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Solution 1 A Special Discrete Logarithm

1. We show that G = {z € Z,2 |z =1 (mod p)} with the multiplication modulo p* is a
group. Below, we prove the different conditions G should fulfill to be a group.

e (Closure) Let a,b € G. By definition of G, we have a = b = 1 (mod p). Hence,
ab=1 (mod p), which means that ab € G.

e (Associativity) The associativity follows from the associativity of the multiplication
in Zpy2.

e (Neutral element) The neutral element e € G has to satisfy a-e = e-a = a for
any a € G. The element 1 € G satisfies this property since it is the neutral element
in Zy2.

e (Inverse element) We have to show, that for any a € G, there exists an element
b € G such that a-b =1 (mod p). We can write a = 1+ kp for an integer k such
that 0 < k < p. Similarly, we set b = 1 + ¢p for an integer ¢ such that 0 < ¢ < p.
From the equation

(1+kp)-(14+lp) =1+ (k+p (mod p?),

we deduce that b is the inverse of a if and only if £k + ¢ = 0 (mod p). Thus, each
element a =1+ kp € G has b= 1+ (p — k)p as inverse.

Since the multiplication in Z,. is commutative, note that G is commutative as well.

2. Any element a of Zy2 can be written in the unique form a = aj + agp, where a; and ag
are unique integers satisfying 0 < a1,a2 < p — 1. We can conclude the proof by noticing
that any element a of Z lies in G if and only if the corresponding integer a; = 1.

3. We show that L : G — Z,, defined by L(z) = xp%l mod p is a group isomorphism.

¢ (Homomorphism) We first show that L is a group homomorphism. Let a = 1+ kp
with 0 < k <pand b =1+ ¢p with 0 < ¢ < p be elements of G. We have

L(a-b) = L((1+kp)(1+ ¢p) mod p?)
= L1+ (k+0)p)
_ 1+(k+€)p—1m0dp
p
= k+/modp




and
1+kp—1 14+4ép-—1
L(a)+ L(b) = + 5P + T mod p
p p
= k+ /¢ mod p.

e (Injectivity) Since L is an homomorphism, it suffices to show that its kernel contains
only the neutral element. Let a = 1+ kp with 0 < k < p such that L(a) = 0. This
is equivalent to

which shows that the kernel is trivial, i.e., is equal to {0}.
e (Surjectivity) The surjectivity simply follows from the injectivity, since the two
sets G and Z, have the same finite cardinality.

4. We have to show that any element a € G can be written as a power of p 4+ 1. Using the
binomial theorem, we have

n
(p+1)"mod p? = Z (?)p’ mod p?
i=0
= 1+ np.

Thus, it is clear that p + 1 generates G. For y € G,
y=log,, (z) <= == (p+1)¥ mod P>

Since (p + 1)¥ mod p? = 1 + py, we finally obtain

Y= S mod p = L(z).
p

This logarithm function plays an important role for the Okamoto-Uchiyama cryptosystem .

This cryptosystem is studied in the next exercise.

Solution 2 Okamoto-Uchiyama Cryptosystem

By Fermat’s Little Theorem, we know that ¢g?~! = 1 (mod p) and that ¢?~! = 1 (mod p).
Therefore, ¢! mod p?> € G and ¢ ! mod p?> € G, so that the decryption function is well
defined.

Now, we show that the decryption works. First, we have

(g™h")P~" (mod p?)

p
gmg”Qq’“) (mod p?)

=1 (mod p?)

(¢"™ 1™ (mod p?).
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Thus, we have
L (cp_l mod p2) L (gm(p_l) mod p2)
L (gP~" mod p?) L (gp~" mod p?)

Since, L is a group homomorphism, we deduce that

mod p = mod p.

L(g™"Y mod p?) = m - L(¢""' mod p?) mod p.

Thus,
L (cp_1 mod pQ)
L (gp~* mod p?)

which proves that the decryption function indeed recovers the original plaintext.
More details on the Okamoto-Uchiyama cryptosystem are given in the original article 2.

modp=m

Solution 3 Graph Colorability

We adopt some notations, as follows. Let ¢; = (c}, C?, cf’) denote the color of the node v;,

which is a 3-bit binary vector. We put the constraints

(cici) OR (c;c}) OR (¢jc}) = 0
¢t ORcZOR¢ = 1

to describe that one and only one of the coordinate of ¢; must equal one for each v;. For each
edge ¢;;, we add the constraint

c}c} OR c?c? OR c?cg? =0

to describe that adjacent nodes must have different colors. Therefore, we can transform the
above constraints into determining existence of a truth value of each literal such that the
following expression is TRUE:

(ci OR ¢? OR ¢}) AND
(=ct OR —c2) AND(=c} OR —¢}) AND(=c? OR —c}) AND

(ck OR ¢ OR ¢}) AND
(=cL OR =c2) AND(=c} OR —¢c}) AND(=c2 OR —c}) AND

(m¢; OR —¢j) AND(=¢; OR —c%) AND(~¢} OR —c}) AND

It is therefore easy to see that if the decision version of the 3-SAT problem has a polynomial
time algorithm, then so does the decision problem of the 3-colorability of a graph.
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