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Solution 1 The Goldwasser-Micali Cryptosystem
1. By construction, we have n = pgq, (%) = —1, and ¢ = r22% (mod n). We have (;";) =

r2,b
p

) since p divides n. Thus,

()=(5)-0) =

So, the decryption of ¢ produces b.

2. Key

generation: to generate the primes p and ¢ of bit size s requires O(s*) by using

Miller-Rabin primality testing, square-and-multiply exponentiation, and schoolbook mul-
tiplication. The Legendre symbol requires O(s?) which is negligible, as well as computing
n = pq. So, key generation works in O(s?).

Encryption: this requires a constant number of multiplications which are O(s?).

Decryption: this requires a Legendre symbol, so O(s?) as well.

3. (a)

(b)

In the KR problem, an instance is a pair (n, z) such that n € N and (;) = (5) =-1

where n = pq is the factoring of n. The solution to the problem is p. Or, equivalently,
q which plays a symmetric role.

Clearly, factoring n solves the problem: by submitting n to an oracle solving Fact,
we get p and ¢ so we can yield p.
Conversely, with an oracle solving the KR problem, we can define an algorithm to

factor n. For this, we just need to find one z satisfying (%) = (3) = —1 and feed

(n, z) to the oracle solving KR. By construction, we have

(-GG
n p q

z

n P
—1. If this is —1 (which happens with probability %), feeding (n, z) to the KR oracle
yield p. We can check that p solve the Fact problem and stop. If it is +1, it is bad
luck as we have a bad z and we don’t know. Thus, feeding (n,z) to the KR oracle
may give anything. However, if it gives something which solves the Fact oracle, we
are happy anyway and we can stop. Otherwise, we can start again with a new z.
Eventually, we find a good z and the solution to Fact.

If we pick a random 2z satisfying ( ) =1, we have <5> = (é) but this can be 1 or

So, KR and Fact are equivalent.
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4. (a) In the DP problem, an instance is defined by a triplet (n, z, ¢) where n € N (let write
n = pq), z € Z} is a non-quadratic residue with (%) =1, and ¢ = r22° mod n for
some 1 € Z; and a bit b. The problem is to find b.

(b) Clearly, with an oracle solving QR, we can solve DP: we just submit (n,c) to the QR
oracle and obtain b. Indeed, 722® mod n is a quadratic residue if and only if b = 0.

To show the converse, we assume an oracle O solving the DP problem and construct
an algorithm to solve the QR one. Given a QR instance (n,c), we pick z € Z? such
that (%) = 1 and consider the function f, : y — O(n, z,vy).

If 2 is a quadratic residue, we observe that for any b, r22° mod n is uniformly dis-
tributed in the set of quadratic residues modulo n. So, this is independent from
b. Thus, f.(r?2® mod n) is a random bit independent from b. If now z is a non-
quadratic residue, f.(r2z° mod n) = b. By taking b uniformly distributed, we can
easily identify in which case we are. We can thus iterate until we have a good z
which is a non-quadratic residue. Then, we can compute f,(c) and get the solution
to the QR problem.

So, DP and QR are equivalent.

Solution 2 The CPA-secure PKC from the deterministic PKC (HW 1, 2019)

1. Consider the following adversary A = (A1, Asg).

Adversary: A;(pk) Adversary: A;(c, s1)
$ if ¢ = 51 then

mo ? M | return 0

my < M\ {mo} else

s1 < C.Enc(pk, mg) | return 1

return mg, mq, 1 end

If C is deterministic, C.Enc(pk, m) = C.Enc(pk, m') <= m = m’. Then, we have
Pr[IND-CPAZ(0,A) =1] =0 and  Pr[IND-CPAZ(1,\) =1] = 1.

The advantage Adv%B'CPA(A) = 1 for any C. Hence, there is no IND-CPA-secure deter-
ministic PKC.

2. Consider the following adversary A = (A1, As2).
Adversary: As(c, s1)

Adversary: A;(pk) c1,co 4+ c
mo ¢ 0 if ¢; = c then
mp < Ma \ {0} | return 0
s L else
return mg, my, s1 | return 1
end
If m is zero, Enci(pk,m & r) = Enci(pk,r) because Enc; is deterministic. Therefore,

c1 = co if ¢1 is the encryption of 0, which is mg. So, we have
Pr[IND-CPAZ (0,A\) =1] =0  and  Pr[IND-CPAZ(1,\) =1] = 1.

Hence, we have Advmlg;CPA()\) =1, and Cs is not IND-CPA-secure.



3. If C; is the plain RSA and My is a multiplicative group, the ciphertext ¢ = (c1,¢2) can
be written as follows:
(c1,¢2) = ((mr)® mod n,r° mod n)

where (e,n) is a public key pair in the plain RSA. Then, we can deduce that
1 =mfecy  (mod n)

Now, consider the following adversary .A:

Adversary: A;(pk, mg,m1,c)
e,n < pk
C1,Co < C
if ¢; = m§ea (mod n) then
| return 0

else
| return 1

end

Since ¢; = m{ez (mod n) always holds if ¢ is an encryption of mg, the guess of A is always
correct. Hence, the advantage of A is 1 and Cs is not IND-KPA-secure.
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