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Introduction

1.1 Introduction

What is a dynamical system? The following answer can be given in common language. It will be
made more precise, mathematically, later on.

A dynamical system is a mathematical object that produces through its internal laws a time evolution
(or movement) of its variables. It may do that autonomously, or under the influence of an input signal.

In this course, the internal law will be described by ordinary differential equations for continuous-time
dynamical systems, and difference equations for discrete-time systems. Other types of dynamical
systems are also important, but will not be addressed in this course, in particular

• infinite-dimensional systems, usually described by partial differential equations,

• systems whose time-evolution is not deterministic, but stochastic, in particular systems described
by a Markov process.
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Dynamical systems can model many “real world” temporal processes, encountered in Physics: New-
tonian mechanics (Motion of interacting point masses, pendulum, or coupled pendula), in engineering
(Time evolution of voltages and currents in electronic circuits, robot motion), in biology (Time evo-
lution of the membrane potential of a neuron, population dynamics, evolution of epidemics), in eco-
nomics (Evolution of prices of commodities, stock market evolution). This list can be made arbitrarily
long. This shows that it is worthwhile to move from the specific application area to the mathematical
abstraction. All concepts and properties established at the abstract level then automatically apply to
all the applications.

In this course we will (i) study the relation between the law (equations) that describes a dynamical
system and the time evolution it generates, on an abstract level, and (ii) talk from time-to-time about
some models, their specific mathematical structure and their relation to the “real world”.

However, we will not study the problem of modeling, i.e. how to find the law of the dynamical
system from the “real-world”, nor the problem of system identification, i.e. how to find the law from
given (measured) input-output pairs. This is the topic of the classes in Physics, Engineering, Biology,
Economics that lead to the analysis of variables of interest as dynamical systems.

The course is structured according to the mathematical topics. It is divided into a part on Linear
Systems, a part on Nonlinear Systems, and an introduction on Stochastic Approximation. The main
emphasis is on nonlinear systems, but in order to appreciate fully the wealth of nonlinear dynamics
phenomena, a good knowledge of the nature of linear dynamics is necessary.

Supporting material:

• these course notes,

• exercise problems and solutions,

• suggested additional reading, in particular books that give a complementary view on all or part
of the subjects treated in the course, and go beyond.

1.2 Dynamical System: Definitions

A dynamical system transforms an input signal u in an output signal y, while having an internal state
x. These signals depend on the time t ∈ T where T can be R (continuous time systems) or Z (discrete
time systems). We will also limit our attention to the signals from some initial time, typically t=0.
In this case we would have T = R+ or T = N.
The values of the signals belong to corresponding spaces. Our notation is

u(t) ∈ Γ

x(t) ∈ Ω

y(t) ∈ Θ

where Γ, Ω and Θ are, respectively the input, state and output spaces.

Definition 1.1 (Solution). The dynamics of the system is given by an evolution equation. A solution
of the evolution equation is a function

x : T → Ω

It is also called movement. Often it is combined with the observation (or output)

y : T → Θ.
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The set of all pairs composed of the time and the state visited at that time is called the trajectory of
the solution

{(t, x(t)) | t ∈ T } ⊆ T × Ω

and the set of all states visited is called the orbit of the solution

{x(t) | t ∈ T } ⊆ Ω.

1.3 Examples

1.3.1 Example 1: Mass-spring system in Newtonian mechanics

We consider a classical system in mechanics, which is a mass m attached to a wall by a spring of
constant k, and to which an external force f(t) is applied to pull the mass away from the wall, as
shown in Figure 1.1

f(t)

mk

X

Figure 1.1: Mass-spring system

The input signal is the external force f(t). We are interested in observing the dynamics of x, the
position of the mass. Thus, the input space is Γ = R+ and the observation space is also Θ = R+. The
total force acting on the mass is, assuming frictionless motion, F = f − kx. According to Newtonian
mechanics, the acceleration of the mass is proportional to the force. This leads to

m
d2x

dt2
(t) = −kx(t) + f(t).

Instead of writing a second order differential equation, we can write two first order equations by setting
x1 = x and x2 = dx1/dt, to obtain

dx1
dt

(t) = x2(t) (1.1)

dx2
dt

(t) = − k

m
x1(t) +

1

m
f(t). (1.2)

The last equation is the output, or observation equation. For reasons that will become clear later, we
call the vector [

x1
x2

]
the state of the system, and thus Ω = R2

+.



6 CHAPTER 1. INTRODUCTION

1.3.2 Example 2: Commodity market

We want to model the evolution of the price of a farmer’s product, say, potatoes. The model implicitly
makes the following basic assumptions:

• there are many independent producers of potatoes,

• there are many independent consumers of potatoes,

• the price the consumers pay is what the producers get (intermediaries are not modeled),

• the price p of, say, a ton of potatoes is fixed by the farmer’s cooperative once a year, before the
farmers plant the potatoes.

Therefore time t for this model is discrete, the time unit being one year, and we are interested in the
function p(t).

The behavior of the farmers is modeled by the supply curve S(p). Given the price p, each farmer decides
whether or not to plant potatoes, and on what surface, depending on his/her own costs of production
and on the prices of alternative products. Disregarding the influence of the weather, diseases, etc., this
determines the quantity of potatoes the farmer supplies to the market after harvesting. Collectively,
the farmers supply the quantity S(p) (tons of potatoes). Clearly, when the price is low, few potatoes
will be produced. In contrast, when the price is high, the incentive for the farmers to produce potatoes
is also high. Therefore, S(p) is an increasing function of p.

The behavior of the consumers is modeled by the demand curve D(p). The individual consumer buys
a quantity of potatoes that depends on price and many other factors, such as personal taste, etc.
Collectively, the consumers buy the quantity D(p) (tons of potatoes). Clearly, when the price is low
the consumers will buy lots of potatoes, whereas when the price is high they will rather buy other
products, such as pasta. Thus, D(p) is a decreasing function of p.

Both curves are shown in Figure 1.2.

S(p)D(p)

p

p

Figure 1.2: The demand curve D(p) and supply curve S(p) as a function of price p.

If, by chance, the price was fixed at the value where the supply and demand curves intersect, the
consumers buy exactly the quantity of potatoes the producers have brought to the market, and both
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consumers and producers are satisfied and continue with the same price the next year. If, however,
the price was lower and the demand exceeded the supply, the producers find that they can ask for a
higher price the next year. The opposite case is that the supply exceeded the demand, in which case
the farmers remain with a quantity of unsold potatoes, Consequently, they will lower the price the
next year. This mechanism of fixing the price the next year based on the observations of the current
year can be modeled by

p(t+ 1) = p(t) + k(D(p(t))− S(p(t))),

where k is a suitable constant that transforms excess demand into price increase and excess supply
into price decrease. This constant expresses the experience of the farmer’s cooperative in adjusting
prices based on market observations. In fact, they observe the difference between the demand and the
supply and act accordingly. Hence, the observation signal is simply

y = D(p)− S(p).

1.4 Important Classes of Dynamical Systems

Evolution equations may take various forms. The following two classes of evolution equations are of
particular importance. This course will almost exclusively deal with them.

1.4.1 Continuous time

When T = R+, the dynamical system is called an analog or continuous time dynamical system, and
is described by

dx

dt
(t) = F (x(t), u(t)) (1.3)

y(t) = G(x(t), u(t)) (1.4)

where

u(t) ∈ Γ = Rm

x(t) ∈ Ω = Rn

y(t) ∈ Θ = Rp

and where F and G are arbitrary functions

F : Rn+m → Rn

G : Rn+m → Rp.

The first equation (1.3) is called the state equation, or, more precisely, the system of state equations,
and the second (1.4) the output, or observation equation, or the system of output or observation
equations.

Written explicitly with the different vector components, the system of state equations becomes

dx1
dt

(t) = F1(x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t))

dx2
dt

(t) = F2(x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t))

...
dxn
dt

(t) = Fn(x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t))
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and the system of output equations equations becomes

y1(t) = G1(x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t))

y2(t) = G2(x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t))

...

yp(t) = Gp(x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t)).

Example: Mass-spring system in Newtonian mechanics

In the mass-spring example the functions F and G are, with u(t) = f(t),

F1(x1, x2, u) = x2 (1.5)

F2(x1, x2, u) = − k

m
x1 +

1

m
u (1.6)

G(x1, x2, u) = x1.

1.4.2 Discrete time

When T = N, the dynamical system is called a discrete time dynamical system, and is described by

x(t+ 1) = F (x(t), u(t)) (1.7)

y(t) = G(x(t), u(t)) (1.8)

where, again,

u(t) ∈ Γ = Rm

x(t) ∈ Ω = Rn

y(t) ∈ Θ = Rp

and where F and G are arbitrary functions

F : Rn+m → Rn

G : Rn+m → Rp.

We can explicit the system of state equations as

x1(t+ 1) = F1(x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t))

...

xn(t+ 1) = Fn(x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t))

and the output equations are given by the same system as in the previous subsection.

Example: Commodity Price Model

In the commodity price model, functions F and G are, with x = p,

F (x) = x+ k(D(x)− S(x)) (1.9)

G(x) = D(x)− S(x).
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1.5 Solutions of the State Equations

Unicity of the Solution

Without defining an initial condition, there are in general infinitely many solutions to the previous
dynamical systems. These solutions are usually distinguished by the state x(t0) at some time t0 that
is usually taken to be 0. The following theorem shows that the solutions are unique under fairly broad
conditions.

Theorem 1.1 (Unique Solution). For each initial state x0 ∈ Rn, a discrete-time dynamical system
admits exactly one solution x : N → Rn such that x(0) = x0. If F (x(t), u(t)) is continuous and locally
Lipschitz with respect to x, then for each initial state x0 ∈ Rn, a continuous-time dynamical system
admits exactly one solution, that is, there exists a > 0 and a unique solution x : [0, a) → Rn such that
x(0) = x0.

For discrete time systems, this property is obvious, but for continuous time systems, one has to impose
a few constraints on F . F (x, u) is locally Lipschitz with respect to x if and only if for any closed
bounded set X ∈ Ω ⊆ Rn there is a finite constant L > 0 such that ∥F (x, u)− F (x′, u)∥ ≤ L ∥x− x′∥
for all (x, u), (x′, u) ∈ X × Γ. If F has continuous first partial derivatives with respect to x, it is
automatically locally Lipschitz in x. We shall remark here that the constraints are not very strong
and that we may assume henceforth the property to hold, unless otherwise stated.

We prove the theorem for an autonomous continuous-time dynamical system in which case the
continuous-time dynamical system reads ẋ(t) = F (x(t)), with initial condition x(0) = x0. We will
need the following lemma, known as Gronwall’s lemma, to establish unicity.

Lemma 1.1 (Gronwall Inequality). Let T > 0 and let r(·) : [0, T ] → R be a continuous, non-negative
function such that

r(t) ≤ C +K

∫ t

0

r(s)ds (1.10)

from some constants C,K ≥ 0. Then for all t ∈ [0, T ]

r(t) ≤ C exp(Kt). (1.11)

Proof:

We prove the lemma for C > 0, the proof can be extended to C = 0 by replacing the interval [0, t]
by [ε, t] and letting next ε→ 0.

We recast (1.10) as
r(t)

C +K
∫ t

0
r(s)ds

≤ 1

and next multiply both sides by K and integrate on [0, t] to get

ln

(
C +K

∫ t

0

r(s)ds

)
− ln (C) ≤ Kt

and finally

C +K

∫ t

0

r(s)ds ≤ C exp(Kt).

The left hand side of this inequality is larger than r(t) because of (1.10), which establishes (1.11).

■

We can now prove Theorem 1.1.
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Proof:

(i) Existence. Let Oρ ⊆ X be a close ball of radius ρ > 0 centered at x0. As F (·) is continuous and
X is a compact set, F is bounded on X hence there is some finiteM > 0 such that ∥F (x)∥ ≤M for
all x ∈ X. Let a < min{ρ/M, 1/L}. Let us define a sequence of functions {ξk(·), k ∈ N} recursively
from ξ0(t) = x0 for all 0 ≤ t ≤ a and ξk(·) : [0, a] → Rn where

ξk+1(t) = x0 +

∫ t

0

F (ξk(s))ds (1.12)

for all 0 ≤ t ≤ a.

Then one can check that ξ1(t) = x0 +
∫ t

0
F (ξ0(s))ds = x0 + tF (x0) so that

∥ξ1(t)− x0∥ = t∥F (x0)∥ ≤ aM ≤ ρ,

hence ξ1(t) ∈ Oρ for all 0 ≤ t ≤ a. By induction, if ξk(t) ∈ Oρ for all 0 ≤ t ≤ a, then (1.12) implies
that

∥ξk+1(t)− x0∥ =

∥∥∥∥∫ t

0

(F (ξk(s))) ds

∥∥∥∥ ≤
∫ t

0

Mds =Mt ≤Ma < ρ,

which shows that ξk(t) ∈ Oρ for all 0 ≤ t ≤ a. Therefore, for all k ∈ N and all 0 ≤ t ≤ a,
ξk(t) ∈ Oρ.

Next, for k ≥ 1, we have that

∥ξk+1(t)− ξk(t)∥ =

∥∥∥∥∫ t

0

(F (ξk(s))− F (ξk−1(s))) ds

∥∥∥∥
≤

∫ t

0

∥F (ξk(s))− F (ξk−1(s))∥ ds

≤ L

∫ t

0

∥ξk(s)− ξk−1(s)∥ ds

≤ Lt max
0≤s≤t

∥ξk(s)− ξk−1(s)∥ .

so that, again by induction,

max
0≤t≤a

∥ξk+1(t)− ξk(t)∥ ≤ La max
0≤t≤a

∥ξk(t)− ξk−1(t)∥

≤ · · ·
≤ (La)k max

0≤t≤a
∥ξ1(t)− ξ0(t)∥ .

Therefore, by denoting B = max0≤t≤a ∥ξ1(t)− ξ0(t)∥,

∞∑
k=0

max
0≤t≤a

∥ξk+1(t)− ξk(t)∥ ≤ B

∞∑
k=0

(La)k <∞,

because La < 1. Consequently, as we can write

ξk(t) = ξ0(t) +

k−1∑
l=0

(ξl+1(t)− ξl(t)) ,

we have that the sequence {ξk(t), k ∈ N} converges to some limit x(t) uniformly in t ∈ [0, a] as
k → ∞.
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Hence we can take limits in (1.12) for k → ∞, which becomes

x(t) = x0 +

∫ t

0

F (x(s))ds (1.13)

for all 0 ≤ t ≤ a. The function x(·) satisfies the o.d.e. ẋ(t) = F (x(t)) for all 0 ≤ t ≤ a.

(ii) Unicity. Consider the two systems ẋ(t) = F (x(t)) and ẏ(t) = F (y(t)), with the same initial
condition x(0) = y(0) = x0. Because of part (i), we can write their solutions as

x(t) = x0 +

∫ t

0

F (x(s))ds

and

y(t) = x0 +

∫ t

0

F (y(s))ds.

Therefore,

∥x(t)− y(t)∥ =

∥∥∥∥∫ t

0

(F (x(s))− F (y(s))) ds

∥∥∥∥
≤

∫ t

0

∥F (x(s))− F (y(s))∥ ds ≤ L ·
∫ t

0

∥x(s)− y(s)∥ ds

because F is L-Lipschitz. Lemma 1.1 then yields that ∥x(t)− y(t)∥ = 0 for all 0 ≤ t ≤ a,
establishing uniqueness.

■

This property only mentions the existence and uniqueness of the solution for positive times, starting
at an initial state at time 0, but nothing is said about negative times. For discrete time systems one
has to impose the condition that the map F (., u) : Ω → Ω is invertible for any value of the input
signal u. If this is the case, there is a unique solution defined for all positive and negative times with
the given initial state x(0). This property does not automatically hold for all systems of interest. In
particular, the logistic map F (x) = 1− λx2, parametrized by λ > 0, is not invertible.

In the case of continuous-time systems, the above-mentioned theorem actually guarantees the existence
and uniqueness of the solution, for a given state at time 0, for an open time interval (t1, t2) where
t1 < 0 < t2. Of course, we would like to have t1 = −∞ and t2 = +∞. In most models of physical
systems, it is easy to prove that t2 = +∞, because of dissipativity or energy conservation. On the
other hand, a finite negative t1 is not uncommon, but it is not of any special concern, except that
certain notions that require the existence of the solution for all negative times cannot be applied.

From a purely mathematical point of view, it is not unusual that in continuous time systems a solution
only exists up to a finite positive time t2 (or to a finite negative time t1, if the solution is continued
beyond 0 to negative times). What happens is that ∥x(t)∥ → ∞ as t→ t2. This phenomenon is called
finite escape time.

Example: Mass-spring system in Newtonian mechanics

In the mass-spring example, supposing that the force is constant, i.e. u(t) = f(t) = f , we first
determine the constant solution:

0 = x2 (1.14)

0 = − k

m
x1 +

1

m
f, (1.15)
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which is written in vector form as

x =

[
x1
x2

]
=

[
f/k
0

]
.

The state x where the constant solution sits, is called the equilibrium point of the system. We now
introduce the increments with respect to the equilibrium point: ∆x(t) = x(t)−x. Substracting (1.14)
and (1.15) respectively from (1.1) and (1.2), we get

d∆x1
dt

(t) = ∆x2(t)

d∆x2
dt

(t) = − k

m
∆x1(t),

whose general solution, parametrized by the initial state, is

∆x1(t) = ∆x1(0) cos(ωt) +
∆x2(0)

ω
sin(ωt)

∆x2(t) = −∆x1(0)ω sin(ωt) + ∆x2(0) cos(ωt),

where ω =
√
k/m. Translated back into the original states, we find

x1(t) =

(
x1(0)−

f

k

)
cos(ωt) +

x2(0)

ω
sin(ωt) +

f

k
(1.16)

x2(t) = −
(
x1(0)−

f

k

)
ω sin(ωt) + x2(0) cos(ωt). (1.17)

We see explicitly that for each initial state there is exactly one solution and this solution exists on the
whole real time axis.

Example: Commodity Price Model

If in the population dynamics model we take a linear supply curve S(p) = αp and an affine (linear +
constant) demand curve D(p) = −γp+ δ, we obtain the state equation

p(t+ 1) = (1− k(α+ γ))p(t) + kδ. (1.18)

Again, we first look for a constant solution p. We easily find that

p =
δ

α+ γ
.

Note that this is the price where the demand and the supply curve intersect. Defining the increment
with respect to this solution ∆p(t) = p(t)− p and substracting p from (1.18), we get

∆p(t+ 1) = (1− k(α+ γ))∆p(t)

whose general solution reads

∆p(t) = (1− k(α+ γ))t∆p(0).

Getting rid of the increments gives

p(t) = (1− k(α+ γ))
t

(
p(0)− δ

α+ γ

)
+

δ

α+ γ
.

We can see that for each price at t = 0 there is exactly one solution which exists for all integer times.
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1.5.1 Notion of State

The property that the solutions of the state equations are characterized by the state at time 0 can
actually be taken as the basic property of the state. If we know the state at present time (time 0)
then we can predict the solution in the future (positive times), given the input signal. Therefore, it
is not necessary to know in detail what happened to the system in the past (negative times), i.e. it
is not necessary to know the past input signal nor the solution the system has followed in the past.
The state at present can be considered as the condensed information about the past, the minimum of
information necessary to predict the future (given the input signal for present and future).

Example: Mass-spring system in Newtonian mechanics

If, in the mass-spring system, we take the evolution equation

d2x

dt2
(t) = − k

m
x(t) +

f(t)

m
,

we are tempted to consider x as the state. However, x(0) does not by itself determine the state. We
have to add to it a second component, e.g. dx/dt(0). Indeed, as can be seen from (1.16) and (1.17),
there is an infinity of solutions with the same x(0) and the same input signal.

1.5.2 Notion of Flow

It is often useful to consider not only a single solution, but all solutions simultaneously. We can
imagine putting at time 0 an infinitesimally small particle at each possible state and then let the
particles move according to the state equation. This generates a “flow” of particles. Mathematically,
the flow is a function

Φ : T × Ω → Ω

defined by
Φ(t, x(0)) → x(t).

A flow of a 2-dimensional dynamical system can be represented on a phase-plot, by drawing the orbits
of a certain number of solutions, as shown on Figure 1.3 for the mass-spring system.

1.6 Asymptotic Behavior

One distinguishes between the properties of the solutions for small time t, which strongly depend on
the initial state x(0) (and, of course, on the input signal u), the transient behavior and the behavior for
large time t, which may or may not depend on the initial state (but also depend on the input signal),
the asymptotic behavior, also called steady state behavior. For the sake of mathematical rigor, the
asymptotic behavior is defined to be the behavior for t → +∞. Of course, it may be practically
achieved at a finite time, maybe even at a time that is not exceedingly large.

Note that the asymptotic behavior is not necessarily constant, it may be also oscillatory or even more
complicated. In the case of systems with an input signal, the asymptotic behavior depends on the
input signal, and almost any kind of asymptotic time-dependence can be obtained with a suitable
time-dependent input. Nevertheless, the following general notion is applicable even in this context.

Definition 1.2. A dynamical system has unique asymptotic behavior if for any two solutions x(t)
and x̃(t),

∥x(t)− x̃(t)∥ → 0

as t→ ∞.
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Figure 1.3: Phase plot of the mass-spring system (here m = 0.1, f = 10 and k = 2).

This definition avoids specifying the nature of the asymptotic behavior. It states that all solutions after
some time approximately have the same behavior. Since different solutions correspond to different
initial states, after some time the solution “forgets” his initial state. For this reason the term system
with fading memory is also used.

For the case of autonomous systems, more elaborate notions are used that we will introduce hereafter.

Example: Mass-spring system in Newtonian mechanics

This is a somewhat peculiar case in the sense that all solutions are periodic (see (1.16) and (1.17)),
i.e. there is a time T > 0 such that for all t, x(t + T ) = x(t). Thus, they are identical to their
asymptotic behavior, since right from the beginning they move around their closed trajectories (see
Figure 1.3). Thus, there is no transient behavior; the asymptotic behavior depends on the initial state
and is therefore not unique.

Example: Commodity Price Model

In this discrete time system, supposing positive constants, three qualitatively different asymptotic
behaviors are possible, depending on whether (i) −1 < 1 − k(α + γ) < 1, (ii) 1 − k(α + γ) = −1 or
(iii) 1− k(α+ γ) < −1 .

(i) In the first case, the solution p(t) converges to the fixed point p , either monotonically if 0 <
1 − k(α + γ) < 1, or with alternating signs if −1 < 1 − k(α + γ) < 0 . The asymptotic behavior is
constant and it does not depend on the initial price p(0). The transient behavior is the exponentially
fast convergence to the fixed point.

(ii) In the second case, the solution oscillates between two values symmetrically positioned around the
fixed point. One of the values is the initial price p(0). This is qualitatively similar to the behavior of
the mass-spring system.
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(iii) In the last case, the solutions diverge to infinity, except when the initial point is exactly the fixed
point (p(0) = p).

p

p

p

p

p

p

p

p

Figure 1.4: Asymptotic and transient behaviors for the commodity price model: (i) Exponential
convergence to the fixed point p (top left: monotone; top right: alternating signs); (ii) periodic
solution (bottom left) and (iii) divergence to infinity (bottom right).

1.7 Autonomous systems

A dynamical system is autonomous, if it has no input signal.

1.7.1 Invariant set

Consider an autonomous system in Rn with solutions existing on the whole time axis T = R or T = Z.
An invariant set of the system is defined as follows.

Definition 1.3 (Invariant Set). (i) A set S ⊆ Rn is forward invariant if for any solution x such that
some time t ∈ T x(t) ∈ S, it follows that x(t′) ∈ S for all t′ ≥ t.

(ii) A set S ⊆ Rn is backward invariant if for any solution x such that some time t ∈ T x(t) ∈ S, it
follows that x(t′) ∈ S for all t′ ≤ t.

(iii) A set S ⊆ Rn is invariant if it is both forward and backward invariant.

If the solutions of a dynamical system are only defined for T = R+ or T = N, and if they cannot
be extended to the whole R or Z, then part (i) of the definition for a forward invariant set applies
without problem but (ii) and (iii) are not a priori applicable as such. However, it may still be that
the solutions with x(0) ∈ S exist also for negative times and are unique. In this case, the notion of
backward invariant and invariant set for S makes still sense.

Examples

• The whole space Ω = Rn and the empty set ∅ are always invariant.

• Any orbit is forward invariant.

• If a solution is defined for all positive and negative times, and if there is no other solution with
the same state at time 0, its orbit is invariant.
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• A fixed point of a discrete time system and an equilibrium point of a continuous time system
are always invariant.

• The orbit of a periodic solution is always invariant.

1.7.2 Limit sets

The following notion concerns the asymptotic behavior of an individual solution of an autonomous
system.

Definition 1.4 (α- and ω-limit sets). Consider a solution x(t) of an autonomous dynamical system
in Rn, defined for T = R or T = Z and unique for a given x(0) .

(i) The ω-limit set of the solution is the set of points ξ ∈ Rn such that there exists a sequence of times
t1 < t2 < . . . < ti < . . . with ti → ∞ when i→ ∞, such that

lim
i→∞

x(ti) = ξ. (1.19)

(ii) The α-limit set of the solution is the set of points ξ ∈ Rn such that there exists a sequence of
times t1 > t2 > . . . > ti > . . . with ti → −∞ when i→ ∞, such that (1.19) holds.

Note that if the solution is only defined for positive times, the definition of ω-limit set is still applicable.

Theorem 1.2. Let x(t) be a solution of the discrete-time system x(t + 1) = F (x(t)), where F is
continuous, invertible and its inverse is also continuous. Then

(i) If the solution is bounded for t→ +∞, its ω-limit set is compact (bounded and closed), non-empty
and invariant.

(ii) If the solution is bounded for t→ −∞ , its α-limit set is compact, non-empty and invariant.

Proof:

It follows from basic calculus that the ω- and α-limit sets set are compact if the solution is bounded
for positive, resp. negative times.

Let Sω be the ω-limit set. To prove the forward-invariance when the solution is bounded for
t → +∞, we have to show that ξ ∈ Sω implies that F (ξ) ∈ Sω. Now ξ ∈ Sω means that there
is a sequence of times t1 < t2 < . . . < ti < . . . with ti → ∞ when i → ∞, such that x(ti) → ξ.
Therefore there is a sequence of times t′1 < t′2 < . . . < t′i < . . . with t′i → ∞ when i→ ∞,given by
t′1 = t1 + 1, . . . , t′i = ti + 1, . . ., such that x(t′i) → F (ξ). Therefore F (ξ) ∈ Sω.

The same holds for the α-limit set.

■

Theorem 1.3. Let x(t) be a solution of the continuous-time system dx/dt(t) = F (x(t)).

(i) If the solution is bounded for t > 0, its ω-limit set is compact (bounded and closed), non-empty
and connected.

(ii) If the solution is bounded for t < 0 , its α-limit set is compact, non-empty and connected.

The proof is given in J.K.Hale, “Ordinary Differential Equations”, Pure and Applied Mathematics,
vol. XXI, Wiley-Interscience, New York, 1969.

Example: Mass-spring system in Newtonian mechanics

The orbit of a solution is itself its ω- and α-limit set.
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Example: Commodity Price Model

(i) If −1 < 1−k(α+γ) < 1, the ω-limit set of every solution p(t) is composed of a single point, which
is the fixed point p, whereas the α-limit set of every non-constant solution is empty.

(ii) When 1− k(α + γ) = −1, both the ω-limit set and the α-limit set of any solution p(t) consist of
the two points p(0) and p(1).

(iii) The last case where 1 − k(α + γ) < −1 is the opposite of the first one (i): the α-limit set of
every solution p(t) is composed of a single point, the fixed point p, whereas the ω-limit set of every
non-constant solution is empty.

1.7.3 Attractor

The definition of attractor varies in the literature by some subtle points. We do not want to discuss
them here, and adopt the following definition, which is appropriate for most cases of interest.

Definition 1.5 (Attractor). A non-empty compact (bounded and closed) set of the state space A ⊆ Ω
is an attractor of the system, if the following conditions hold:

(i) A is forward invariant.

(ii) There exists a neighborhood U of A, which is an open set U ⊃ A such that all solutions starting
in U converge to A as t→ +∞.

(iii) There is no proper non-empty compact subset of A that has properties (i) and (ii).

In the above definition, a solution x(t) converges to a set A if the distance between x(t) and A
converges to 0 as t→ +∞. The distance between a point ξ and a set S is the distance between ξ and
the point η ∈ S that is closest to ξ, or if there is no such point, then more generally, it is defined by

dist(ξ,S) = inf
η∈S

dist(ξ, η).

Because of point (ii) in the definition, the attractor A contains the ω-limit sets of all solutions starting
in U .
Typical attractors are single points, unions of several points, closed curves, etc., i.e. “thin” sets,
whereas the neighborhood U of A, being an open set, is “thick”, because every point of an open set
is the center of a small sphere that lies entirely in U . Most attractors are simple objects of integer
dimensions (points, curves), but there can be many other geometrical sets that have possible non
integer dimensional (the so-called “strange” attractors). A system may have a single, several or no
attractor. In order to have an attractor, it must have some sort of dissipativity which causes U to
shrink to A.

Example: Mass-spring system in Newtonian mechanics

This (non-dissipative) system has no attractor. It has an infinity of periodic solutions that do not
converge to each other.

Example: Commodity Price Model

(i) If −1 < 1− k(α+ γ) < 1, the attractor is the fixed point p.

(ii) If 1− k(α+ γ) = −1, the system has no attractor.

(iii) Likewise, if 1− k(α+ γ) < −1, the system has no attractor.


