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Solution 1 A Special Discrete Logarithm

1. We show that G =
{
x ∈ Zp2 | x ≡ 1 (mod p)

}
with the multiplication modulo p2 is a

group. Below, we prove the different conditions G should fulfill to be a group.

• (Closure) Let a, b ∈ G. By definition of G, we have a ≡ b ≡ 1 (mod p). Hence,
ab ≡ 1 (mod p), which means that ab ∈ G.

• (Associativity) The associativity follows from the associativity of the multiplication
in Zp2 .

• (Neutral element) The neutral element e ∈ G has to satisfy a · e = e · a = a for
any a ∈ G. The element 1 ∈ G satisfies this property since it is the neutral element
in Zp2 .

• (Inverse element) We have to show, that for any a ∈ G, there exists an element
b ∈ G such that a · b ≡ 1 (mod p). We can write a = 1 + kp for an integer k such
that 0 ≤ k < p. Similarly, we set b = 1 + `p for an integer ` such that 0 ≤ ` < p.
From the equation

(1 + kp) · (1 + `p) ≡ 1 + (k + `)p (mod p2),

we deduce that b is the inverse of a if and only if k + ` ≡ 0 (mod p). Thus, each
element a = 1 + kp ∈ G has b = 1 + (p− k)p as inverse.

Since the multiplication in Zp2 is commutative, note that G is commutative as well.

2. Any element a of Zp2 can be written in the unique form a = a1 + a2p, where a1 and a2
are unique integers satisfying 0 ≤ a1, a2 ≤ p − 1. We can conclude the proof by noticing
that any element a of Zp2 lies in G if and only if the corresponding integer a1 = 1.

3. We show that L : G→ Zp defined by L(x) = x−1
p mod p is a group isomorphism.

• (Homomorphism) We first show that L is a group homomorphism. Let a = 1 +kp
with 0 ≤ k < p and b = 1 + `p with 0 ≤ ` < p be elements of G. We have

L(a · b) = L
(
(1 + kp)(1 + `p) mod p2

)
= L(1 + (k + `)p)

=
1 + (k + `)p− 1

p
mod p

= k + ` mod p
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and

L(a) + L(b) =
1 + kp− 1

p
+

1 + `p− 1

p
mod p

= k + ` mod p.

• (Injectivity) Since L is an homomorphism, it suffices to show that its kernel contains
only the neutral element. Let a = 1 + kp with 0 ≤ k < p such that L(a) = 0. This
is equivalent to

1 + kp− 1

p
= k = 0,

which shows that the kernel is trivial, i.e., is equal to {0}.
• (Surjectivity) The surjectivity simply follows from the injectivity, since the two

sets G and Zp have the same finite cardinality.

4. We have to show that any element a ∈ G can be written as a power of p + 1. Using the
binomial theorem, we have

(p + 1)n mod p2 =

n∑
i=0

(
n

i

)
pi mod p2

= 1 + np.

Thus, it is clear that p + 1 generates G. For y ∈ G,

y = logp+1(x) ⇐⇒ x = (p + 1)y mod p2.

Since (p + 1)y mod p2 = 1 + py, we finally obtain

y =
x− 1

p
mod p = L(x).

This logarithm function plays an important role for the Okamoto-Uchiyama cryptosystem 1.
This cryptosystem is studied in the next exercise.

Solution 2 Okamoto-Uchiyama Cryptosystem

By Fermat’s Little Theorem, we know that gp−1 ≡ 1 (mod p) and that cp−1 ≡ 1 (mod p).
Therefore, cp−1 mod p2 ∈ G and gp−1 mod p2 ∈ G, so that the decryption function is well
defined.

Now, we show that the decryption works. First, we have

cp−1 (mod p2) ≡ (gmhr)p−1 (mod p2)

≡
(
gmgp

2qr
)p−1

(mod p2)

≡
(
gp(p−1)

)pqr
gm(p−1) (mod p2)

≡ 1 ·
(
gp−1

)m
(mod p2).

1U. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as factoring. In K. Nyberg, editor,
Advances in Cryptology – Eurocrypt’98: International Conference on the Theory and Application of Crypto-
graphic Techniques, Espoo, Finland, May/June 1998. Proceedings, volume 1403 of Lecture Notes in Computer
Science, pages 308–318. Springer-Verlag, 1998.
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Thus, we have
L
(
cp−1 mod p2

)
L (gp−1 mod p2)

mod p =
L
(
gm(p−1) mod p2

)
L (gp−1 mod p2)

mod p.

Since, L is a group homomorphism, we deduce that

L(gm(p−1) mod p2) = m · L(gp−1 mod p2) mod p.

Thus,
L
(
cp−1 mod p2

)
L (gp−1 mod p2)

mod p = m

which proves that the decryption function indeed recovers the original plaintext.
More details on the Okamoto-Uchiyama cryptosystem are given in the original article 2.

Solution 3 Graph Colorability

We adopt some notations, as follows. Let ci = (c1i , c
2
i , c

3
i ) denote the color of the node vi,

which is a 3-bit binary vector. We put the constraints

(c1i c
2
i ) OR (c1i c

3
i ) OR (c2i c

3
i ) = 0

c1i OR c2i OR c3i = 1

to describe that one and only one of the coordinate of ci must equal one for each vi. For each
edge eij , we add the constraint

c1i c
1
j OR c2i c

2
j OR c3i c

3
j = 0

to describe that adjacent nodes must have different colors. Therefore, we can transform the
above constraints into determining existence of a truth value of each literal such that the
following expression is TRUE:

(c11 OR c21 OR c31) AND
(¬c11 OR ¬c21) AND(¬c11 OR ¬c31) AND(¬c21 OR ¬c31) AND

...
(c1n OR c2n OR c3n) AND

(¬c1n OR ¬c2n) AND(¬c1n OR ¬c3n) AND(¬c2n OR ¬c3n) AND
...

(¬c1i OR ¬c1j ) AND(¬c2i OR ¬c2j ) AND(¬c3i OR ¬c3j ) AND
...

It is therefore easy to see that if the decision version of the 3-SAT problem has a polynomial
time algorithm, then so does the decision problem of the 3-colorability of a graph.

2U. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as factoring. In K. Nyberg, editor,
Advances in Cryptology – Eurocrypt’98: International Conference on the Theory and Application of Crypto-
graphic Techniques, Espoo, Finland, May/June 1998. Proceedings, volume 1403 of Lecture Notes in Computer
Science, pages 308–318. Springer-Verlag, 1998.
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