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Solution 1 Perfect Unbounded IND is Equivalent to Perfect Secrecy

1. First note that in any case, for any x and y we have

Pr[Y = y,X = x] = Pr[CK(X) = y,X = x] = Pr[CK(x) = y,X = x] = Pr[CK(x) = y] Pr[X = x]

If C provides perfect secrecy, then, we deduce Pr[Y = y,X = x] = 1
#M Pr[X = x]. By

summing this over x, we further obtain Pr[Y = y] = 1
#M . So, Pr[Y = y,X = x] = Pr[Y =

y] Pr[X = x] for all x and y: X and Y are independent.

Conversely, if X and Y are independent, the above property gives

Pr[CK(X) = y] Pr[X = x] = Pr[Y = y] Pr[X = x] = Pr[Y = y,X = x] = Pr[CK(x) = y] Pr[X = x]

Since X has supportM, we have Pr[X = x] 6= 0, so we can simplify by Pr[X = x] and get
Pr[CK(X) = y] = Pr[CK(x) = y] for all x and y. This implies that Pr[C−1K (y) = x] does
not depend on x, so C−1K (y) is uniformly distributed, for all y. So, Pr[CK(x) = y] = 1

#M
for all x and y. Therefore, CK(x) is uniformly distributed for all x: C provides perfect
secrecy as defined in this exercise.

2. Since we have perfect secrecy, when b and r are fixed and k random, y is uniformly
distributed whatever b. So, the distribution of b′ = A(y; r) does not depend on b when b
and r are fixed. So, Prk[ΓIND

0,r,k(A) = 1] = Prk[ΓIND
1,r,k(A) = 1] for all r. Thus, on average

over r, we have Prr,k[ΓIND
0,r,k(A) = 1] = Prr,k[ΓIND

1,r,k(A) = 1]. Therefore, we have perfect
unbounded IND-security.

3. We define the following adversary A. First, A(; r) produces m0 = x1 and m1 = x2. Then,
A(y; r) = 1 if and only if y = z.

We have Prk[ΓIND
b,r,k(A) = 1] = Pr[CK(xb) = z]. Furthermore, since A is deterministic,

ΓIND
b,r,k(A) does not depend on r. So, Prr,k[ΓIND

b,r,k(A) = 1] = Pr[CK(xb) = z].

Since the cipher is perfect unbounded IND-secure, we have Prr,k[ΓIND
0,r,k(A) = 1] = Prr,k[ΓIND

1,r,k(A) =
1]. Therefore, Pr[CK(x1) = z] = Pr[CK(x2) = z].

We deduce that the distribution of CK(x) does not depend on x.

4. Given x0 and y, we have that

Pr[CK(x0) = y]×#M =
∑
x

Pr[CK(x) = y] =
∑
x

Pr[C−1K (y) = x] = 1

The first equality comes from the previous question. So, Pr[CK(x0) = y] = 1/#M:
CK(x0) is uniformly distributed, for any x0. Therefore, we have perfect secrecy.
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Solution 2 ElGamal using a Strong Prime

1. Let h be a generator of Z∗p. Clearly, h2 has order q. It further generates only quadratic
residues. So, g = h2 is a generator of QRp.

2. We have
(
(−1)
p

)
= (−1)

p−1
2 = (−1)q = −1 since q is large and prime. So, the Legendre

symbol of −1 is −1. We deduce that −1 is not a quadratic residue modulo p.

3. Actually, ((−x)/p) = ((−1)/p).(x/p) = −(x/p). So, −x and +x have opposite Legendre
symbols. Since x ∈ Z∗p, this is not 0. So, either −x or +x has a Legendre symbol equal to
+1 but not both. This is the unique quadratic residue σ(x).

Clearly, the sets {−x,+x} are disjoint for all x = 1, . . . , q. So, the mapping is injective.
Now, since half of the elements in Z∗p are in QRp, we have exactly q of them. So, the sets
{1, . . . , q} and QRp have the same cardinality. Therefore, σ is a bijection.

4. If mq mod p = 1, we set σ(m) = m, otherwise σ(m) = −m.

If x mod p ≤ q, we set σ−1(x) = x mod p, otherwise x = p− (x mod p).

5. To decrypt (u, v), we compute σ−1(vu−x mod p). Here, σ−1(x) is the only value between
x mod p and (−x) mod p which is lower or equal to q.

Solution 3 Pohlig-Hellman

First, notice that g is a generator of Z13 and, hence, has order 12. The factorization of 12
is 22 × 3. Let x be the wanted discrete logarithm. We are first looking for x mod 3. We have
gn/3 = 612/3 = 64 = 9 and yn/3 = 3. Hence, the discrete logarithm of 3 in basis 9 is 2 and we
get that x mod 3 = 2.

Now we recover x mod 4. To do this, we will first need to recover u0 := x mod 2. We have
g′′ = gn/2 = 612/2 = 66 = 12 and y′′ = yn/2 = 12. Hence, the discrete logarithm of 12 in basis
12 is 1. Thus, u0 = x mod 2 = 1. This will be the least significant bit of x mod 4. To recover
the second bit u1, we compute y′ = y12/4/g12u0/4 = 5/8 = 12. Hence, we need to compute the
discrete logarithm of y′′ = 122

0
= 12 in basis g′′ = 12 which is 1. Thus, u1 = 1 and we get

x mod 4 = u1 × 2 + u0 = 1× 2 + 1 = 3.
Wrapping up, we have x mod 3 = 2 and x mod 4 = 3. Hence, by the Chinese remainder

theorem, x = 11 mod 12.
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