
Advanced Cryptography

lasec.epfl.ch

moodle.epfl.ch/course/view.php?id=13913

Solution Sheet #8
Advanced Cryptography 2021

Solution 1 Interactive Proof Systems

This exercise is inspired from http://infsec.cs.uni-sb.de/teaching/WS08/zk/.

1. (a) Completeness = 1

• We assume the given proof system proves that all xi of x are squares. Then the
corresponding witness relation is R := {((x1, . . . , xn,m), (y1, . . . , yn)) | y2i ≡ xi
mod m for i = 1, . . . , n, with n even}.
• Completeness: Given I by the verifier V , the prover P will always be able to

send the square roots yi for all i ∈ I, since all xi are squares. All checks y2i ≡ xi
mod m by V will then succeed and V will accept. Hence we have completeness
bound c = 1.

• Soundness: We now compute the success probability of the best malicious prover
P ∗ convincing the honest verifier V of a false statement. The best strategy for a
malicious prover is to use exactly one non-square and n− 1 squares for x (using
more non-squares only increases the chance of V asking for the root of a non-
square). Let xj be the non-square. The verifier chooses the set I. Now there are
two cases:

– j ∈ I: V wants to see the root of xj . Since xj is a non-square P ∗ cannot
send a number z, such that z2 ≡ xj mod m. V ’s check fails, it will output
0.

– j /∈ I: V does not want to see the root of xj . Since all other xi, i 6= j
are squares, P ∗ is able to send those roots yi for all i ∈ I. V ’s checks may
succeed and it may output 1.

As j ∈ {1, . . . , n} is chosen independently of I, and |I| =
n

2
, the probability of

j ∈ I is
n/2

n
=

1

2
. Hence V will output 0 with probability at least

1

2
, hence the

soundness bound is s =
1

2
(b) Soundness = 0

• We assume that the given proof system proves that at least half of the xi of x
are squares. Then the corresponding witness relation is
R := {((x1, . . . , xn,m), (y1, . . . , yn)) | ∃I ⊆ {1, . . . , n} : |I| > n

2

∧
y2i ≡ xi

mod m for all i ∈ I, with n even}.

1

• Soundness: There is no way for a cheating prover P ∗ to convince the honest
verifier V of a false statement. If less than half of the xi are squares, there will
always be a j ∈ I such that xj is not a square. The soundness bound is then
s = 0.

• Completeness: In the worst case, we have exactly n/2 many squares and n/2
many non-squares. Then P will only be able to send the roots yi for i ∈ I, if V has
chosen exactly the squares. Since there are

(
n

n/2

)
combinations the probability

for V outputting 1 is
1(
n

n/2

) . Hence the completeness bound is c =
1(
n

n/2

)
2. We show that for every language in NP there exists an interactive proof system with

completeness bound 1 and soundness bound 0.

• Let L be a language in NP. From the definition of NP it follows that there exists
a relation R, such that x ∈ L ⇔ ∃w : (x,w) ∈ R and such that R can be de-
cided by a deterministic polynomial-time Turing machine M and such that the |w|
is polynomially-bounded in |x|.
• In the interactive proof system the prover P sends the witness w to the verifier V .
V then runs M(x,w) and outputs, what M outputs.

• This proof system has completeness 1 and soundness 0.

3. We will write Mn for the n times sequential composition of M . We prove by induction:

• Base case: For |x| = 1 we have completeness c and soundness s.

• Induction hypothesis: (Pn, V n) has completeness cn and soundness sn.

• Inductive step: Consider the case |x| = n + 1. For completeness we have (∀x ∈ L):

Pr [(P ◦(x,w), V ◦(x)) = 1]

= Pr
[
(Pn+1(x,w), V n+1(x)) = 1

]
= Pr [((P (x,w), Pn(x,w)), (V (x), V n(x))) = 1]

= Pr [(P (x,w), V (x)) = 1] · Pr [(Pn(x,w), V n(x)) = 1]

> c · cn = cn+1

• Soundness: Here we deal with a malicious prover P ∗. We assume we can decompose
it into two malicious provers P ∗1 and P ∗2 running sequentially: P ∗1 ends after sending
the last message to the first invocation of V in V ◦ (we may assume, the number
of rounds in the proof system (P, V) is known, so we know when the last message
is sent). Both P ∗1 and P ∗2 output their internal state after termination. P ∗2 gets as
input the state s1 of P ∗1 after its termination. We write (s, v)← (P (. . .), V (. . .)) for

2

assigning to s the output of P and to v the output of V . Then we have (∀P ∗, ∀x 6∈ L):

Pr [(P ◦(x,w), V ◦(x)) = 1]

= Pr [v1 = v2 = 1 : (s1, v1)← (P ∗1 , V (x)), v2 ← (P ∗2 (s1), V
n(x))]

=
∑
s0

Pr [s1 = s0 ∧ v1 = v2 = 1 : (s1, v1)← (P ∗1 , V (x)),

(s2, v2)← (P ∗2 (s0), V
n(x))]

=
∑
s0

Pr [v2 = 1 : (s2, v2)← (P ∗2 (s0), V
n(x))]

·Pr [s1 = s0 ∧ v1 = 1 : (s1, v1)← (P ∗1 , V (x))]

6
∑
s0

sn · Pr [s1 = s0 ∧ v1 = 1 : (s1, v1)← (P ∗1 , V (x))]

= sn ·
∑
s0

Pr [s1 = s0 ∧ v1 = 1 : (s1, v1)← (P ∗1 , V (x))]

= sn · Pr [v1 = 1 : (s1, v1)← (P ∗1 , V (x))]

6 sn · s = sn+1

Solution 2 Σ-Protocol for P
The exercise is inspired by Proof of Partial Knowledge and Simplified Design of Witness

Hiding Protocols by Cramer, Damg̊ard and Schoenmakers. Published in the proceedings of
Crypto’94 pp. 174–187, LNCS vol. 839, Springer 1994.

Let ε be a word of length 0.

• We define P(x,w) = ε and P(x,w, e) = ε.

• We take the set of challenges E = {ε}. We could actually take any set of challenges with
polynomially bounded length.

• The verification algorithm V (x, a, e, z) first computes w = A(x), then checks if R(x,w)
holds.

• Clearly, this protocol satisfies completeness (x ∈ L is accepted by the verifier when the
protocol is honestly run).

• Clearly, the algorithms run in polynomial time in terms of |x|.

• To define a polynomial time extractor based on some values x, a, e, e′, z, z′ such that
V (x, a, e, z) and V (x, a, e′, z′) hold, and e 6= e′, we simply compute w = A(x). Clearly, we
obtain a polynomial-time extractor.

• To define a simulator S(x, e), we just take (a, z) = (ε, ε). Clearly,

Pr[S(x, e) = (a, z)] = Pr[P(x,w) = a,P(x,w, e) = z]

So, we obtain a polynomial-time simulator.

So, all properties of a Σ-protocol are satisfied.

3

Solution 3 Combined Proofs

1. The prover and the verifier are simply defined by a parallel execution of Σ1 and Σ2 together
with the same challenge. So are the extractor and the simulator.

More precisely, P((x1, x2), (w1, w2); r1, r2) runs Pi(xi, wi; ri) = ai for i = 1, 2 and yield
(a1, a2). Uppon challenge e ∈ E, P((x1, x2), (w1, w2), e; r1, r2) runs Pi(xi, wi, e; ri) = zi for
i = 1, 2 and yield (z1, z2). The verification holds V ((x1, x2), (a1, a2), e, (z1, z2)) if and only
if both Vi(xi, ai, e, zi) hold for i = 1, 2. The extractor E((x1, x2), (a1, a2), e, e

′, (z1, z2), (z
′
1, z
′
2))

runs wi = Ei(xi, ai, e, e′, zi, z′i) for i = 1, 2 and yield (w1, w2). The simulator S((x1, x2), e)
runs (ai, zi) = Si(xi, e) for i = 1, 2 and yields ((a1, a2), (z1, z2)).

Note: it is important to use the same challenge for both protocols in order to avoid
troubles in the extraction.

2. The protocol P is a finite sequence of polynomial time operations or subroutines, so it is
polynomial. Since V1 and V2 have a polynomially bounded complexity, so does V . We
already know that E is polynomially samplable. So Σ works in polynomial time (except
that we did not specify yet the extractor and the simulator).

If the protocols are honestly run, we have Sj(xj , ej)→ (aj , ej , zj). So, by the property of
the simulator for Σj , we have that Vj(xj , aj , ej , zj) holds. Since w is a correct witness for
xi in Σi, since P(xi, w; r2) = ai and P(xi, w, ei; r2) = zi, due to the completeness of Σi we
have that Vi(xi, ai, ei, zi) holds. Since we further have ei = e − ej , the last condition for
V ((x1, x2), (a1, a2), e, (e1, e2, z1, z2)) to hold is satisfied. So, Σ satisfies the completeness
property of Σ-protocols.

3. If V ((x1, x2), (a1, a2), e, (e1, e2, z1, z2)) and V ((x1, x2), (a1, a2), e
′, (e′1, e

′
2, z
′
1, z
′
2)) hold with

e 6= e′, we must have either e1 6= e′1 or e2 6= e′2. Let assume that e1 6= e′1. Then, we
know that V1(x1, a1, e1, z1) and V1(x1, a1, e

′
1, z
′
1) hold. So, we can run the E1 extractor on

(x1, a1, e1, e
′
1, z1, z

′
1) to extract a witness w for x1 in L1. Clearly, w is also a witness for

(x1, x2) in L. The method is similar in the case e2 6= e′2.

Clearly, we obtain a polynomially bounded extractor.

4. Given (x1, x2) and e, we pick a random e1 and let e2 = e− e1. Then, we run S1(x1, e1)→
(a1, e1, z1) and S2(x2, e2) → (a2, e2, z2). The output is ((a1, a2), e, (e1, e2, z1, z2)). This
defines our simulator S.

Clearly, this works in polynomial time.

We let a = (a1, a2) and z = (e1, e2, z1, z2). We have

Pr[S → a, e, z|e] =
∑

e1+e2=e

Pr[e1] Pr[S1 → a1, e1, z1|e1] Pr[S2 → a2, e2, z2|e2]

Since S1 and S2 are simulators for Σ1 and Σ2, we have

Pr[S → a, e, z|e] =
∑

e1+e2=e

Pr[ej] Pr[Σj → aj , ej , zj |ej] Pr[Si → ai, ei, zi|ei]

for whatever pair (i, j) such that {i, j} = {1, 2}. We let i be random defined by P. Clearly,
the above sum equals Pr[Σ→ a, e, z|e]. So, S satisfies the property of a simulator for Σ.

4

