

Solution Sheet #4

Advanced Cryptography 2022

Solution 1 PRF Programming

This exercise is inspired from Boureanu-Mitrokotsa-Vaudenay, *On the Pseudorandom Function Assumption in (Secure) Distance-Bounding Protocols - PRF-ness alone Does Not Stop the Frauds!*, in LATINCRYPT 2012, LNCS vol. 7533, Springer.

1. This is a direct consequence of the definition of the PRF, for f .
2. We run Γ^g and Γ^f with the same coins for K and \mathcal{A} . By induction, \mathcal{A} produce identical queries in both games and g and f produce identical answers. So, $\Pr[\Gamma^g \rightarrow 1 | \neg F(\Gamma^g)] = \Pr[\Gamma^f \rightarrow 1 | \neg F(\Gamma^f)]$ as same coins produce identical outcomes. Similarly, $\Pr[\neg F(\Gamma^g)] = \Pr[\neg F(\Gamma^f)]$.
3. We have

$$\Pr[\Gamma^g \rightarrow 1] = \Pr[\neg F(\Gamma^g)] \Pr[\Gamma^g \rightarrow 1 | \neg F(\Gamma^g)] + \Pr[\Gamma^g \rightarrow 1 \wedge F(\Gamma^g)]$$

and the same with f . So, by difference, due to the previous question, we have

$$\begin{aligned} |\Pr[\Gamma^g \rightarrow 1] - \Pr[\Gamma^f \rightarrow 1]| &\leq \max(\Pr[\Gamma^g \rightarrow 1 \wedge F(\Gamma^g)], \Pr[\Gamma^f \rightarrow 1 \wedge F(\Gamma^f)]) \\ &\leq \max(\Pr[F(\Gamma^g)], \Pr[F(\Gamma^f)]) \\ &\leq \Pr[F(\Gamma^f)] \end{aligned}$$

4. To any case where $F(\Gamma^f)$ occurs, we can define the index i of the first query equal to K and have $\Gamma_i^f \rightarrow 1$ with the same coins. So,

$$\Pr[F(\Gamma^f)] \leq \Pr \left[\bigvee_{i=1}^{P(s)} \Gamma_i^f \rightarrow 1 \right] \leq \sum_{i=1}^{P(s)} \Pr[\Gamma_i^f \rightarrow 1]$$

5. We define a new adversary \mathcal{A}'_i who simulates $k = \mathcal{A}_i$, then picks $x \in \{0, 1\}^s$, then queries the oracle with x , then outputs 1 if and only if the response equals $f_k(x)$. We apply the PRF assumption on \mathcal{A}'_i and obtain $\Pr[\Gamma_i^* \rightarrow 1] = \text{negl}(s)$.
6. If x is a fresh query at the end of the Γ_i^* game, $f^*(x)$ is uniformly distributed and independent from $f_k(x)$. So, $f_k(x) = f^*(x)$ with probability 2^{-s} in that case. Now, since x is picked at random, the probability that it is not fresh is bounded by $P(s) \times 2^{-s}$. Overall, we obtain that $\Pr[\Gamma_i^* \rightarrow 1] \leq (P(s) + 1)2^{-s}$ which is negligible.

7. We have

$$\begin{aligned}
& |\Pr[\Gamma^g \rightarrow 1] - \Pr[\Gamma^* \rightarrow 1]| \\
\leq & |\Pr[\Gamma^g \rightarrow 1] - \Pr[\Gamma^f \rightarrow 1]| + |\Pr[\Gamma^f \rightarrow 1] - \Pr[\Gamma^* \rightarrow 1]| \\
\leq & |\Pr[\Gamma^g \rightarrow 1] - \Pr[\Gamma^f \rightarrow 1]| + \text{negl}(s) \tag{Q. 1} \\
\leq & \Pr[F(\Gamma^f)] + \text{negl}(s) \tag{Q. 3} \\
\leq & \sum_{i=1}^{P(s)} \Pr[\Gamma_i^f \rightarrow 1] + \text{negl}(s) \tag{Q. 4} \\
\leq & \sum_{i=1}^{P(s)} (\Pr[\Gamma_i^* \rightarrow 1] + \text{negl}(s)) \tag{Q. 5} \\
\leq & \sum_{i=1}^{P(s)} \text{negl}(s) \tag{Q. 6} \\
\leq & \text{negl}(s)
\end{aligned}$$

So, g is a PRF as well.

Solution 2 A Weird Signcryption (Midterm 2019)

See Exercise 3 in https://lasec.epfl.ch/courses/exams_archives/AdvCrypto/ac19_midterm_sol.pdf.

Note that the condition in line 3 and 1 of resp. $\text{SC}.\text{Receive}$ and $\text{SC}.\text{Verify}$, should be $\text{DS}.\text{Ver}(\text{vk}_A, \text{ct}, \sigma) == \text{False}$.