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Bifurcations

7.1 Introduction

7.1.1 Definition

When analyzing the stability of nonlinear systems, we see that the same dynamical system can have
very different asymptotic behaviors depending only on one parameter of the system, which we denote
in this chapter by µ. Moreover, the dynamical system has the same qualitative behavior for a range
of values of this parameter, and switches suddenly between different qualitative behaviors at some
particular values of this parameter. These values µ0 are called bifurcation points, and are defined
below.

To make these parameters explicitly appear in the state equations, we recast equations (4.1) and (4.2)
respectively as

ẋ(t) = F (x(t), µ) (7.1)

in continuous-time, and by
x(t+ 1) = F (x(t), µ) (7.2)

in discrete time. Function F : Rn+1 → R
n is at least a C1-function, i.e. a continuously differentiable

function.

Definition 7.1. The system (7.1) or (7.2) undergoes a bifurcation at µ0, if there is no neighborhood
V of µ0 on the real line R such that all systems with µ ∈ V have the same qualitative behavior.
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The formulation of this definition is somewhat technical. The usual situation is that the system has a
different qualitative behavior for µ < µ0 and for µ > µ0. The qualitative behavior for exactly µ = µ0

may be one or the other, or something in between. For practical purposes the behavior at µ = µ0 is
not important.

A precise definition of what is meant by “two systems have the same qualitative behavior” can be
given, but this goes beyond the scope of this introductory course. Basically, it means that there
is a continuous coordinate and time transformation that transforms the solutions of one system to
solutions of the other and vice versa. The notion is somewhat counterintuitive, because the qualitative
behavior in a neighborhood of a stable node and a stable focus turn out to be the same. For more
details, we refer to the literature on bifurcations, especially to the book by Y.Kuznetsov.

The definition is also applicable to systems that depend on more than one parameter, even though
this case will not be discussed in detail here.

7.1.2 Example: Logistic Map

Let us consider the simple 1-dim discrete-time dynamical system is given by the iterations of an
interval on the real line (Example 4.2.1), where the parameter µ is equal to λ in (4.3), with 0 < µ ≤ 2
so that the interval [−1, 1] is invariant:

x(t+ 1) = 1− µx2(t). (7.3)

We know the qualitative behavior of the system for parameter values µ close to µ0 from the analysis
in Chapter 5, that (i) for µ < µ0 = 3/4 there is one globally asymptotically stable fixed point. Its
position changes continuously with µ, whereas (ii) for µ > µ0 = 3/4 the fixed point continues to
exist and it still is a continuous function of µ, even at µ0, but it is unstable. In addition, there is
an asymptotically stable period 2-cycle. There is therefore a bifurcation at µ0 = 3/4, as shown in
Figure 7.1.
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Figure 7.1: Bifurcation of a stable fixed point into an unstable fixed point and a stable 2-cycle for the
logistic map, at µ0 = 3/4.
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7.1.3 Local and global bifurcations

In the example of Section 7.1.2, the bifurcation at µ0 = 3/4 is actually a “gentle” transition. The
period 2-cycle is born out of the fixed point at µ0 and continuously moves away from the fixed point
as µ increases. Other bifurcations are much more abrupt changes of the asymptotic behavior. They
are sometimes called catastrophic.

A different distinction of bifurcations is between local and global bifurcations. The bifurcation in Sec-
tion 7.1.2 is local, because the qualitative change of asymptotic behavior takes place in a neighborhood
of the fixed point. A global bifurcation of a 2-dimensional continuous time system is represented in
Figure 7.2. The system has 2 equilibrium points that are saddle points. Locally around the equilib-
rium points, the asymptotic behavior does not change qualitatively. However, before the bifurcation
(left) there are solutions that move in the horizontal direction from −∞ to +∞, but none that move
from +∞ to −∞, whereas after the bifurcation (right), the situation is exactly the opposite. At the
bifurcation (center), there is a solution that moves from the upper saddle point (at t → +∞) to
the lower saddle point (at t → −∞). Such a solution that links two different equilibrium points is
very special, and is called a heteroclinic solution (for an example of heteroclinic solution, consider
the frictionless pendulum (see Exercise Sets), where the orbit from (−π, 0) to (π, 0) is a heteroclinic
orbit). Correspondingly, the bifurcation is called a heteroclinic bifurcation.

! ! !

Figure 7.2: Flows of a 2-dimensional continuous-time system before (left), at (center) and after (right)
a global bifurcation.

We shall not pursue global bifurcations any further and concentrate on local bifurcations of equilibrium
and fixed points.

7.2 Bifurcations of equilibrium/fixed points

We consider continuous time systems of the form (7.1) with an equilibrium point x0 when the param-
eter has the value µ0, i.e. such that

F (x0, µ0) = 0 (7.4)

and discrete-time systems of the form (7.2) with a fixed point x0 when the parameter has the value
µ0, i.e. such that

F (x0, µ0) = x0. (7.5)

We expect that for parameters in a neighborhood of µ0 there is exactly one equilibrium/fixed point in
a neighborhood of x0 and that this equilibrium/fixed point is a continuously differentiable function of
the parameter. This is usually the case and can be proved by the implicit function theorem, which a
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classic theorem that can be found in any book on multivariate analysis (multivariable calculus), and
which we recall here.

Theorem 7.1 (Implicit Function Theorem). Let F : Rn+m → R
n be a C1-function and suppose that

F (x0, y0) = 0 (7.6)

with x0 ∈ R
n, y0 ∈ R

m. Suppose that the n× n Jacobian matrix of F with respect to x is

Jx(x0, y0) =
∂F

∂x
(x0, y0) =











∂F1

∂x1

(x0, y0)
∂F1

∂x2

(x0, y0) . . . ∂F1

∂xn

(x0, y0)
∂F2

∂x1
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∂x2

(x0, y0) . . . ∂F2

∂xn
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∂Fn

∂x1
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∂Fn

∂x2

(x0, y0) . . . ∂Fn

∂xn

(x0, y0)











(7.7)

is non-singular (i.e is invertible). Then there is a neighborhood U of (x0, y0) in R
n+m, a neighborhood

V of y0 in R
m and a C1- function g : V → R

n such that all solutions of F (x, y) = 0 in U are given by
x = g(y). Moreover,

∂g

∂y
(y0) = −

(

∂F

∂x

)

−1

(x0, y0) · ∂F

∂y
(x0, y0) (7.8)

= −J−1
x (x0, y0)Jy(x0, y0).

We apply this theorem to the equilibrium point equation for continuous-time systems

F (x, µ) = 0 (7.9)

given (7.4), and to the fixed point equation for discrete-time systems

F (x, µ)− x = 0 (7.10)

given (7.5). The conclusion is that if the Jacobian matrix (7.7) does not have the eigenvalue 0 in the
case of a continuous time system (respectively, the eigenvalue 1 in the case of a discrete time system)
in a neighborhood of (x0, µ0), the equilibrium/fixed points are given by a continuously differentiable
1-parameter family x(µ) with

x(µ0) = x0 (7.11)

and
∂x

∂µ
(µ0) = −

(

∂F

∂x

)

−1

(x0, µ0) · ∂F

∂µ
(x0, µ0). (7.12)

The fact that the equilibrium/fixed point not only exists at µ = µ0 but also in a neighborhood of
this value does not yet mean that there is no bifurcation at µ0. However, it can be shown that if the
Jacobian matrix is hyperbolic, i.e. if it has no eigenvalue on the imaginary axis for continuous-time
systems (resp., no eigenvalue on the unit circle for discrete-time systems), then there is no bifurcation
at µ0.

Hence, in the case of continuous-time systems, equilibrium points can only undergo local bifurcations
if the Jacobian matrix at the bifurcation point has an eigenvalue on the imaginary axis. Two cases
have to be distinguished, as shown in Figure 7.3:

• a zero eigenvalue: the corresponding generic bifurcation is the fold bifurcation (sometimes also
called saddle-node or tangent bifurcation); if more degeneracy or symmetry conditions apply,
the bifurcation can be e.g., a transcritical or pitchfork bifurcation (see later),

• two complex conjugate eigenvalues: the corresponding generic bifurcations is the Andronov-Hopf
bifurcation.
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“Generic” means that if system parameters were chosen randomly (but observing the bifurcation
constraints) then this type of bifurcation would be obtained. Other types are possible, but they
require additional constraints or would have a zero-probability to be obtained with randomly chosen
parameters. We will see for example the pitchfork bifurcation, which corresponds also to a zero
eigenvalue of the Jacobian, but for an odd function F (x, µ) of x. Another example is the transcritical
bifurcation, valid for instance for systems where F (x, µ) is an even function of µ.

0

jω

-jω

a) b) !

Figure 7.3: Simplest types of bifurcations of equilibrium points of continuous time systems, when
a) a single eigenvalue, or b) a pair of complex conjugate eigenvalues cross the imaginary axis. The
corresponding generic bifurcations are a) the Fold and b) the Andronov-Hopf bifurcations.

In the case of discrete-time systems, fixed points can only undergo local bifurcations if the Jaco-
bian matrix at the bifurcation point has an eigenvalue on the unit circle. Three cases have to be
distinguished, as shown in Figure 7.4:

• the eigenvalue +1: the corresponding generic bifurcation is the fold bifurcation,

• the eigenvalue −1: the corresponding generic bifurcation is the flip bifurcation (sometimes also
called period-doubling bifurcation),

• two complex conjugate eigenvalues: the corresponding generic bifurcations is the Neimark-Sacker
bifurcation.

The exact conditions for the various bifurcations will be given in the next sections. We will consider
them in the lowest possible dimension of state space, i.e. in dimension 1 for the fold, transcritical and
flip bifurcations and in dimension 2 for the Andronov-Hopf bifurcation.

7.3 Fold (or Saddle-Node) bifurcation of equilibrium/fixed points
in 1-dim. state-space

Consider (7.1) with n = 1, i.e.,

ẋ = F (x, µ), (7.13)

with F : R2 → R with

F (x0, µ0) = 0 (7.14)
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Figure 7.4: Simplest types of bifurcations of fixed points of continuous time systems, when a) a single
eigenvalue crosses the unit circle at 1 or b) at -1 or c) when a pair of complex conjugate eigenvalues
cross the unit circle. The corresponding generic bifurcations are a) the Fold, b) the Flip and c) the
Neimark-Sacker bifurcations.

because of (7.4) and
∂F

∂x
(x0, µ0) = 0 (7.15)

because of the zero eigenvalue of the Jacobian matrix at (x0, µ0).

Therefore the Taylor expansion of F around (x0, µ0) up to the lowest order non-vanishing terms is

F (x, µ) ≈ a(µ− µ0) + b(x− x0)
2, (7.16)

where the higher order terms are neglected, and where

a =
∂F

∂µ
(x0, µ0)

b =
1

2

∂2F

∂x2
(x0, µ0).

In the generic case where a, b 6= 0, indeed these are the lowest order non-vanishing terms. Note that
we do not consider the terms proportional to (x − x0)(µ − µ0), nor to (µ − µ0)

2, because they are
dominated by the term a(µ− µ0). By neglecting the higher order terms of the Taylor expansion, the
system (7.13) becomes therefore

ẋ = a(µ− µ0) + b(x− x0)
2. (7.17)

Setting ẋ = 0 in the previous equation, we obtain the equilibrium point equation (7.9), which has the
solution

µ = µ0 −
b

a
(x− x0)

2 , (7.18)

or equivalently,

x = x0 ±
√

a

b
(µ0 − µ). (7.19)

We see that the existence of the equilibrium points in the vicinity of (x0, µ0) depends on the sign of
a/b.

These equilibrium points are hyperbolic for µ 6= µ0 and their stability can be deduced from the sign
of

Jx(x, µ(x)) =
∂F

∂x
(x, µ(x)) = 2b (x− x0) . (7.20)
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Figure 7.5: Fold bifurcation of a continuous-time system (7.13), with, from top to bottom: a > 0, b > 0
(top), a < 0, b > 0 (second from top), a > 0, b < 0 (third from top) and a < 0, b < 0 (bottom). On the
left, bifurcation diagram representing the family of equilibrium points in a neighborhood of (x0, µ0).
The solid line is asymptotically stable equilibrium, the dotted line is the unstable equilibrium point.
On the right, dynamics in the 1-dimensional state space.
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Depending on the signs of a and b, we can consider 4 cases, which are represented in Figure 7.5.

The analysis of the fold bifurcation in the case of discrete time systems is similar, and left to the reader.
The following theorem states that the higher order terms in (7.16) do not change the qualitative
nature of the asymptotic behavior of the solutions in a neighborhood of (x0, µ0). In fact, a parameter-
dependent coordinate transformation is able to eliminate them.

Theorem 7.2 (Fold Bifurcation in 1-dim systems). Let the continuous-time (respectively, discrete-
time) system given by

ẋ(t) = F (x(t), µ),

respectively by
x(t+ 1) = F (x(t), µ),

and F : R2 → R be C2-function (twice continuously differentiable). Let x0 ∈ R and µ0 ∈ R be such
that

F (x0, µ0) = 0 ( resp., = x0)

∂F

∂x
(x0, µ0) = 0 ( resp., = 1)

∂2F

∂x2
(x0, µ0) 6= 0

∂F

∂µ
(x0, µ0) 6= 0.

Then the system undergoes a fold (also called saddle-node) bifurcation at (x0, µ0). That is, in a
neighborhood of (x0, µ0):

(i) for µ < µ0, there are two equilibrium/fixed points, one asymptotically stable, the other unstable,
and for µ > µ0 there is none, or vice-versa;

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the system to
its normal form, which is

ẋ(t) = µ± x2(t) (7.21)

for a continuous-time system, or

x(t+ 1) = µ+ x(t) ± x2(t). (7.22)

for a discrete-time system.

7.4 Transcritical bifurcation of equilibrium/fixed points in 1-dim.
state-space

Suppose that at an equilibrium (respectively, fixed) point x0 with a Jacobian matrix with eigenvalue 0
(respectively, 1), i.e.

∂F

∂x
(x0, µ0) = 0 ( resp., = 1) (7.23)

we have also that
∂F

∂µ
(x0, µ0) = 0. (7.24)

Such is the case for example if µ0 = 0 and if F is an even function in µ. Then, the Taylor expansion
of F around (x0, µ0) up to the lowest order non-vanishing terms has the form

F (x, µ) ≈ a(x − x0)
2 + b(µ− µ0)(x− x0) + c(µ− µ0)

2, (7.25)
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for a continuous-time system, where

a =
1

2

∂2F

∂x2
(x0, µ0)

b =
∂2F

∂µ∂x
(x0, µ0)

c =
1

2

∂2F

∂µ2
(x0, µ0),

with a similar expression for discrete-time systems. Apart from the higher order terms, (7.25) is a
pure quadratic form. If it is positive or negative definite, the equilibrium point is isolated and the
behavior in a neighborhood of (x0, µ0) is trivial: ẋ > 0 for all µ 6= µ0 or ẋ < 0 for all µ 6= µ0. If
the quadratic form is not positive or negative definite, there are two lines that cross at (x0, µ0) on
which F vanishes. Up to second order approximation, these are straight lines. By a linear coordinate
transformation, we can make one of them parallel to the x-axis. In the new coordinates, the Taylor
expansion of F around (x0, µ0) up to the lowest order non-vanishing terms has the form

F (x, µ) ≈ a(µ− µ0)(x− x0) + b(x− x0)
2

and we examine the system in the new coordinates as

ẋ = a(x− x0)
2 + b(µ− µ0)(x− x0). (7.26)

with a similar reasoning for discrete-time systems.

Setting ẋ = 0 in (7.26), we find that the the equilibrium points are

x(µ) = x0 (7.27)

x(µ) = x0 −
b

a
(µ− µ0). (7.28)

They are hyperbolic for µ 6= µ0. For continuous time systems, the equilibrium point is asymptotically
stable if and only if

Jx (x, µ) =
∂F

∂x
(x, µ) = 2a(x− x0) + b(µ− µ0) < 0,

which becomes b(µ − µ0) < 0 for x(µ) given by (7.27) and −b(µ − µ0) < 0 for x(µ) given by (7.28).
Therefore, for all choices of signs for a and b the qualitative behavior is the same, namely one equi-
librium point is asymptotically stable and one is unstable, but at the bifurcation point they exchange
their stability. The sign of b only decides which is stable at which side of the bifurcation point, and the
sign of a decides whether the slope of the second equilibrium point is positive or negative. Figure 7.6
shows the bifurcation diagram for the case a > 0, b > 0.

The analysis of the transcritical bifurcation in the case of discrete time systems is similar, and left
to the reader. The following theorem states that the higher order terms in (7.35) do not change the
qualitative nature of the asymptotic behavior of the solutions in a neighborhood of (x0, µ0). In fact,
a parameter-dependent coordinate transformation is able to eliminate them.

Theorem 7.3 (Transcritical Bifurcation in 1-dim systems). Let the continuous-time (respectively,
discrete-time) system given by

ẋ(t) = F (x(t), µ),

respectively by

x(t+ 1) = F (x(t), µ),
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Figure 7.6: Transcritical bifurcation of a continuous-time system with a > 0, b > 0. On the left,
bifurcation diagram representing the family of equilibrium points in a neighborhood of (x0, µ0). The
solid line is the asymptotically stable equilibrium, the dotted line is the unstable equilibrium point(s).
On the right, dynamics in the 1-dimensional state space for µ < µ0 and µ > µ0.

and let F : R
2 → R be a C2-function (two times continuously differentiable). F : R

2 → R be
C2-function (twice continuously differentiable). Let x0 ∈ R and µ0 ∈ R be such that

F (x0, µ0) = 0 ( resp., = x0)

∂F

∂x
(x0, µ0) = 0 ( resp., = 1)

∂F

∂µ
(x0, µ0) = 0

∂2F

∂x2
(x0, µ0) 6= 0

[

∂2F

∂µ∂x
(x0, µ0)

]2

− ∂2F

∂x2
(x0, µ0)

∂2F

∂µ2
(x0, µ0) > 0.

Then the system undergoes a transcritical (also called saddle-node) bifurcation at (x0, µ0). That is, in
a neighborhood of (x0, µ0):

(i) for µ 6= µ0, there are two equilibrium/fixed points, one asymptotically stable, the other unstable.
They switch stability at µ = µ0;

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the system to
its normal form, which is

ẋ(t) = µx(t)± x2(t) (7.29)

for a continuous-time system, or

x(t+ 1) = (1 + µ)x(t) ± x2(t). (7.30)

for a discrete-time system.

Example: SIS Epidemic Model

Suppose a virus propagates in a population whose members are divided in two classes: the individuals
who are susceptible (state S) of being contaminated by the virus but are still healthy, or the individuals
who are infected (state I) with the virus. An individual who is infected recover after some amount of
time and switch back to the S state, until it gets contaminated again and becomes I again: this model
is known as the SIS epidemic model.
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In general, epidemics propagate on a network, whose nodes are the individuals and whose edges
represent the possible direct contacts between individuals. The study of epidemic propagation on
arbitrary contact networks is a very challenging problem, with many open challenges to solve. One
common but strong approximation is to assume a complete contact network (with an edge between
every pair of nodes), where every individual can be in contact any other individual. In this case, the
model can be well approximated by a set of coupled nonlinear ordinary differential equations using
mean field techniques, these are the so-called population models. We consider closed models, where
the population size remains constant at all times.

Let β > 0 be the infection rate, which is the product of the average number of contacts that each
individual has per time unit by the probability of infection per contact. Each infected individual
contaminates therefore a proportion βS(t) of the total population per time unit. , where S(t) = 1
is the fraction of susceptible individuals. Let I(t) = 1 − S(t) be the fraction of the population that
is infected at time t. The rate at which S(t) decreases (or equivalently, I(t) grows) is then equal to
βS(t)I(t), since there is a proportion of I(t) individuals infected at time t.

Infected individuals recover however at a constant rate per individual, which we denote by γ > 0
(hence 1/γ would be the average duration of the infectious period), and as result the recovering
process contributes to a growth of S(t) grows (or equivalently, a decrease of I(t)) equal to γI(t) per
time unit. The resulting continuous-time model is therefore

dS

dt
(t) = −βS(t)I(t) + γI(t) (7.31)

dI

dt
(t) = βS(t)I(t)− γI(t) (7.32)

Clearly these two equations can be reduced to a single o.d.e. by eliminating S(t) = 1−I(t), to become

dI

dt
(t) = β(1 − I(t))I(t) − γI(t) (7.33)

This dynamical system has two equilibrium points, I⋆h = 0, where all the population is healthy and
the virus dies out, and I⋆e = 1−γ/β, which is the endemic equilibrium point and which is positive only
if β > γ. Let us denote R = β/γ. This ratio R between the infection rate and healing rate is known
in epidemiology as the basic reproductive number. One easily checks that I⋆h = 0 is asymptotically
stable if R < 1 but becomes unstable if R > 1 , while I⋆e is then asymptotically stable. At R = 1,
the two equilibria collide and switch stability, and the SIS epidemic system undergoes a transcritical
bifurcation.

7.5 Pitchfork bifurcation of equilibrium/fixed points in 1-dim.
state-space

When the Jacobian matrix at the equilibrium (respectively, fixed) point has the eigenvalue 0 (resp.,
1) at the bifurcation parameter value µ0, the fold bifurcation (a 6= 0 and b 6= 0) is the generic case.
If there are symmetries present, or other special constraints, we may have a = 0 and/or b = 0. A
common symmetry constraint is that F is an odd function in x, i.e. that for all x ∈ R and µ ∈ R,

F (−x, µ) = −F (x, µ). (7.34)

This implies in particular that F (0, µ) = 0 and thus that x = 0 is an equilibrium (respectively, fixed)
point for all µ ∈ R. Furthermore, the Taylor expansion of F (x, µ) around (0, µ0) has no even terms
in x. The first terms are

F (x, µ) ≈ a(µ− µ0)x+ bx3, (7.35)
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for a continuous-time system, where

a =
∂F 2

∂µ∂x
(0, µ0)

b =
1

6

∂3F

∂x3
(0, µ0).

Similarly, for a discrete-time system, the first terms of the Taylor expansion are

F (x, µ) ≈ x+ a(µ− µ0)x+ bx3, (7.36)

Note that the absence of the term x in (7.35) and its presence in (7.36) is a consequence of the
eigenvalue 0, resp. 1, of the Jacobian matrix at (0, µ0).

Let us neglect the higher order terms and consider the continuous-time system given by

ẋ = a(µ− µ0)x+ bx3. (7.37)

Setting ẋ = 0 in the previous equation, we obtain the equilibrium point equation (7.9), which reads

0 = x
(

a(µ− µ0) + bx2
)

. (7.38)

As already noted, there is the equilibrium point 0 for all µ ∈ R. For µ 6= µ0, it is hyperbolic and it is
asymptotically stable if and only if

∂F

∂x
(0, µ) = a(µ− µ0) < 0.

In addition, there is a second family of equilibrium points for a(µ− µ0) + bx2 = 0, which are

µ = µ0 −
b

a
x2. (7.39)

Again, for µ 6= µ0, it is hyperbolic and it is asymptotically stable if and only if

∂F

∂x
(x, µ) =

∂F

∂x

(

x, µ0 −
b

a
x2

)

= 2bx2 < 0.

Depending on the signs of a and b, we can consider again 4 cases. The first two are represented in
Figure 7.7, the two others are similar. Observe that the first pitchfork bifurcation (with a > 0, b > 0)
is subcritical, whereas the second one (with a > 0, b < 0) is supercritical.

The analysis of the pitchfork bifurcation in the case of discrete time systems is similar, and left to
the reader. The following theorem states that the higher order terms in (7.35) do not change the
qualitative nature of the asymptotic behavior of the solutions in a neighborhood of (x0, µ0). In fact,
a parameter-dependent coordinate transformation is able to eliminate them.

Theorem 7.4 (Pitchfork Bifurcation in 1-dim systems). Let the continuous-time (respectively, discrete-
time) system given by

ẋ(t) = F (x(t), µ),

respectively by
x(t+ 1) = F (x(t), µ),

and let F : R2 → R be a C3-function (three times continuously differentiable), which is odd (i.e.
verifies (7.34)). Let µ0 ∈ R be such that

∂F

∂x
(0, µ0) = 0 ( resp., = 1)

∂2F

∂x∂µ
(0, µ0) 6= 0

∂3F

∂x3
(0, µ0) 6= 0.
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Figure 7.7: Pitchfork bifurcation of a continuous-time system with a > 0, b > 0 (top) and a >
0, b < 0 (bottom). On the left, bifurcation diagram representing the family of equilibrium points in
a neighborhood of (x0, µ0). The solid line is the asymptotically stable equilibrium, the dotted line is
the unstable equilibrium point(s). On the right, dynamics in the 1-dimensional state space for µ < µ0

and µ > µ0.
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Then the system undergoes a pitchfork bifurcation at (0, µ0), that is, in a neighborhood of (x0, µ0),

(i) for µ < µ0, the origin is the only equilibrium/fixed point and it is asymptotically stable, whereas for
µ > µ0 the origin is an unstable equilibrium/fixed point, and in addition, there are two asymptotically
stable equilibrium/fixed points, or vice-versa (this is called a supercritical pitchfork bifurcation) or for
µ < µ0, the origin is an asymptotically stable equilibrium/fixed point and in addition there are two
unstable equilibrium/fixed points, whereas for µ > µ0 the origin is the only equilibrium/fixed point and
it is unstable, or vice-versa (this is called a subcritical pitchfork bifurcation);

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the system to
its normal form, which is

ẋ(t) = µx(t)± x3(t) (7.40)

for a continuous-time system, or

x(t+ 1) = (1 + µ)x(t)± x3(t) (7.41)

for a discrete-time system.

7.6 Flip bifurcation of fixed points in 1-dim. state-space

The flip bifurcation in 1-dim state-space is proper to discrete-time systems. Suppose that at a fixed
point x0 of a discrete time system the Jacobian matrix has the eigenvalue -1 for the parameter value
µ = µ0. Then, by the implicit function theorem, the solutions of the fixed point equation (7.10) in a
neighborhood of (x0, µ0) is a continuously differentiable 1-parameter family x(µ) with x(µ0) = x0. It
can be shown that by a parameter-dependent continuous coordinate transformation, the system can
be brought to its normal form x(t+ 1) = F (x(t), µ) with

F (x, µ) = −(1 + µ)x± x3 (7.42)

Now, iterate F once more, and call the resulting function F (2)(x, µ):

F (2)(x, µ) = F (F (x, µ)) = −(1 + µ)
(

−(1 + µ)x± x3
)

±
(

−(1 + µ)x± x3
)3

= (1 + µ)2x∓ (1 + µ)
(

2 + 2µ+ µ2
)

x3 +O
(

x5
)

.

We see that F (2)(x, µ) is an odd function of x (and thus F (2)(0, 0) = 0), with

∂F (2)

∂x
(0, 0) = 1

∂2F (2)

∂x∂µ
(0, 0) = 2 6= 0

∂3F (2)

∂x3
(0, 0) = ±12 6= 0.

Therefore, Theorem 7.4 indicates that the fixed point 0 of the system

x(t+ 1) = F (2)(x(t), µ) (7.43)

undergoes a pitchfork bifurcation for µ = 0, which is supercritical if the sign in (7.42) is + and
subcritical if it is −.

Now, any fixed point of the system (7.43) is either a fixed point or a period 2 cycle for the original
system (7.42). Since we know that for a given µ there is only one fixed point, namely x = 0, we conclude
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Figure 7.8: Supercritical flip bifurcation of a discrete-time system. On the left, bifurcation diagram
representing the stable (solid line) or unstable (dashed line) equilibrium point the origin, and the
stable 2-cycle (solid curves). On the right, dynamics in the 1-dimensional state space for µ < 0 and
µ > 0.

that whenever F (2) has simultaneously other fixed points, they must constitute a period 2 cycle.
Figure 7.8 shows a supercritical flip bifurcation, derived from a supercritical pitchfork bifurcation.

As in the other types of bifurcations, the following theorem states that the higher order terms in (7.42)
do not change the qualitative nature of the asymptotic behavior of the solutions in a neighborhood of
(x0, µ0).

Theorem 7.5 (Flip Bifurcation in 1-dim systems). Let the discrete-time system

x(t+ 1) = F (x(t), µ),

given by the C3-function F : R2 → R. Let x0 ∈ R and µ0 ∈ R be such that

F (x0, µ0) = x0

∂F

∂x
(x0, µ0) = −1

[

∂2F

∂µ∂x
+

1

2

(

∂F

∂µ

)(

∂2F

∂x2

)]

(x0, µ0) = α 6= 0

1

6

∂3F

∂x3
(x0, µ0) +

(

1

2

∂2F

∂x2
(x0, µ0)

)2

= β 6= 0.

Then the system undergoes a flip bifurcation at (x0, µ0), that is, in a neighborhood of (x0, µ0),

(i) for µ < µ0, there is an asymptotically stable fixed point, whereas for µ > µ0 the fixed point
is unstable, and in addition, there is an asymptotically stable 2-cycle, or vice-versa (this is called
a supercritical flip bifurcation) or for µ < µ0, there is an asymptotically stable fixed point and an
unstable 2-cycle, whereas for µ > µ0 there is only the fixed point and it is unstable, or vice-versa (this
is called a subcritical flip bifurcation);

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the system to
its normal form, which is

x(t+ 1) = −(1 + µ)x(t) ± x3(t). (7.44)

Depending on the signs of α and β in the theorem, we can consider 4 cases, similarly to previous
bifurcation types. For instance, the case α > 0, β < 0 occurs leads to the supercritical flip bifurcation
represented in Figure 7.5.
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Example: Logistic Map

The fixed point of the logistic map (7.3) looses its stability at µ = µ0 = 3/4 and at the same time a
stable period 2 periodic solution appears. At µ0 = 3/4, one can compute that with F (x, µ) = 1−µx2,
and with x0 = F (x0, 3/4) = 2/3 denoting the fixed point,

∂F

∂x
(x0, µ0) = −2µ0x0 = −1

α =

[

−2 +
1

2
(−x2

0)(−2)

]

= −14/9 6= 0

β = 0 +

(

1

2
(−2)

)2

= 1 6= 0.

Therefore the system undergoes a supercritical flip bifurcation at µ = 3/4.

7.7 Andronov-Hopf bifurcation of equilibrium points in 2-dim.
state-space

Consider finally the continuous-time system

ẋ1 = µx1 − x2 ± x1

(

x2
1 + x2

2

)

(7.45)

ẋ2 = x1 + µx2 ± x2

(

x2
1 + x2

2

)

. (7.46)

The origin x = (0, 0) is an equilibrium point for all µ ∈ R. The Jacobian matrix with respect to
x = (x1, x2) at this equilibrium point is

∂F

∂x
((0, 0), µ) =

[

µ −1
1 µ

]

and its eigenvalues are µ ± j. Therefore the equilibrium point x = (0, 0) is hyperbolic if and only
µ 6= 0, and by the implicit function theorem, in a neighborhood of (x0, µ0) = ((0, 0), 0), there is only
this equilibrium point.

It is convenient to transform system (7.45) - (7.46) into polar coordinates, by setting

r =
(

x2
1 + x2

2

)1/2

ϕ = arctan

(

x2

x1

)

.

In these polar coordinates, the system (7.45) - (7.46) becomes

ṙ = µr ± r3 (7.47)

ϕ̇ = 1. (7.48)

Equation (7.47) is nothing else but the normal form of the pitchfork bifurcation of an equilibrium
point (7.40). Relating the 1-dim. flow of the pitchfork bifurcation to the 2-dim. flow of (7.45) -
(7.46), we note that the equilibrium point r = 0 corresponds to the equilibrium point x = (0, 0)
and the equilibrium point r′ =

√±µ (depending on the sign of µ) corresponds to a periodic solution
on a circular orbit of radius r′ and period 2π. The stability properties in 1-dim and 2-dim are
the same, except that the periodic orbit is not asymptotically stable, but only stable, because of the
indeterminate phase. The two types of qualitatively different bifurcations are represented in Figure 7.9.
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Figure 7.9: Andronov-Hopf bifurcation of a 2-dim. continuous-time system: supercritical (top) and
subcritical (bottom), with x0 = (0, 0). On the left, bifurcation diagram representing the family of
equilibrium points in a neighborhood of (x0, µ0). The solid line is the asymptotically stable equilib-
rium, the dotted line is the unstable equilibrium point(s). On the right, dynamics in the 1-dimensional
state space for µ < µ0 and µ > µ0.
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The following theorem puts the Andronov-Hopf bifurcation in a more general context than its normal
form (7.45) - (7.46), for the equation (7.1). By the implicit function theorem, in a neighborhood of
(x0, µ0), there is the unique equilibrium point family x(µ). We denote the eigenvalues of the Jacobian
matrix ∂F

∂x (x, µ) in this neighborhood, which are complex conjugate for an Andronov-Hopf bifurcation,
by λ(µ) and λ∗(µ).

Theorem 7.6 (Andronov-Hopf Bifurcation in 2-dim systems). Let the continuous-time system given
by

ẋ(t) = F (x(t), µ),

and let F : R3 → R
2 be a C4-function. Let x0 ∈ R

2 and µ0 ∈ R be such that F (x0, µ0) = (0, 0) and
that the Jacobian matrix ∂F/∂x(x0, µ0) has imaginary eigenvalues λ0 = jω0 and λ∗

0 = −jω0.

If
dℜ(λ(µ))

dµ
(µ0) 6= 0 (7.49)

and a complicated non-degeneracy condition is met, which we will not specify here (and which therefore
can always be assumed to be satisfied in the exercises), then the system undergoes an Andronov-Hopf
bifurcation at (x0, µ0), that is, in a neighborhood of (x0, µ0),

(i) for µ < µ0, there is an asymptotically stable equilibrium point x(µ), whereas for µ > µ0 the equi-
librium point x(µ) becomes unstable, and in addition, there is a stable periodic solution, or vice-versa
(this is called a supercritical Andronov-Hopf bifurcation) or for µ < µ0, there is an asymptotically
stable equilibrium point x(µ) and an unstable periodic solution, whereas for µ > µ0 there is only the
equilibrium point x(µ) and it is unstable, or vice-versa (this is called a subcritical Andronov-Hopf
bifurcation);

(ii) by local, parameter-dependent continuous coordinate transformation, one can reduce the system to
its normal form, which is

ẋ1 = µx1 − x2 ± x1

(

x2
1 + x2

2

)

ẋ2 = x1 − µx2 ± x2

(

x2
1 + x2

2

)

(iii) the period of the periodic solution is a differentiable function T (µ) of µ, with T (µ0) = 2π/ω0.

Example: Brusselator

The Brusselator is a model of chemical reaction proposed by Ilya Prigogine, which shows that some
chemical reactions, such as the Belousov-Zhabotinsky reaction, can lead to oscillations. Its dimen-
sionless equations with parameters a, b read

ẋ1 = a− (b+ 1)x1 + x2
1x2

ẋ2 = bx1 − x2
1x2.

The system has an equilibrium point at x = (a, b/a). Let us fix a = 1, and keep b = µ as a free
parameter in [1, 3]. The eigenvalues of the Jacobian at x = (1, b) are

λ(b), λ∗(b) =
1

2

[

b − 2±
√

b(b− 4)
]

,

and are purely imaginary if b = 2. In addition,

dℜ(λ(b))
db

=
1

2
6= 0

and the Brusselator undergoes an Andronov-Hopf bifurcation at (x0, b0) = ((1, 2), 2). For b < b0 = 2,
x(b) = (1, b) is a stable focus, whereas for b > b0 = 2, x(b) is an unstable focus, and a stable periodic
solution appears, as shown in Figure 7.10. Hence the Andronov-Hopf bifurcation at (x0, b0) = ((1, 2), 2)
is supercritical.
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Figure 7.10: Phase portrait of a brusselator with a = 1, and b = 1.9 (left) or b = 2.1 (right).

Counter-Example: Van der Pol Oscillator

It is not difficult to see that the Van der Pol oscillator (4.5) and (4.6) satisfies all conditions of
Theorem 7.6 at (x0, b0) = ((0, 0), 0) (Here the bifurcation parameter is λ). Nevertheless, it results
from simulations that it is not an Andronov-Hopf bifurcation, because both for λ < 0 and for λ > 0,
there is a periodic solution, unstable for λ < 0 and stable for λ > 0, as shown in Figure 4.2. Their size
does not go to zero as λ approaches λ0 = 0. The transition at λ0 = 0 is through a linear system with
coexisting periodic solutions of all sizes (a center). It follows that the Van der Pol oscillator does not
satisfy the last condition in Theorem 7.6, i.e. the condition that is not detailed in the theorem.

7.8 Other Bifurcation types

Bifurcations can of course occur in higher dimensional spaces as well, where the system is usually
reduced to a bifurcating system in minimal state space dimension such as the one(s) described previ-
ously.

We have seen some of the main bifurcations of equilibrium points; one-parameter bifurcations of
periodic solutions can be reduced to one-parameter bifurcations of equilibrium/fixed points as follows:
a T -periodic solution of a discrete time system is a fixed point of the T th iteration of the corresponding
map. A periodic solution of a continuous time system is a fixed point of its Poincar map.

Finally, one should mention that bifurcations can involve multiple parameters.


