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Solution 1 Primes

1. Note that PRIMES is the language of composite numbers (and 1, but this case is easy to
deal with) and we have to show that it’s in NP. A trivial witness is to give the factors of
the number. Verifying these factors is done in polynomial time.

2. Recall that Z∗p is a cyclic group of order p− 1 if and only if p is prime.

As a witness, we will use a generator g of Z∗p and we check whether it indeed generates Z∗p.
To check that it generates Z∗p, we need to have full factorization of the prime decomposition

of p− 1. Let p− 1 =
∏k
i=1 p

αi
i . Then, we can then check that g(p−1)/pi 6= 1 for all prime

divisor pi and that pα1
1 · . . . · p

αk
k = p − 1. Hence, up to now, our witness consists of

generator g, primes pis and their powers αi.

The problem is that we need now to be sure that the pi values are prime. We do this
by performing the same technique on each of them (making recursive calls to our own
verificatin algorithm). Let W (p) be our witness. We have

W (p) = (g, p1, . . . , pk, α1, . . . , αk,W (p1), . . . ,W (pk)).

1: procedure Verify Prime(p,W (p))
2: If p = 2 return 1 . Condition for end of recursion
3: W (p)→ (g, p1, . . . , pk, α1, . . . , αk,W (p1), . . .W (pk))
4: Check p− 1 =

∏k
i=1 p

αi
i

5: Check g
p−1
pi 6= 1 for all i = 1, . . . , k

6: Check gp−1 mod p = 1
7: Check Verify Prime(pi,W (pi)) = 1 for all i = 1, . . . , k
8: Return 1 if all satisfed
9: Return 0 if any check fails

10: end procedure

Figure 1: A verification algorithm for PRIMES

Witness size: We need now to compute the size of our witness and make sure it’s
polynomial. First, note that there can be at most log(p) prime factors and each of them
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can be written using log(p) bits. Let T (p) be the size of our witness. We have

T (p) ≤ (log p)2 +

j∑
i=1

T (pi) .

By the second hint, we get T (p) = O((log p)3) which is polynomial in the size of the input.

Computation time: The computation can be divided into three parts:

• Checking p − 1 =
∏k
i=1 p

αi
i takes

∑k
i=1 αi multiplication, where each element can

be at most log p bits. Multiplying two integers a and b takes exactly log a × log b
operations, therefore this step takes at most (log p)2

∑k
i=1 αi operations. We also

know that
∑k

i=1 αi ≤ (log p)2, therefore we can bound this step by (log p)4.

• Each check g
p−1
pi 6= 1 takes O((log p)3) multiplications, and there can be at most log p

different prime factors; hence this step is bounded by O((log p)4) operations.

• Similar operations should be done for the verification of W (pi) witnesses. We notice
that these upper bounds also directly apply to any sub-computations as well, since
all elements are also at most log p size. Therefore for each recursion of Verify Prime,
the computations are bounded by O((log p)4).

• The final step is to show that number of recursions are bounded polynomially. We
use the given hint to bound this. Namely, define function T (p) as the number of calls
made to Verify Prime with input (p,W (p)). We have that T (p) ≤ log p+

∑k
i=1 T (pi).

Given hint implies that T (p) ≤ (log p)3.

Gathering all together, we conclude that running time of Verify Sign is loosely bounded
by O((log p)3)×O((log p)4) = O((log p)7). Thus, PRIMES ∈ NP.

Solution 2 Fixed Point Attack on RSA

Since ce
k ≡ c (mod N), then ce

k ≡ me (mod N)⇒ ce
k−1e ≡ me (mod N)⇒ (ce

k−1
)e ≡ me

(mod N)⇒ ce
k−1 ≡ m (mod N).

Hence, it suffices to iterate the RSA encryption until we obtain again the ciphertext. This
will give us k. The previous value (ce

k−1
) was the plaintext m.

Nevertheless, it has been shown that the probability for such an attack to succeed is negligible
if the primes p and q are chosen at random with a sufficient size (see Rivest-Silverman “Are
strong primes needed for RSA”).

Solution 3 Turing Machines

1. By definition, we know that the recursively enumerable language requires the existence
of a Turing machine, such that it eventually enters a final state qaccept (and halts) for all
inputs in the language, but it may never halt on the input that is not in the language.
Therefore, a recursive language is always recursively enumerable.

2. From the last question, we know that there exists a Turing machine (denoted M) that
accepts L, which has two halting states qaccept and qreject. We modify M as follows (where
M ′ denotes the modified Turing machine): for all the state transitions involving qaccept or
qreject, we replace qaccept (respectively, qreject) by qreject (resp. qaccept). To complete the
proof, it suffices to check the following:
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• for any ω /∈ L (i.e., ω ∈ L), M ′ eventually enters the halting state qreject and rejects
it;

• for any ω ∈ L (i.e., ω /∈ L), M ′ eventually enters the halting state qaccept, accepts it
and halts.
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