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Solution 1 >-Protocol for Cubic Residues

1.

We use the properties of the Jacobi symbol. Recall that (%) =1ifp=1mod4 and —1

otherwise. We have (%) = (%) X (%) = (%) = (%) = +1 so —3 is a quadratic residue

modulo p.

. The discriminant of X2+ X +1is —3. Let —3 = u? (mod p). Therefore, X? + X + 1 has

two square roots (—1 £ u)/2 mod p.

2

Alternately, we have X? + X +1 = (X + 1) — & = (X — =5)(X + =3%) from which
we deduce the two roots.

. The polynomial X? — 1 cannot have more than 3 roots over the field Z,. Multiple roots

must be roots of its derivative 3X? which has only 0 as a root. So, X? — s has no multiple
roots when s € Z;. The polynomial X3 — 1 has root 1 and the roots of X2 + X + 1. So,
X3 — 1 has exactly 3 roots.

We know it cannot have more than 3 roots. Assume it has one root 6. Let 1,(, (' be the
3 roots of X3 — 1. We observe that 6,0¢,0¢" are 3 different roots of X2 — 5. So we have
exactly 3 different roots.

. A number z is a cubic root of s modulo n iff it is a cubic root modulo p and modulo gq.

Since 3 is coprime with ¢(q), every residue has a unique cubic root modulo g. Hence,
by using the Chinese remainder theorem we obtain that a number always has the same
number of cubic roots modulo n and modulo p.

. We propose
Prover Verifier
witness: s input: (n,v)
pick r € Z7 pick e € {0,1}

X
z=r3modn

€

Y

?
y =r1s*mod n y3v® modn =z

By going through the checklist, we define:

e the relation R is already defined
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e the first prover function P(n,v;r) = r® mod n

e the challenge domain F = {0, 1}

e the second prover function P(n,v,e;r) = rs® mod n

e the verification function V(n,v,z,e,y) <= y3v® mod n = x

e the extractor algorithm &(n,v,z,e,y,e’,y'): since e and ¢’ are different in {0,1} we
denote yo resp. y; the y or 3 value corresponding to the challenge 0 resp. 1. We
compute z = y;/yp mod n.

e the simulator algorithm S(n, v, e;r): pick y €y Z¥ form r and set x = y3v® mod n.

We can now prove all required properties:

o (efficiency) all algorithms are polynomially bounded

e (completeness) for each ((n,v), s) in the language and a honestly generated transcript
(z,e,y) then V(n,v,z,e,y) holds.

e (special soundness) for each (n,v), if (z,e,y) and (z,¢,y’) are two accepting tran-

scripts with same x, then £ produces a witness. This comes from

3 3
(’yl) v=l =T (mod n)
Yo

(honest verifier zero-knowledge) for a honest prover, y is always uniformly distributed
(whatever e) and # = y3v® mod n. For the simulator, this is the same. So, both
transcripts have same distribution.

Solution 2 Chameleon Hash Function from X-Protocol

This exercise is inspired from Bellare-Ristov, Hash Functions from Sigma Protocols and
Improvements to VSH, published in the proceedings of ASTACRYPT 2008, LNCS vol. 5350,
Springer.

1. Which objects are missing to define a X-protocol?

An extractor E(x,a,e, z, €, 2') to compute a witness from two accepted transcripts (a, e, z)
and (a, €, 2’) with same commitment a and different challenges e # ¢/, and a simulator
S(z,e;rg) to generate a transcript (a, e, z) from z and e with correct distribution.

2. What is the difference between the hypothesis on E and the special soundness property of
Yi-protocols?

Now it works whenever (e, z) # (¢/, 2') instead of e # ¢’. Somehow, the new property for
FE is stronger than the property of special soundness.

Show that a strong X-protocol is a ¥ -protocol.

Computability and completeness are already satisfied by the definition of a partial -
protocol. Special soundness is implied by the new definition of E. We construct a sim-
ulator S(z,e;r) = (Hy(e, 2),e,z) where z € Z, is generated with uniform distribution



in Z, given r. The honest execution of the protocol with instance x generates a tran-
script (a, e, z) with a given distribution such that V(z,a,e, z) holds and e is uniformly
distributed in E,. Due to the definition of strong Y-protocols, z is uniformly distributed
and independent from e and a = H,(e, z). So, the transcript has the same distribution as
the one from the S(xz,e;r) when e € E, is random.

. Show that given x and w such that R(xz,w) holds, we can create a collision on the function
H,.

With some random rp and two different e,e¢’ € E, we can compute a = P(z,w;rp),
z = P(z,w,e;rp), and 2’ = P(x,w,e’;rp). Since V(x,a,e,z) and V(z,a,¢€,2’') hold, we
must have a = Hy(e, z) and a = Hy(¢',2'), so Hy(e,z) = Hy(e',2’). Since e # €/, this is a
collision.

. Show that given x € Lg, finding a collision on H, implies finding a witness for x € Lg.
Assume that a = Hy(e,z) = Hy(€',2') with (e, z) # (¢/,z'). We know that V(a,e, z)

and V(a,é€’,2") hold due to the property of a strong Y-protocol. Since (e, z) # (€/,2'),
w= E(x,a,e,z€,2") is a witness for x.

Deduce that if R is such that given x € Lp it is hard to find w such that R(z,w) holds, we
can define a trapdoor collision resistant hash function by using x as a common reference
string.

We generate z and w such that R(z,w) holds and declare x as being the common reference
string. Then, w is a trapdoor. We have shown that making a collision implies recovering
the trapdoor so H, is collision-resistant.

. Recall the Goldwasser-Micali- Wigderson Y-protocol based on graph isomorphism.

The relation is R((Go, G1), ¢) where the witness ¢ is invertible and such that ¢(Gp) = G

Prover Verifier
¢ st p(Go) = G1 (Go,G1)
pick 7 invertible pick e € {0,1}
H = 7(Go) <
e
oc=mop © 7 O‘(Ge);H

Show that the Golwasser-Micali-Wigderson X-protocol is not a strong Y-protocol.

If we have a non-trivial automorphism 7 of the graph G, then if (H, e, o) is an accepted
transcript, then (H,e,o o 7) as well. However, we cannot extract a witness from the two
transcripts.

. Recall the Fiat-Shamir X-protocol.

The relation R((n,v), s) holds if and only if s?v mod n = 1.



Prover Verifier
s st s2vmodn =1 (n,v)
pick r € Z7 pick e € {0,1}
z =72 modn

?
y=rs®modn » y*v®modn =z

Show that the Fiat Shamir X-protocol is not a strong 3-protocol.

We can have two accepted transcripts (z,e,y) and (z,e, —y mod n) with same x which
are not enough to extract a witness.

. Recall the Schnorr 3-protocol.

The relation R((G,q,g,y),x) holds if and only if ¢* = y in group G, where ¢ is a prime
greater than 2!, and ¢ has order ¢ in G.

Prover Verifier
T8t gt =y (G,q.9.y)
pick k € Z, pick e € {1,...,2'}
r= gk : q prime > 2!
e
¢ g,y of order ¢

el S
Ty =g

s =ex + kmod ¢

Show that the Schnorr Y-protocol is a strong X-protocol.

If (r,e,s) and (r, ¢/, s') are accepted transcripts, we have s, s’ € Zg, ry® = ¢g° and ry¢ =g~
If e # ¢ we know that we can extract a witness. If e = €/, we obtain that ¢° = ¢* . Since
g has order ¢, we must have s = s’ in Z,. This is not possible if (e, s) # (¢/, ¢).

Furthermore, (7, e, s) is accepted if and only if = g°y~¢ so we can define Hy(e, s) = gy ~°.

Finally, s is uniformly distributed in Z,. So, we have a strong X-protocol.
Deduce a trapdoor hash function based on this protocol. Does it remind you something?

Let = be a trapdoor and y = ¢g* be a CRS. We define Hy(e,s) = ¢g°y~° which looks like
the Pedersen commitment.
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