Advanced Cryptography
lasec.epfl.ch
moodle.epfl.ch/course/view.php?7id=13913

Solution Sheet #1

Advanced Cryptography 2022

Solution 1 Factorization

1.
2.

Each user needs 2 primes, thus, one needs a total of 2n prime numbers.

By taking the greatest common divisor of all possible pairs of moduli, Eve will be able to
factorize all moduli for which at least one prime factor has been used in at least one other
modulus.

. Let N, = pq be the modulus of u. The probability that Eve can factorize N, is the

probability that there exist another modulus using ezactly one prime from p,q (if the
moduli are equal, the ged will return NV,). The probability that another modulus cannot
be used to factorize N, is

(") +1

(5)

Hence, the probability that an adversary can factorize N, is

Solution 2 Square Roots

1.

2.

. (’“;2)+1>"‘1
(54
repeat

Pick a random yp € {1,...,n —1}.
compute z = yg mod n.
Get y + O(x).
until y # yo and y # —yo mod n
return ged(y — yo,n) which is one of the factors.

There are two square roots £y, of + mod p and two square roots +y, of x mod q. The
four square roots of z mod n correspond to CRT(%y,, +y,) for all sign combinations.

If y # yo and y # —yp, this means that y and yy have a different square root mod p or
mod ¢ (it’s an exclusive or). Let’s say without loss of generality that they differ mod p.
Then, y # yo mod p and y = yp mod ¢. Hence, y — yo # 0 mod p and y — yp = 0 mod gq.
We have, thus, that y — yg is a factor of ¢ and not of p and we get g through the ged.

. They are four square roots mod n and only two of them gives us a factor (the other two

are either yp or —yp). Hence, we need two queries in average. The complexity of the
algorithm is O((log(n))? + |SQRT|), where [SQRT]| is the complexity of the oracle.

lasec.epfl.ch
moodle.epfl.ch/course/view.php?id=13913

Solution 3 Complexity

1. f(n) =Q(g(n)) is equivalent to 3¢ € RT Ing e NVn e N n >ng = |f(n)| > c-|g(n)|.
f(n) =0(g(n)) is equivalent to f(n) = O(g(n)) and f(n) = Q(g(n)), alternatively

Jeg,e1 ERT Ing eNVReN n>ng = co-|g(n)| > |f(n)] > c1-|g(n)|.

<~
Naid

(n
)

f(n) =o(g(n)) is equivalent to lim,, = 0, alternatively

—~

g

VeeRY3Inge NVneN n>ng = ‘;EZ; < e.

2. From the previous definition, we need to provide a tuple (co, ¢1, ng) such that the statement
holds. Since —1 < sinn < 1, for a choice of ¢g = 3, ¢; = 1 and ng = 1, we can deduce
that n < n(2+sinn) < 3n for all n > 1.

Solution 4 Negligible function

In order to check if these functions are negligible or not we have to verify the definition.
If f is negligible, we can say how to choose ng such that for every ¢ the definition is satisfied.
Otherwise, we give a counter example, i.e. valid values for ¢ and ng such that the inequality is
not respected.

1. f(z) = 27" is negligible. We can choose ng such that log";no > ¢ such that the definition
is verified.

2. f(x) = 73 is not negligible. The function is only polynomially small and we can pick
ng = 1 and ¢ = 3 to invalidate the definition.

3. f(xz) = 100 - x™* is negligible. We can choose ng such that (ng — ¢)logyng > log2(100)
such that the definition is verified.

p— o
4. f(n) =< 0000 %f * TS ex(;e;n is not negligible. For x values that are odd, the function
x ifxiso

is only polynomially small and we can choose ng = 1 and ¢ = 10000.
Solution 5 Formalism

1. A pseudorandom number generator is a tuple ({0,1}*,{0,1}7, PRNG) such that

e {0,1}* is the state domain and k(s) is polynomially bounded
e {0,1}7 is the output domain and 7(s) is polynomially bounded
e PRNG is a deterministic polynomially bounded algorithm such that

PRNG : {0,1}* — {0,1}* x {0,1}".

2. We define success probability function' Advy ppyg of A in state recovery game as follows:

Advf{,PRNG(s,d) = Pr [A(ri,72,...,74;C) = stateq]

stateq,C

where stateg is uniformly drawn from {0, 1}* and others are generated with (state;1,7i11) =
PRNG(state;) for i = 0,1,...,d—1 and (is the random coins provided to the adversary.

Similarly, for indistinguishability, we define the success probability as follows:

AdvRbrng(s,d) = Pr [A(ri,ra,...,rg;¢) = lexpo]— Pr [A(ri,ra,...,74;¢) = 1|expi]

stateo,C T1yeeesTdsC
where exp; events define two different setups of parameters:

e For expy, stateq is uniformly drawn from {0, 1}*, and (state;1,7i11) = PRNG(state;)
fori =0,1,...,d — 1 (just as in state recovery game).

e For exp;, r; values are uniformly drawn from {0,1}" fori =1,...,d.

3. If an efficient state recovering adversary A exists with success probability Adv’ pryca
for a given PRNG, then we can construct a distinguisher B who uses A as a subroutine
defined as follows:

(a) receive ry,...,rq values from the experiment
(b) run A(ry,...,rq_1) — (state)
(c) run PRNG(state) — (stateneqt,)

)

(d) return Ly y=r, (ie. 1iff rg =1))

The success probability of B is defined as:

| Pr[B = 1|expg] — Pr[B = 1|exp] |
where expy and exp; experiments are defined above.

We notice that Pr[B — 1lexpo| is lower bounded by the probability of A’s winning the
state recovery game with d — 1 samples, because if .4 managed to guess the correct state,
PRNG!(state) would definetly give the next output.

On the other hand, Pr[B — 1|exp;] = 277 (which is negligible in terms of the implicit
security parameter s). Therefore, the probability of B’s success in distinguishing game is:
Advgf%RNG = Pr[B — 1lexpo] — Pr[B — 1lexp1] > Advy ppng — 27

It follows that if Advj{: prNG 18 not negligible, then Advg’ﬁg rNG is also not negligible.

Jstate recovery attack = Jdistinguisher

which is equivalent of

Adistinguisher = Pstate recovery attack.

1Oh, wow, such an ugly notation! Success probabilities are usually called advantage and one school of thought
follows the convention of denoting them by a cumbersome but useful notation: Advﬁ"’ﬁﬁ:; (params). The excuse
for drowning in such garbled mess of miscellaneous variables is that technically, the associated probability function
depends on plenty of things: the security game definition notion, an adversary A, a primitive tuple Prm consisting
of domains and algorithms directly used by the experiment; and some security parameters param. We could just
assign variable anew for each new probability, e.g. p, but one mostly winds up having to deal with a number of

notions and algorithms; therefore adapting to a standard convention is wise in hindsight.

	Factorization
	Square Roots
	Complexity
	Negligible function
	Formalism

