of (8.32)).

• Let A ∈ Σ and let f be the indicator function of A, i.e. f(ω) = 1 if ω ∈ A and f(ω) = 0 if
ω /∈ A); f is called a Bernouilli random variable. Then for P -almost ω ∈ Ω, (8.32) becomes

lim
N→∞

1

N

N−1∑
n=0

f (Fn(ω)) =

∫
Ω

f(ω)dP (ω) = P (A). (8.33)

The left hand side of (8.33) is nothing else than the proportion of points of the trajectory
ω, F (ω), F (F (ω)), . . . that are lying in A. Then (8.33) shows that this proportion converges to
the probability of A for P -almost ω ∈ Ω.

Example 1 (continued)

F1 is not ergodic. Indeed, Ω1 = {1, 2, 3, 4} is a non-trivial invariant set of F , whose measure is
P (Ω1) = 2/3. Now let us define the two probability measures P1 and P2 by

P1(ω) =

{
1/4 if ω ∈ {{1}, {2}, {3}, {4}}
0 if ω ∈ {{5}, {6}}

and

P2(ω) =

{
0 if ω ∈ {{1}, {2}, {3}, {4}}
1/2 if ω ∈ {{5}, {6}}.

One easily verifies that both measures P1 and P2 are invariant under F , and that P1(Ω1) = 1 and
P2(Ω1) = 0. As one can write P = λP1 + (1− λ)P2 with λ = 2/3, F1 is not ergodic.

In contrast, as F2 has no non-trivial invariant subsets, it is ergodic with respect to P . However it is
not mixing: set A = B = {1}. Then F−N (B) = {i} with i ̸= 1 if N mod 6 ̸= 0. Hence

A ∩ F−N (B) =

{
∅ if N mod 6 ̸= 0
{1} if N mod 6 = 0,

which implies that limN→∞ P (A∩F−N (B)) does not exist andthat F is only ergodic, but not mixing.

Example 2 (continued)

We prove the mixing properties for cylinder sets. Let

A = S(i1,j1)(i2,j2)...(in,jn)

B = S(k1,l1)(k2,l2)...(km,lm)
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where n,m ∈ N∗, i1, i2, . . . , in are n natural numbers satisfying i1 < i2 < . . . < in, k1, k2, . . . , km are
m natural numbers satisfying k1 < k2 < . . . < km, j1, j2, . . . , jn, l1, l2, . . . , lm ∈ {1, 2, 3, 4, 5, 6}. Then

F−N (B) = F−N
(
S(k1,l1)(k2,l2)...(km,lm)

)
= S(k1+N,l1)(k2+N,l2)...(km+N,lm).

and for k1 +N < in

A ∩ F−N (B) = S(i1,j1)(i2,j2)...(in,jn)(k1+N,l1)(k2+N,l2)...(km+N,lm)

Therefore, for sufficiently large N ,

P (A ∩ F−N (B)) = 6−n+m = P (A)P (B),

which proves the mixing property for cylinder sets. It is possible to show that this actually implies
that the system is mixing for all sets in Σ.

Example 3 (continued)

Let the binary expansion of ω = x ∈ [0, 1) be defined by (8.24), which we recall here:

x =

∞∑
i=1

bi2
−i.

and which yields (8.25), i.e.

F (x) = 2x mod 1 =

∞∑
j=1

bj+12
−j mod 1,

which shows that if we associate with x the binary sequence b = (b1, b2, . . .), then the transformation
F amounts to a left shift of binary sequence. Having established that the Bernoulli map on the unit
interval is equivalent to the left shift on the binary sequences, we can then apply the same reasoning
as in the previous example to prove that F is mixing.


