
Advanced Cryptography

lasec.epfl.ch

moodle.epfl.ch/course/view.php?id=13913

Solution Sheet #1
Advanced Cryptography 2022

Solution 1 Factorization

1. Each user needs 2 primes, thus, one needs a total of 2n prime numbers.

2. By taking the greatest common divisor of all possible pairs of moduli, Eve will be able to
factorize all moduli for which at least one prime factor has been used in at least one other
modulus.

3. Let Nu = pq be the modulus of u. The probability that Eve can factorize Nu is the
probability that there exist another modulus using exactly one prime from p, q (if the
moduli are equal, the gcd will return Nu). The probability that another modulus cannot
be used to factorize Nu is (

k−2
2

)
+ 1(

k
2

) .

Hence, the probability that an adversary can factorize Nu is

1−

((
k−2
2

)
+ 1(

k
2

))n−1
.

Solution 2 Square Roots

1. 1: repeat
2: Pick a random y0 ∈ {1, . . . , n− 1}.
3: compute x := y20 mod n.
4: Get y ← O(x).
5: until y 6= y0 and y 6= −y0 mod n
6: return gcd(y − y0, n) which is one of the factors.

2. There are two square roots ±yp of x mod p and two square roots ±yq of x mod q. The
four square roots of x mod n correspond to CRT(±yp,±yq) for all sign combinations.

If y 6= y0 and y 6= −y0, this means that y and y0 have a different square root mod p or
mod q (it’s an exclusive or). Let’s say without loss of generality that they differ mod p.
Then, y 6= y0 mod p and y = y0 mod q. Hence, y − y0 6= 0 mod p and y − y0 = 0 mod q.
We have, thus, that y − y0 is a factor of q and not of p and we get q through the gcd.

3. They are four square roots mod n and only two of them gives us a factor (the other two
are either y0 or −y0). Hence, we need two queries in average. The complexity of the
algorithm is O((log(n))2 + |SQRT|), where |SQRT| is the complexity of the oracle.

1

lasec.epfl.ch
moodle.epfl.ch/course/view.php?id=13913

Solution 3 Complexity

1. f(n) = Ω(g(n)) is equivalent to ∃c ∈ R+ ∃n0 ∈ N ∀n ∈ N n ≥ n0 =⇒ |f(n)| ≥ c · |g(n)|.
f(n) = Θ(g(n)) is equivalent to f(n) = O(g(n)) and f(n) = Ω(g(n)), alternatively

∃c0, c1 ∈ R+ ∃n0 ∈ N ∀n ∈ N n ≥ n0 =⇒ c0 · |g(n)| ≥ |f(n)| ≥ c1 · |g(n)|.

f(n) = o(g(n)) is equivalent to limn→∞
f(n)
g(n) = 0, alternatively

∀ε ∈ R+ ∃n0 ∈ N ∀n ∈ N n ≥ n0 =⇒
∣∣∣∣f(n)

g(n)

∣∣∣∣ < ε.

2. From the previous definition, we need to provide a tuple (c0, c1, n0) such that the statement
holds. Since −1 ≤ sinn ≤ 1, for a choice of c0 = 3, c1 = 1 and n0 = 1, we can deduce
that n ≤ n(2 + sinn) ≤ 3n for all n ≥ 1.

Solution 4 Negligible function

In order to check if these functions are negligible or not we have to verify the definition.
If f is negligible, we can say how to choose n0 such that for every c the definition is satisfied.
Otherwise, we give a counter example, i.e. valid values for c and n0 such that the inequality is
not respected.

1. f(x) = 2−x is negligible. We can choose n0 such that n0
log2 n0

> c such that the definition
is verified.

2. f(x) = x−3 is not negligible. The function is only polynomially small and we can pick
n0 = 1 and c = 3 to invalidate the definition.

3. f(x) = 100 · x−x is negligible. We can choose n0 such that (n0 − c) log2 n0 > log2(100)
such that the definition is verified.

4. f(n) =

{
5−x if x is even

x−10000 if x is odd
is not negligible. For x values that are odd, the function

is only polynomially small and we can choose n0 = 1 and c = 10000.

Solution 5 Formalism

1. A pseudorandom number generator is a tuple ({0, 1}k, {0, 1}τ , PRNG) such that

• {0, 1}k is the state domain and k(s) is polynomially bounded

• {0, 1}τ is the output domain and τ(s) is polynomially bounded

• PRNG is a deterministic polynomially bounded algorithm such that

PRNG : {0, 1}k 7→ {0, 1}k × {0, 1}τ .

2

2. We define success probability function1 AdvsrA,PRNG of A in state recovery game as follows:

AdvsrA,PRNG(s, d) = Pr
state0,ζ

[A(r1, r2, . . . , rd; ζ) = stated]

where state0 is uniformly drawn from {0, 1}k and others are generated with (statei+1, ri+1) =
PRNG(statei) for i = 0, 1, . . . , d−1 and ζ is the random coins provided to the adversary.

Similarly, for indistinguishability, we define the success probability as follows:

AdvindA,PRNG(s, d) = Pr
state0,ζ

[A(r1, r2, . . . , rd; ζ) = 1|exp0]− Pr
r1,...,rd,ζ

[A(r1, r2, . . . , rd; ζ) = 1|exp1]

where expi events define two different setups of parameters:

• For exp0, state0 is uniformly drawn from {0, 1}k, and (statei+1, ri+1) = PRNG(statei)
for i = 0, 1, . . . , d− 1 (just as in state recovery game).

• For exp1, ri values are uniformly drawn from {0, 1}τ for i = 1, . . . , d.

3. If an efficient state recovering adversary A exists with success probability AdvsrA,PRNG
for a given PRNG, then we can construct a distinguisher B who uses A as a subroutine
defined as follows:

(a) receive r1, . . . , rd values from the experiment

(b) run A(r1, . . . , rd−1)→ (state)

(c) run PRNG(state)→ (statenext, r
′
d)

(d) return 1rd=r′d
(i.e. 1 iff rd = r′d)

The success probability of B is defined as:

| Pr[B = 1|exp0]− Pr[B = 1|exp1] |

where exp0 and exp1 experiments are defined above.

We notice that Pr[B → 1|exp0] is lower bounded by the probability of A’s winning the
state recovery game with d− 1 samples, because if A managed to guess the correct state,
PRNG(state) would definetly give the next output.

On the other hand, Pr[B → 1|exp1] = 2−τ (which is negligible in terms of the implicit
security parameter s). Therefore, the probability of B’s success in distinguishing game is:

AdvindB,PRNG = Pr[B → 1|exp0]− Pr[B → 1|exp1] ≥ AdvsrA,PRNG − 2−τ .

It follows that if AdvsrA,PRNG is not negligible, then AdvindB,PRNG is also not negligible.

∃state recovery attack⇒ ∃distinguisher

which is equivalent of

@distinguisher ⇒ @state recovery attack.

1Oh, wow, such an ugly notation! Success probabilities are usually called advantage and one school of thought
follows the convention of denoting them by a cumbersome but useful notation: Advnotion

A,Prm(params). The excuse
for drowning in such garbled mess of miscellaneous variables is that technically, the associated probability function
depends on plenty of things: the security game definition notion, an adversary A, a primitive tuple Prm consisting
of domains and algorithms directly used by the experiment; and some security parameters param. We could just
assign variable anew for each new probability, e.g. p, but one mostly winds up having to deal with a number of
notions and algorithms; therefore adapting to a standard convention is wise in hindsight.

3

	Factorization
	Square Roots
	Complexity
	Negligible function
	Formalism

