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Solution 1 Linear Cryptanalysis of a Dummy Block Cipher

The Sbox used in this exercise is taken from H. M. Hays’ paper “A Tutorial on Linear
and Differential Cryptanalysis”.

1. We give here an algorithm to compute the value of the entry (i, j) of the LAT.

Require: An n× n Sbox S, an input mask i, an output mask j
1: Count← 0
2: for x = 0 to 2n − 1 do ▷ For all possible inputs
3: if x · i == S(x) · j then
4: Count← Count+ 1
5: end if
6: end for
7: return Count− 2n−1.

If we apply this algorithm to the input mask 3 and the output mask 9, we obtain −6.

2. Let v be the value of LAT(i, j). The probability bias is simply bias := v/2n. The
probability that the linear equation holds is then 1/2 + bias = 1/2 + v/2n. The LP is
(2 · bias)2 = (v/2n−1)2. If we apply it to the entry (3, 9), we get that bias = −3/8, the
probability that the equation holds is 1/8 (note that this is smaller than 1/2) and the
LP is 9/16.

The most interesting entries of the table are (1, 7), (2, E), (3, 9), and (8, F ). All these
entries have an LP of 9/16.

3. One of the best linear characteristics of the Sbox has input mask 3 and output mask
9. Notice that during the permutation layer (step 4), this mask 9 is transformed into
the mask 3 (but shifted by one Sbox to the right). We will use these masks for one
Sbox at each round (and a zero mask for the other). Let m be the initial message,
let ui be the message before the Sbox at round i ∈ [1, 5], and let vi be the message
after the Sbox at round i. If we take as input mask 0x30000000, we end up with the
mask 0x90000000 after the Sbox layer with LP = 9/16. More precisely, this means that
0x30000000·m⊕0x90000000·v1 = 0 holds with LP 9/16. After the permutation layer, the
mask becomes 0x03000000 as mentionned above, i.e, 0x30000000·m⊕0x03000000·u2 = 0
holds with LP 9/16.
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We can iterate the same reasoning to obtain a characteristic on four rounds. At each
Sbox, we get the wanted output mask with LP 9/16. Hence, for four rounds, by the
piling-up lemma, we have LP(0x30000000, 0x00003000) = (9/16)4, which implies that
0x30000000 ·m⊕ 0x00003000 · u5 = 0 holds with LP (9/16)4.

If we want to express the corresponding probability, we have also to take care of the
key bits which are involved during the XORing phase (step 1). The property we found
means that 0x30000000·m⊕0x00003000·u5 = f(K) with probability 1/2−(9/16)2/2, for
some deterministic function f : {0, 1}32 → {0, 1} of the secret key. Hence, depending on
the secret key, 0x30000000 ·m⊕ 0x00003000 ·u5 = 0 holds either with probability 1/2−
(9/16)2/2 or 1/2+ (9/16)2/2. Note however that this dependency with the key doesn’t
matter when performing our statistics since we care only on how far our probability is
from 1/2.

4. Let m be the initial message and z the value at the entrance of the fifth layer of Sboxes.
Using the previous linear characteristic, we know that 0x30000000·m⊕0x00003000·z = 0
holds with LP (9/16)4. We can rewrite this equation as

m2 ⊕m3 ⊕ z18 ⊕ z19 = 0 . (1)

Our goal will be to guess four key bits from the last XORing operation (step 4 of the
last round). Note that our linear characteristic gives us information only about the
input of the fifth Sbox. The output of this Sbox is then XORed with the key bits
k16, k17, k18, and k19. Hence, these are the four bits we are trying to recover. For each
plaintext/ciphertext sample (recall that we are doing a known plaintext attack), we try
all possible values κ for the partial key k16, k17, k18, k19 and use it to decrypt one round
of the fifth group of four bits (hence obtaining z16, z17, z18, z19). Whenever, for a guess
κ, Equation (1) holds, we increase a counter nκ.

Let n be the number of samples. From the course, we know that we have to use about
1/LP = (16/9)4 ≈ 10 samples. Once we have processed all the samples, we sort the
candidates for κ according to |nκ − n/2|. The biggest value is the most likely one.

5. We can easily do the same attack with input masks 0x03000000, 0x00300000, . . . ,
0x00000003. This will shift by one Sbox the key bits we can recover and allow us
to recover the whole key.

Solution 2 Feistel Schemes

1. The probability is equal to 1 as we always have xr = yr for Ψ(1).

2. We have
Pr[DC∗ → 1] = Pr[C∗(xr) = xr].

We recall that for the random permutation C∗ uniformly distributed over all possible
permutations of {0, 1}n, we have for any x, y ∈ {0, 1}n

Pr[C∗(x) = y] = Pr
Y ∈{0,1}n

[Y = y] = 2−n,

Therefore
Pr[DC∗ → 1] = 2−32.

2



Finally, the advantage of the distinguisher D is AdvD = 1− 2−32.

3. We consider the distinguisher described in Algorithm 1.

Algorithm 1 2-round Feistel distinguisher D
Input: an oracle O implementing either a 2-round Feistel scheme Ψ(2) or a uniformly random

permutation C∗

Output: 0 (if the guess is that O implements C∗) or 1 (if the guess is that O implements
Ψ(2))

Processing:
1: let P = (xℓ, xr) and P ′ = (x′ℓ, xr) with xℓ ̸= x′ℓ be two input plaintexts
2: submit P and P ′ to the oracle and get C = (yℓ, yr) and C ′ = (y′ℓ, y

′
r)

3: if xℓ ⊕ x′ℓ = yr ⊕ y′r, then output “1”, otherwise, output “0”

4. If the oracle O implements a 2-round Feistel scheme Ψ(2), we always have xℓ ⊕ x′ℓ =
yr ⊕ y′r, so that

Pr[DΨ(2) → 1] = 1.

Consider now the case where O implements C∗ and denote x = (xℓ, xr), x
′ = (x′ℓ, xr),

y = (yℓ, yr), and y′ = (y′ℓ, y
′
r) such that

C∗(x) = y C∗(x′) = y′.

As already mentioned, one can consider C∗(x) and C∗(x′) as two random variables, that
we will respectively denote Y = (Yℓ, Yr) and Y ′ = (Y ′

ℓ , Y
′
r ), uniformly distributed over

{0, 1}64. But as we know that x ̸= x′ and as C∗ is a permutation, Y and Y ′ are different
(which are therefore not independent). Consequently, if we denote α = xℓ ⊕ x′ℓ ̸= 0, we
obtain

Pr[DC∗ → 1] = Pr[Yr ⊕ Y ′
r = α | Y ̸= Y ′]

=
Pr[Yr ⊕ Y ′

r = α, Y ̸= Y ′]

Pr[Y ̸= Y ′]

=
Pr[Y ̸= Y ′ | Yr ⊕ Y ′

r = α] Pr[Yr ⊕ Y ′
r = α]

Pr[Y ̸= Y ′]

=
1× 2−32

1− 2−64

≈ 2−32.

Consequently, the distinguisher D defined by Algorithm 1 has the following advantage

AdvD ≈ 1− 2−32.

3


