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Solution 1 Σ-Protocol for Cubic Residues

1. We use the properties of the Jacobi symbol. Recall that
(
−1
p

)
= 1 if p = 1 mod 4 and −1

otherwise. We have
(
−3
p

)
=

(
−1
p

)
×
(
3
p

)
=

(p
3

)
=

(
1
3

)
= +1 so −3 is a quadratic residue

modulo p.

2. The discriminant of X2 +X +1 is −3. Let −3 ≡ u2 (mod p). Therefore, X2 +X +1 has
two square roots (−1± u)/2 mod p.

Alternately, we have X2 +X + 1 = (X + 1
2)

2 − u2

4 = (X − −1+u
2 )(X + −1−u

2 ) from which
we deduce the two roots.

3. The polynomial X3 − 1 cannot have more than 3 roots over the field Zp. Multiple roots
must be roots of its derivative 3X2 which has only 0 as a root. So, X3− s has no multiple
roots when s ∈ Z∗

p. The polynomial X3 − 1 has root 1 and the roots of X2 +X + 1. So,
X3 − 1 has exactly 3 roots.

We know it cannot have more than 3 roots. Assume it has one root θ. Let 1, ζ, ζ ′ be the
3 roots of X3 − 1. We observe that θ, θζ, θζ ′ are 3 different roots of X3 − s. So we have
exactly 3 different roots.

4. A number x is a cubic root of s modulo n iff it is a cubic root modulo p and modulo q.
Since 3 is coprime with φ(q), every residue has a unique cubic root modulo q. Hence,
by using the Chinese remainder theorem we obtain that a number always has the same
number of cubic roots modulo n and modulo p.

5. We propose

Prover Verifier
witness: s input: (n, v)
pick r ∈ Z∗

n pick e ∈ {0, 1}
x = r3 mod n

x−−−−−−−−−−−−−→
e←−−−−−−−−−−−−−

y = rse mod n
y−−−−−−−−−−−−−→ y3ve mod n

?
= x

By going through the checklist, we define:

• the relation R is already defined
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• the first prover function P(n, v; r) = r3 mod n

• the challenge domain E = {0, 1}
• the second prover function P(n, v, e; r) = rse mod n

• the verification function V (n, v, x, e, y)⇐⇒ y3ve mod n = x

• the extractor algorithm E(n, v, x, e, y, e′, y′): since e and e′ are different in {0, 1} we
denote y0 resp. y1 the y or y′ value corresponding to the challenge 0 resp. 1. We
compute z = y1/y0 mod n.

• the simulator algorithm S(n, v, e; r): pick y ∈U Z∗
n form r and set x = y3ve mod n.

We can now prove all required properties:

• (efficiency) all algorithms are polynomially bounded

• (completeness) for each ((n, v), s) in the language and a honestly generated transcript
(x, e, y) then V (n, v, x, e, y) holds.

• (special soundness) for each (n, v), if (x, e, y) and (x, e′, y′) are two accepting tran-
scripts with same x, then E produces a witness. This comes from(

y1
y0

)3

v ≡ y31v

y30
≡ x

x
≡ 1 (mod n)

• (honest verifier zero-knowledge) for a honest prover, y is always uniformly distributed
(whatever e) and x = y3ve mod n. For the simulator, this is the same. So, both
transcripts have same distribution.

Solution 2 Chameleon Hash Function from Σ-Protocol

This exercise is inspired from Bellare-Ristov, Hash Functions from Sigma Protocols and
Improvements to VSH, published in the proceedings of ASIACRYPT 2008, LNCS vol. 5350,
Springer.

1. Which objects are missing to define a Σ-protocol?

An extractor E(x, a, e, z, e′, z′) to compute a witness from two accepted transcripts (a, e, z)
and (a, e′, z′) with same commitment a and different challenges e ̸= e′, and a simulator
S(x, e; rS) to generate a transcript (a, e, z) from x and e with correct distribution.

2. What is the difference between the hypothesis on E and the special soundness property of
Σ-protocols?

Now it works whenever (e, z) ̸= (e′, z′) instead of e ̸= e′. Somehow, the new property for
E is stronger than the property of special soundness.

Show that a strong Σ-protocol is a Σ-protocol.

Computability and completeness are already satisfied by the definition of a partial Σ-
protocol. Special soundness is implied by the new definition of E. We construct a sim-
ulator S(x, e; r) = (Hx(e, z), e, z) where z ∈ Zx is generated with uniform distribution
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in Zx given r. The honest execution of the protocol with instance x generates a tran-
script (a, e, z) with a given distribution such that V (x, a, e, z) holds and e is uniformly
distributed in Ex. Due to the definition of strong Σ-protocols, z is uniformly distributed
and independent from e and a = Hx(e, z). So, the transcript has the same distribution as
the one from the S(x, e; r) when e ∈ Ex is random.

3. Show that given x and w such that R(x,w) holds, we can create a collision on the function
Hx.

With some random rP and two different e, e′ ∈ Ex we can compute a = P (x,w; rP ),
z = P (x,w, e; rP ), and z′ = P (x,w, e′; rP ). Since V (x, a, e, z) and V (x, a, e′, z′) hold, we
must have a = Hx(e, z) and a = Hx(e

′, z′), so Hx(e, z) = Hx(e
′, z′). Since e ̸= e′, this is a

collision.

4. Show that given x ∈ LR, finding a collision on Hx implies finding a witness for x ∈ LR.

Assume that a = Hx(e, z) = Hx(e
′, z′) with (e, z) ̸= (e′, z′). We know that V (a, e, z)

and V (a, e′, z′) hold due to the property of a strong Σ-protocol. Since (e, z) ̸= (e′, z′),
w = E(x, a, e, z, e′, z′) is a witness for x.

Deduce that if R is such that given x ∈ LR it is hard to find w such that R(x,w) holds, we
can define a trapdoor collision resistant hash function by using x as a common reference
string.

We generate x and w such that R(x,w) holds and declare x as being the common reference
string. Then, w is a trapdoor. We have shown that making a collision implies recovering
the trapdoor so Hx is collision-resistant.

5. Recall the Goldwasser-Micali-Wigderson Σ-protocol based on graph isomorphism.

The relation is R((G0, G1), φ) where the witness φ is invertible and such that φ(G0) = G1

Prover Verifier
φ st φ(G0) = G1 (G0, G1)
pick π invertible pick e ∈ {0, 1}

H = π(G0)
H−−−−−−−−−−−−−→
e←−−−−−−−−−−−−−

σ = π ◦ φ−e σ−−−−−−−−−−−−−→ σ(Ge)
?
= H

Show that the Golwasser-Micali-Wigderson Σ-protocol is not a strong Σ-protocol.

If we have a non-trivial automorphism τ of the graph Ge, then if (H, e, σ) is an accepted
transcript, then (H, e, σ ◦ τ) as well. However, we cannot extract a witness from the two
transcripts.

6. Recall the Fiat-Shamir Σ-protocol.

The relation R((n, v), s) holds if and only if s2v mod n = 1.
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Prover Verifier
s st s2v mod n = 1 (n, v)

pick r ∈ Z∗
n pick e ∈ {0, 1}

x = r2 mod n
x−−−−−−−−−−−−−→
e←−−−−−−−−−−−−−

y = rse mod n
y−−−−−−−−−−−−−→ y2ve mod n

?
= x

Show that the Fiat Shamir Σ-protocol is not a strong Σ-protocol.

We can have two accepted transcripts (x, e, y) and (x, e,−y mod n) with same x which
are not enough to extract a witness.

7. Recall the Schnorr Σ-protocol.

The relation R((G, q, g, y), x) holds if and only if gx = y in group G, where q is a prime
greater than 2t, and g has order q in G.

Prover Verifier
x st gx = y (G, q, g, y)
pick k ∈ Zq pick e ∈ {1, . . . , 2t}

r = gk
r−−−−−−−−−−−−−→ q prime > 2t
e←−−−−−−−−−−−−− g, y of order q

s = ex+ k mod q
s−−−−−−−−−−−−−→ rye

?
= gs

Show that the Schnorr Σ-protocol is a strong Σ-protocol.

If (r, e, s) and (r, e′, s′) are accepted transcripts, we have s, s′ ∈ Zq, ry
e = gs and rye

′
= gs

′
.

If e ̸= e′ we know that we can extract a witness. If e = e′, we obtain that gs = gs
′
. Since

g has order q, we must have s = s′ in Zq. This is not possible if (e, s) ̸= (e′, s′).

Furthermore, (r, e, s) is accepted if and only if r = gsy−e so we can defineHy(e, s) = gsy−e.

Finally, s is uniformly distributed in Zq. So, we have a strong Σ-protocol.

Deduce a trapdoor hash function based on this protocol. Does it remind you something?

Let x be a trapdoor and y = gx be a CRS. We define Hy(e, s) = gsy−e which looks like
the Pedersen commitment.
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