
Advanced Cryptography

lasec.epfl.ch

moodle.epfl.ch/course/view.php?id=13913

Solution Sheet #3
Advanced Cryptography 2022

Solution 1 The Goldwasser-Micali Cryptosystem

1. By construction, we have n = pq,
(
z
p

)
= −1, and c ≡ r2zb (mod n). We have

(
c
p

)
=(

r2zb

p

)
since p divides n. Thus,(

c

p

)
=

(
r2zb

p

)
=

(
z

p

)b

= (−1)b

So, the decryption of c produces b.

2. Key generation: to generate the primes p and q of bit size s requires O(s4) by using
Miller-Rabin primality testing, square-and-multiply exponentiation, and schoolbook mul-
tiplication. The Legendre symbol requires O(s2) which is negligible, as well as computing
n = pq. So, key generation works in O(s4).

Encryption: this requires a constant number of multiplications which are O(s2).

Decryption: this requires a Legendre symbol, so O(s2) as well.

3. (a) In the KR problem, an instance is a pair (n, z) such that n ∈ N and
(
z
p

)
=

(
z
q

)
= −1

where n = pq is the factoring of n. The solution to the problem is p. Or, equivalently,
q which plays a symmetric role.

(b) Clearly, factoring n solves the problem: by submitting n to an oracle solving Fact,
we get p and q so we can yield p.

Conversely, with an oracle solving the KR problem, we can define an algorithm to

factor n. For this, we just need to find one z satisfying
(
z
p

)
=

(
z
q

)
= −1 and feed

(n, z) to the oracle solving KR. By construction, we have( z
n

)
=

(
z

p

)(
z

q

)
= 1

If we pick a random z satisfying
(
z
n

)
= 1, we have

(
z
p

)
=

(
z
q

)
but this can be 1 or

−1. If this is −1 (which happens with probability 1
2), feeding (n, z) to the KR oracle

yield p. We can check that p solve the Fact problem and stop. If it is +1, it is bad
luck as we have a bad z and we don’t know. Thus, feeding (n, z) to the KR oracle
may give anything. However, if it gives something which solves the Fact oracle, we
are happy anyway and we can stop. Otherwise, we can start again with a new z.
Eventually, we find a good z and the solution to Fact.

So, KR and Fact are equivalent.
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4. (a) In the DP problem, an instance is defined by a triplet (n, z, c) where n ∈ N (let write
n = pq), z ∈ Z∗n is a non-quadratic residue with

(
z
n

)
= 1, and c = r2zb mod n for

some r ∈ Z∗n and a bit b. The problem is to find b.

(b) Clearly, with an oracle solving QR, we can solve DP: we just submit (n, c) to the QR
oracle and obtain b. Indeed, r2zb mod n is a quadratic residue if and only if b = 0.

To show the converse, we assume an oracle O solving the DP problem and construct
an algorithm to solve the QR one. Given a QR instance (n, c), we pick z ∈ Z∗n such
that

(
z
n

)
= 1 and consider the function fz : y 7→ O(n, z, y).

If z is a quadratic residue, we observe that for any b, r2zb mod n is uniformly dis-
tributed in the set of quadratic residues modulo n. So, this is independent from
b. Thus, fz(r

2zb mod n) is a random bit independent from b. If now z is a non-
quadratic residue, fz(r

2zb mod n) = b. By taking b uniformly distributed, we can
easily identify in which case we are. We can thus iterate until we have a good z
which is a non-quadratic residue. Then, we can compute fz(c) and get the solution
to the QR problem.

So, DP and QR are equivalent.

Solution 2 The CPA-secure PKC from the deterministic PKC (HW 1, 2019)

1. Consider the following adversary A = (A1,A2).

Adversary: A1(pk)

m0
$←−M

m1
$←−M\ {m0}

s1 ← C.Enc(pk,m0)
return m0,m1, s1

Adversary: A2(c, s1)
if c = s1 then

return 0
else

return 1
end

If C is deterministic, C.Enc(pk,m) = C.Enc(pk,m′)⇐⇒ m = m′. Then, we have

Pr
[
IND-CPAAC (0, λ) = 1

]
= 0 and Pr

[
IND-CPAAC (1, λ) = 1

]
= 1.

The advantage AdvIND-CPA
A,C (λ) = 1 for any C. Hence, there is no IND-CPA-secure deter-

ministic PKC.

2. Consider the following adversary A = (A1,A2).

Adversary: A1(pk)
m0 ← 0

m1
$←−M2 \ {0}

s1 ← ⊥
return m0,m1, s1

Adversary: A2(c, s1)
c1, c2 ← c
if c1 = c2 then

return 0
else

return 1
end

If m is zero, Enc1(pk,m ⊕ r) = Enc1(pk, r) because Enc1 is deterministic. Therefore,
c1 = c2 if c1 is the encryption of 0, which is m0. So, we have

Pr
[
IND-CPAAC2(0, λ) = 1

]
= 0 and Pr

[
IND-CPAAC2(1, λ) = 1

]
= 1.

Hence, we have AdvIND-CPA
A,C2 (λ) = 1, and C2 is not IND-CPA-secure.
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3. If C1 is the plain RSA and M2 is a multiplicative group, the ciphertext c = (c1, c2) can
be written as follows:

(c1, c2) = ((mr)e mod n, re mod n)

where (e, n) is a public key pair in the plain RSA. Then, we can deduce that

c1 ≡ mec2 (mod n)

Now, consider the following adversary A:

Adversary: A1(pk,m0,m1, c)
e, n← pk
c1, c2 ← c
if c1 ≡ me

0c2 (mod n) then
return 0

else
return 1

end

Since c1 ≡ me
0c2 (mod n) always holds if c is an encryption of m0, the guess of A is always

correct. Hence, the advantage of A is 1 and C2 is not IND-KPA-secure.
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