[0w

e
-lf- g: 3 - E Advanced Cryptography
. r___ lasec.epfl.ch

SECURITY AND CRYPTOGRAPHY LABORATORY moodle.epfl.ch/course/view.php?7id=13913

Solution

1

Solution Sheet #8

Advanced Cryptography 2021

Interactive Proof Systems

This exercise is inspired from http://infsec.cs.uni-sb.de/teaching/WS08/zk/.

1. (a) Completeness = 1

e We assume the given proof system proves that all x; of x are squares. Then the

corresponding witness relation is R := {((21,...,Zn,m), (Y1,---,Yn)) | Y2 = x;
mod m for i = 1,...,n, with n even}.

Completeness: Given I by the verifier V', the prover P will always be able to
send the square roots y; for all ¢ € I, since all z; are squares. All checks yf =ux;

mod m by V will then succeed and V' will accept. Hence we have completeness
bound ¢ = 1.

Soundness: We now compute the success probability of the best malicious prover
P* convincing the honest verifier V' of a false statement. The best strategy for a
malicious prover is to use exactly one non-square and n — 1 squares for = (using
more non-squares only increases the chance of V' asking for the root of a non-
square). Let x; be the non-square. The verifier chooses the set 1. Now there are
two cases:

— j € I: V wants to see the root of x;. Since x; is a non-square P* cannot
send a number z, such that 22 = x; mod m. V’s check fails, it will output
0.

— j ¢ I: V does not want to see the root of ;. Since all other z;, i # j
are squares, P* is able to send those roots y; for all ¢ € I. V’s checks may
succeed and it may output 1.

As j € {1,...,n} is chosen independently of I, and |I| = g, the probability of

. .n/2 1 . . . 1

jelis ¥ 3 Hence V' will output 0 with probability at least 2 hence the

1
soundness bound is s = 3

(b) Soundness = 0

e We assume that the given proof system proves that at least half of the z; of x

are squares. Then the corresponding witness relation is

R = {((z1,...,zn,m),(y1,-..,yn)) | 3T C {1,...,n} : |I| > %/\yl2 = x;
mod m for all ¢ € I, with n even}.

e Soundness: There is no way for a cheating prover P* to convince the honest
verifier V' of a false statement. If less than half of the x; are squares, there will
always be a j € I such that z; is not a square. The soundness bound is then
s=0.

e Completeness: In the worst case, we have exactly n/2 many squares and n/2
many non-squares. Then P will only be able to send the roots y; for ¢ € I, if V has
chosen exactly the squares. Since there are (n%) combinations the probability

1 1

(7772) (7772)

2. We show that for every language in NP there exists an interactive proof system with
completeness bound 1 and soundness bound 0.

for V outputting 1 is . Hence the completeness bound is ¢ =

e Let L be a language in NP. From the definition of NP it follows that there exists
a relation R, such that z € L <& Jw : (z,w) € R and such that R can be de-
cided by a deterministic polynomial-time Turing machine M and such that the |w]
is polynomially-bounded in |z|.

e In the interactive proof system the prover P sends the witness w to the verifier V.
V then runs M (z,w) and outputs, what M outputs.

e This proof system has completeness 1 and soundness 0.
3. We will write M™ for the n times sequential composition of M. We prove by induction:

e Base case: For x| =1 we have completeness ¢ and soundness s.
e Induction hypothesis: (P, V") has completeness ¢” and soundness s".

e Inductive step: Consider the case |z| = n + 1. For completeness we have (Vz € L):

Pr[(P°(z,w),V°(z)) =1]
= Pr [(P”H(x,w),V"H(aj)) = 1]
Pr[((P(z,w), P"(z,w)), (V(x),V"(z))) = 1]

= Pr

n
> c-c'=c

e Soundness: Here we deal with a malicious prover P*. We assume we can decompose
it into two malicious provers P, and P; running sequentially: P ends after sending
the last message to the first invocation of V' in V° (we may assume, the number
of rounds in the proof system (P, V) is known, so we know when the last message
is sent). Both P; and Pj output their internal state after termination. P5 gets as
input the state s; of Pj after its termination. We write (s,v) < (P(...),V(...)) for

assigning to s the output of P and to v the output of V. Then we have (VP*,Vx & L):

Pr[(P°(z,w),V°(x)) =1]
= Privy=vy=1:(s1,01) + (P, V(2)),v2 + (P5(s1),V"())]
= ZPr[slzso/\vlzvgzlf(31,1)1)<_(P1*7V($))7
(82,v2) < (P5(s0), V"(x))]
= ZPT [v2 = 1: (s2,v2) < (P (s0), V" (2))]

Prsi =soAvi =1:(s1,v1) « (P, V(2))]
< Zs”-Pr[sl =soAvr=1:(s1,m) « (P, V(x))]
= s”-ZPr[sl =soAvi=1:(s1,m) < (P, V(x))]
" Privi=1:(s1,v1) « (P{,V(x))]

< s"-s=s

Il
V2]

Solution 2 >-Protocol for P

The exercise is inspired by Proof of Partial Knowledge and Simplified Design of Witness
Hiding Protocols by Cramer, Damgard and Schoenmakers. Published in the proceedings of
Crypto’94 pp. 174-187, LNCS vol. 839, Springer 1994.

Let € be a word of length 0.

We define P(z,w) = € and P(z,w,e) = ¢.

We take the set of challenges E' = {¢}. We could actually take any set of challenges with
polynomially bounded length.

The verification algorithm V' (z,a,e, z) first computes w = A(x), then checks if R(z,w)
holds.

Clearly, this protocol satisfies completeness (z € L is accepted by the verifier when the
protocol is honestly run).

Clearly, the algorithms run in polynomial time in terms of |x|.

To define a polynomial time extractor based on some values z,a,e, €, 2z, 2" such that
V(z,a,e,2) and V(z,a, €, 2’) hold, and e # €', we simply compute w = A(x). Clearly, we
obtain a polynomial-time extractor.

To define a simulator S(z,e), we just take (a,z) = (g,¢). Clearly,
Pr[S(z,e) = (a,2)] = Pr[P(z,w) = a,P(z,w,e) = 2]

So, we obtain a polynomial-time simulator.

So, all properties of a X-protocol are satisfied.

Solution 3 Combined Proofs

1. The prover and the verifier are simply defined by a parallel execution of ;1 and Y5 together
with the same challenge. So are the extractor and the simulator.

More precisely, P((z1,z2), (w1, w2);r1,72) runs Pi(z;, wi;r;) = a; for i = 1,2 and yield
(a1, az2). Uppon challenge e € E, P((z1,x2), (w1, w2), e;71,r2) runs P;(z;, w;, e;r;) = z; for

i = 1,2 and yield (21, z2). The verification holds V ((z1, x2), (a1, a2), €, (21, 22)) if and only
if both V;(x;, a;, e, z;) hold for ¢ = 1,2. The extractor £((x1, z2), (a1,a2),e,€, (21, 22), (2], 2}))
runs w; = &(z4, ai, e, €, z;, z) for i = 1,2 and yield (wq,ws). The simulator S((x1,x2), €)
runs (a;, z;) = S;(x4,€) for i = 1,2 and yields ((a1,a2), (21, 22)).

Note: it is important to use the same challenge for both protocols in order to avoid
troubles in the extraction.

2. The protocol P is a finite sequence of polynomial time operations or subroutines, so it is

polynomial. Since Vi and V5 have a polynomially bounded complexity, so does V. We
already know that E is polynomially samplable. So ¥ works in polynomial time (except
that we did not specify yet the extractor and the simulator).
If the protocols are honestly run, we have Sj(xj,e;) — (a;,e;, z;). So, by the property of
the simulator for ¥;, we have that Vj(x;,a;, ej, 2j) holds. Since w is a correct witness for
x; in ;, since P(z;, w;ry) = a; and P(z;, w, e;;12) = z;, due to the completeness of ¥; we
have that V;(z;, ai, i, 2;) holds. Since we further have e; = e — e;, the last condition for
V((z1,22), (a1,a2), e, (e1, €2, 21, 22)) to hold is satisfied. So, ¥ satisfies the completeness
property of Y-protocols.

3. U V((x1,22), (a1,a2), ¢, (€1, €2, 21, 22)) and V ((x1,x2), (a1, a2), €, (€], €5, 21, 25)) hold with
e # €, we must have either e; # €] or es # €,,. Let assume that e; # ¢}. Then, we
know that Vi(x1,a1,e1,21) and Vi(z1,a1,¢€), 2;) hold. So, we can run the & extractor on
(x1,a1,€1,€},21,2]) to extract a witness w for z1 in Ly. Clearly, w is also a witness for
(1,22) in L. The method is similar in the case ea # €.

Clearly, we obtain a polynomially bounded extractor.
4. Given (z1,z2) and e, we pick a random e; and let e; = e — 1. Then, we run S;(z1,e1) —

(a1,e1,21) and Sa(xo,e2) — (ag,e2,22). The output is ((a1,a2),e, (e1,e2,21,22)). This
defines our simulator S.

Clearly, this works in polynomial time.
We let a = (a1, a2) and z = (e1, €2, 21, 22). We have
Pr[S — a,e,zle] = Y Prler] Pr[Si — a1, €1, 21]e1] Pr[Sy — as, ez, z]es]
e1+tex=e
Since &1 and Sy are simulators for 37 and g, we have

Pr[S — a, e, z|e] = Z Prle;] Pr[X; — aj, €5, zjle;] Pr[S; — ai, e;, 2ie;]

e1+ez=e

for whatever pair (i, j) such that {7, 5} = {1,2}. We let i be random defined by P. Clearly,
the above sum equals Pr[¥ — a, e, z|e]. So, S satisfies the property of a simulator for X.

