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Chapter 1

The Cryptographic Zoo

1.1 The Menagery

Cryptographic primitives. Cryptographic primitives are described by
e components (parameters, participants in protocols, algorithms, domains, etc);

e a functionality (describing what happens if all participants play their role in an honest
manner);

e security properties (describing what shall not happen if some participants are malicious, this
is typically not easy to formalize).

The functionality often comes with a notion of correctness. This notion assumes honest partici-
pants and executions. Contrarily, security notions follow some model involving an adversary who
behaves maliciously.

Confidentiality is addressed by encryption, may it be symmetric or not. If it is symmetric, the
same key is used to encrypt and to decrypt. So, it must remain secret. If it is asymmetric, a key
pair is generated and the encryption key can be publicly revealed.

Message authentication and integrity are addressed by MAC (message authentication codes)
— with a symmetric key — or by digital signatures — with a key pair, the verifying key becoming
public.

Probabilistic algorithms sometimes need to flip a coin to make a decision. For convenience,
we write A(x;r) to say that A runs on input x with a prepared sequence of random coins r. The
sequence r must be large enough for A to complete. In this notation, r is separated from the
regular inputs by a semicolon.

To formally define what it means to say that a computation is “easy” or “hard”, we commonly
refer to the notion of a polynomially bounded algorithm. A computation is easy if it can be done
by an algorithm which runs in a time O(s™) for some integer n, depending on a parameter s.
Normally, this parameter s is called the security parameter. As “polynomially bounded” usually
refers to a polynomial in terms of the input length, we provide s written in unary (we write it 1%)
to make sure that the length is s (and not log, s). So, to be precise, we write A(1%, z;7) but it is
more convenient to take 1° implicit and omit it from the notation. A similar asymptotic notion is
the one of negligible measures. We say that a function f(s) is negligible (implicitly: as s goes to
infinity), if for every integer n we have that f(s) = O(s™").

Participants running the cryptographic primitives are probabilistic polynomially bounded (PPT)
algorithms, in terms of the security parameter s. This also includes adversaries. We say we use the
computationally bounded adversarial model. However, we may sometimes assume no complexity
bound and use the information theoretic adversarial model.



Symmetric encryption schemes. The components of symmetric encryption schemes are: a
key length (the security parameter), the plaintext domain (it can be messages of the same specified
length, e.g. for block ciphers, or messages of variable length), the key domain, and a nonce
domain if applicable (typically, for stream ciphers), two participants (a sender and a receiver),
and three algorithms: a key generator (it is quite often implicit: it consists of picking a key in
the key domain with uniform distribution), an encryption algorithm, and a decryption algorithm.
The functionality specifies that for every message X, Pr[Deck(Enckx (X)) = X] = 1 over the
distribution of K. The security must formalize the notion of confidentiality.

Typically, a symmetric encryption is required to be length-preserving in the sense that the
plaintext and the ciphertext always have equal lengths. However, some modes of encryption
providing authentication at the same time require to stretch a bit. The ciphertext typically consists
of a part of same length as the plaintext which is concatenated to a tag of length determined by
the security level.

Message authentication codes (MAC). The description of a message authentication code
is similar. Typically, a message X is sent by appending a tag MACk (X). To authenticate X, one
sends Authg (X) = X||[MACk (X). Upon reception, the same operation is performed and compared
with the received tag. To verify X||¢, one executes Checky (X, ¢) which checks that t = MACgk (X)
and produces X as an output. The security corresponds to the notions of message authentication
and message integrity.

The goal of an adversary could be to recover the key (key recovery), to forge the valid tag of
some random X (universal forgery), or to forge the valid tag of some particular message (ezxistential
forgery). Its capabilities could be to collect authenticated messages or to choose the message to be
authenticated. The stronger security model is the resistance to existential forgeries under chosen
message attacks.

Public-key cryptosystems. In a public-key cryptosystem, a key generator produces a key
pair (pk,sk). An encryption algorithm is probabilistic. A decryption algorithm is deterministic.
The functionality says that Decg(Encox(X)) = X with probability 1. Security works like in the
symmetric case, except that the minimal adversarial capabilities are chosen plaintext attacks, since
the adversary can do the encryption by himself by using the public key.

Digital signature schemes. In a digital signature scheme, a key generator produces a key
pair (pk,sk). A signing algorithm is probabilistic. A verifying algorithm is deterministic. The
functionality says that Verp (X, Sigy (X)) = ok with probability 1. Security formalizes the notion
of non-repudiation: a signer who signed a document cannot later claim that he did not sign. This
implies that signatures are unforgeable, otherwise, the signer can claim that the signature was
forged. We have similar security models as for message authentication codes.

Key agreement protocols. A key agreement protocol is an interactive protocol between two
participants called Alice and Bob. The two algorithms use no input and produce one output K.
The correctness notion is that both outputs K are equal when there is no malicious behavior. The
security informally means that no adversary looking at the protocol messages can infer K.

Key agreement protocols do not resist to man-in-the-middle attacks in which the adversary
simulates one participant to the other. They should resist to passive adversaries who only look
at communication without interfering with.

Commitment schemes. A commitment scheme can be described by a single probabilistic func-
tion Commit(X; r) taking the input X and the coins 7. The commitment protocol between a sender
and a receiver uses only one input X (which is on the sender side) and produces only one out-
put X (which is on the receiver side). It works in two phases: in the commitment phase, the
sender with input X picks r and sends ¢ = Commit(X;r) to the receiver; in the opening phase,
the sender reveals X and r, the receiver checks that ¢ = Commit(X;r) and outputs X. Security
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should capture the notion of a hiding commitment (i.e., the receiver has no clue about X before
the opening phase) and of a binding commitment (i.e., the sender cannot open the commitment
on two different values X). This should be equivalent to putting a document X in a safe ¢ closed
with a key r, then giving the safe to the receiver, then handing out the key r to open it.

Pseudorandom number generators (PRNG). A PRNG can be defined by an algorithm
mapping a state (seed) to a new state (new seed) and a generated number. There exists several
security notions. One of these is the notion of unpredictability: an adversary receiving a sequence of
generated numbers cannot predict with good probability what will be the next generated number.
Another notion is the one of indistinguishability: an adversary producing a bit given a sequence of
number produces X, when the sequence consists of generated numbers, and Y, when the sequence
consists of truly random numbers. The advantage of the adversary is Pr[X = 1] — Pr[Y = 1]. For
indistinguishability, we need that all adversaries have a negligible advantage.

Hash functions. A hash function can be used to construct a commitment scheme, a pseudo-
random generator, a key derivation function (KDF'), or to expand the domain of a primitive (e.g.,
a signature scheme). Since there are so many ways to use hash functions, there are also many
different security notions. We can consider resistance to first preimage attacks (given y, find x
such that H(z) = y), to second preimage attacks (given z, find x’ # x such that H(x) = H(z')),
and to collision attacks (find z and x’ such that x # 2’ and H(x) = H(z2')).

1.2 The Math Toolbox

Finite Abelian groups. We work with finite Abelian groups. L.e., finite sets with an operation
such that the set is closed under the operation, the operation is associative, there exists a neutral
element, all elements are invertible, and the operation is commutative. Examples are Z,,, Zj,
GF(q)*, and the elliptic curve E, ;(K) for a finite field K.

Since there is a single operation, we have groups with additive notations (e.g., the neutral
element is 0, and we consider multiplying an integer n with a group element a by n.a = a+---+a)
and groups with multiplicative notations (e.g., the neutral element is 1, and we consider raising a
group element a to the power of an integer n by a™ =a x -+ X a).

Groups can be constructed in many ways. Given a big group, we can consider smaller groups
(subgroups) generated by some elements. We can make the product of groups, raise a group to
some power, and make the quotient of an Abelian group by one of its subgroups.

The order of a group is its cardinality. The order of an element x is the order of the group
it generates. It is also the smallest n > 0 such that 2™ = 1 (with multiplicative notations). The
group exponent is the smallest n > 0 such that 2™ = 1 for every element x. The order of an
element divides the exponent of the group. The Lagrange theorem implies that the exponent of
the group divides the order of the group.

Rings. A commutative ring has two operations + and x. It must be a group for +. The
multiplication must be associative, have a neutral element, be commutative. Furthermore, there
must be a distributivity of multiplication over addition. Examples include Z, Z,,, Z[z], Z,[z].
Instead of subrings, we consider ideals. We can make the product of rings, raise a ring to some
power, and make the quotient of a ring by an ideal.

In Z, a number p is prime if p > 1 and

Va,beZ p=ab=la|=1or b =1
In K]z], a polynomial P(x) is érreducible if
VA(z), B(x) € K[z] P(z) = A(x)B(x) = deg(A) =0 or deg(B) =0

The notion of irreducibility is more general in rings.



Euclidean rings have a Euclidean division. For instance, Z and K[z] are Euclidean rings. Eu-
clidean rings are principal rings. Le., every ideal can be generated by a single element. In principal
rings, all elements have a unique factorization into irreducible elements, up to multiplication by
units and permutations. More precisely, if z = p1 - pm = q1 - ¢n are two factorizations of z into a
product of irreducible elements p; and ¢;, there must exist a bijection f: {1,...,m} = {1,...,n}
and some units u1, ..., U, such that q;;) = u;p; for all 7.

Given a ring R, we consider the group R* of elements which are invertible for the multiplication.
This forms a group for the ring multiplication.

Finite fields. A finite field is a finite ring in which every nonzero element is invertible. The
Galois theorem says that finite fields have a cardinality which is the power of a prime number and
that finite fields with same cardinality are isomorphic. Furthermore, given a prime power ¢ = p",
we can construct such field GF(g) by taking an irreducible monic (i.e., with leading coefficient 1)
polynomial P(z) of Z,[z] of degree n then defining GF(¢q) = Z,[z]/(P(z)). In practice, we will use
either Z,, or GF(2").

The Z,, ring. In Z,, x is invertible if and only if ged(xz,n) = 1. The cardinality of Z7 is o(n)
and its exponent is A(n). If the p;’s are prime and pairwise different, we have
P i) = (o= 1P T X x (e = )p !
A(pTt .. pem) lem (A(pT), ..., A(pyT))

with A(p®) = ¢(p®) except for A(2%) with a > 3, for which A(2*) = 2¢(2%). We know that for all
x € Z*, we have 9™ mod n = 1 and (™) mod n = 1.

The Z), field. Z, is a field if and only if p is a prime. In that case, we know that Z is a cyclic
group. lLe., there exists elements g (called generators) such that all elements can be written as a
power of g in the group. We have that 2P~! mod p = 1 for all = € Z;. When p > 2, p is odd and
the set QR(p) of quadratic residues of Z; (i.e., the set of the square of all Z; elements) is a group

of order %. Actually, x € Zj, is a quadratic residue if and only if 2% mod p=1
The Chinese Remainder Theorem. We state the following result:
Theorem 1.1. If m and n are two relatively prime integers (i.e., gcd(m,n) = 1), then the ring
Z ., of residues modulo mn is isomorphic to the product ring Z,, X Z,. One isomorphism is the
function mapping x € {0,...,mn — 1} to the pair (x mod m,x mod n).
This simple fact has many important consequences:

e For every (a,b) pair, there exists a unique integer = (up to a multiple of mn) such that

x mod m = a and  mod n = b at the same time. We can compute x by inverting f. One

way consists of computing

z = (an(n™" mod m) + bm(m~"' mod n)) mod (mn)

e The group of units of both rings have the same cardinality. Namely, p(mn) = p(m)e(n).

We stress that this holds for ged(m,n) = 1.



Random variables. A random variable is a process X transforming some random seeds (e.g.,
coin flips) into an element of some set Z. The support of X is the set of all possible Z elements
which can be taken by X. The distribution of X is a function from a set including the support of
X to R, mapping a value x to the probability Pr[X = z] that X takes the value . In this lecture,
we concentrate on discrete random variables. This assumes that Z is enumerable.

Two random variables X and Y are called independent if for all  and y, we have Pr[X =
x,Y =y] =Pr[X = 2| Pr[Y =y].

We now consider random variables with a support in a vector space over the reals. The expected
value of X is

EX) = ZPr[seed}X(seed) = Z xPr[X = x]

seed zEsupport(X)

(we recall that X transforms some seed into a value X (seed) of support(X).) The variance of X is
V(X) = (B(X - E(X))*) = E(X?) - E(X)*

The expected value is a linear operator. Le., for all A\, u € R, we have E(AX + pY) = AE(X) +
pE(Y). The variance is quadratic. Le., for all A\, we have V(AX) = A2V (X). When X and Y are
independent, we have E(XY) = E(X)E(Y).

For a function f and a random variably X, f(X) is a new random variable. We have

E(f(X)= Y  fl@)Pr[X =a]

xEsupport(X)

When X is Boolean (i.e., its support is included in {0,1}), we have E(X) = p and V(X) =
p(1 — p) where p = Pr[X =1].

1.3 The Algorithmic Toolbox

Algorithms over big numbers. Assuming a binary representation, the addition of z and y
can be done with complexity O(¢), where £ is the bitlength of the numbers. The multiplication can
be done with complexity O(¢2), as well as the Euclidean division. This includes the computation
of x mod y, for instance. The extended Euclid algorithm computes from x and y two integers a
and b such that ax + by = gcd(x,y). This is done with complexity O(¢?).

Modular arithmetic. We consider Z,, where n has a bitlength ¢ and elements are represented
as numbers between 0 and n — 1. The addition in Z,, can be done with complexity O(£). The
multiplication with schoolbook algorithm is done in complexity O(¢£?). There exists a multiplica-
tion algorithm based on the fast Fourier transform, which is asymptotically better, but not better
in practice for the numbers we use.

The inversion of an invertible element is done with complexity O(¢?), using the extended Euclid
algorithm. Actually, = € Z,, is invertible if and only if ged(x,n) = 1, so if and only if the algorithm
fed with « and n returns some a such that (az) mod n = 1.

The computation of x¢ mod n is done with complexity O(¢2loge) using the schoolbook multi-
plication.

If the factorization of n is provided, we can compute square roots of quadratic residues with
complexity O(¢3) (with schoolbook multiplication).

We can test the primality of an integer n of bitlength ¢. If we use up to k iterations in the Miller-
Rabin primality test algorithm, the probability of having an incorrect answer is bounded by 47%.
Every iteration has a complexity of O(¢3) (with schoolbook multiplication). A composite number
is rejected with complexity O(£3) (with schoolbook multiplication). So, using the prime number
theorem, we can generate random primes of length ¢ with complexity O(¢*) (with schoolbook
multiplication).



Birthday effect. Given a random function over a set of size N, we can find collisions with
complexity /N using the birthday paradox. So, is a hash function producing digests of n bits (so
that N = 2"), we can find collisions with O(2%) hashes. So, the bit-equivalent security is of %.

This adapts to many different situations. For instance, to find some values x and y in their
respective domains such that f(z) = g(y), we need to explore subsets of size v/N.

There are also algorithms to find collisions which do not require to store many attempts.
They can find with constant memory, with a constant multiplicative overhead in terms of time
complexity.

Generic attacks. For some encryption function based on a key of size n, we can do a key
recovery of complexity O(2") using ezhaustive search. For a random hash function with range
{0,1}", we can make a preimage attack with complexity O(2"). As already mentioned, collisions
can be found with complexity O(2%). Finally, for a message authentication code based on a key
of size n, we can do a key recovery of complexity O(2").

1.4 The Complexity Theory Toolbox

Membership problem. A language is a set of words, i.e., finite sequences of letters taken from
a given alphabet. A membership problem is defined by a language L. An instance of the problem
is a word . The problem consists of deciding whether z € L or not. Languages in the class N'P
are of form

L={x;3w R(z,w)}

for some predicate R which can be evaluated in polynomial time. (A more precise definition will
be given in Chapter B.) A value w such that R(x,w) holds is a witness for x to be member of L.
A problem is AP-hard if solving it in polynomial time implies solving any problem in the class
NP.

Membership problems are problems consisting of computing one bit (i.e., whether the instance
is in the language of not). We can consider problems consisting of computing several bits. For
instance, the factoring problem consists of computing one non-trivial factor of the integer repre-
sented by the instance. The discrete logarithm problem consists, given g and y belonging to a
group, in computing an integer x such that ¢°® = y. None of these problems are known to be
NP-hard. Nevertheless, they might by hard to solve.

The best algorithm to solve the factoring problem is the NFS algorithm. Factoring n takes

eO((ln n)% (Inln n)%)

There is another powerful factoring algorithm which is better to find a small factor p of n: the
Elliptic Curve Method (ECM). It works with complexity

eO((lnp)% (In lnp)%)

The best algorithm to solve the discrete logarithm problem in the group Zj is index calculus. It
works in complexity
eo((lnp)%(ln np)?)

Turing reduction. A problem (language) L; reduces to a problem (language) Lo if there exists
a polynomial-time oracle machine A solving Li, given the oracle O assumed to solve Ly. That
is, there exists an efficient algorithm to solve L; using as a subroutine an algorithm solving Lo
and with running time set to one unit. This notion of reduction is very useful to compare the
difficulty of problems. Namely, if L; reduces to Lo, then Lq is at most as hard to solve as L.
That is, if we can solve Lo, then we can solve L; as well. Conversely, if L is hard to solve, then
Lo is hard to solve as well.



The notion of reduction could be used to compare the complexity of two problems. Typically,
we would compare the complexity of breaking a cryptosystem to the complexity of some well-known
computational problem such as integer factoring.






Chapter 2

Cryptographic Security Models

In this chapter we formalize more precisely the cryptographic primitives and their security no-
tions. We discuss various security models. We present some general paradigm to formally prove
security. We review some public-key cryptographic schemes and study their security, following our
formalism.

2.1 Security Definitions

Symmetric encryption. We define block ciphers and also variable-input-length symmetric
encryption.

Definition 2.1. A block cipher is a tuple ({0,1}*), D,, Enc, Dec) with a key domain {0, 1}*(),
a plaintext domain Dy = {0, 1}"(5), and two polynomially bounded (in terms of s) deterministic
algorithms Enc and Dec.

It is such that

Vs VK €{0,1}*®) vX €D, Dec,(K,Enc,(K,X)) =X

We stress that the encryption is deterministic, here. In the above definition, s appears explicitly
as argument of all parameters: the key length k is a function of s, the plaintext domain D is a
function of s, and algorithms are efficient (i.e. polynomially bounded) in terms of s. Later on, we
will take s as an implicit parameter for better readability. We observe the correctness notion in
the definition.

We now define variable-input-length symmetric encryption. For completeness, we define it
based on a nonce (i.e., an extra input which should not be used more than once). As it is
quite common, we restrict to length-preserving encryption. As already announced, the security
parameter s is now implicit, and hidden from notations.

Definition 2.2. A (nonce-based, variable-length, length-preserving) symmetric encryption scheme
is a tuple ({0,1}*, D, N, Enc, Dec) with a key domain {0,1}*, a plaintext domain D C {0,1}*, a
nonce domain N, and two polynomially bounded deterministic algorithms Enc and Dec.

It us such that

k Dec(K, N,Enc(K, N, X))=X
VK €{0,1}* VX eD VYNeN { Enc(K, N, X)|=|X]|
Again, this definition includes a correctness notion.
We distinguish several security models, depending on the goal of the adversary (e.g., to do
a key recovery or to decrypt a target ciphertext) and on the capabilities of the adversary. The
adversary can only collect ciphertexts (in a ciphertext only attack), collect plaintext/ciphertext
pairs (in a known plaintext attack), play with an encryption black box and choose the plaintext to
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be encrypted (in a chosen plaintext attack), or even play with a decryption black box and choose
the ciphertext to be decrypted (in a chosen ciphertext attack). Playing with the two black boxes
can further be done adaptively or nor. Hence, we describe 6 types of capabilities for 2 possible
goals, leading us to 12 security models! To have the highest security, we should protect against
the weakest attacks, e.g. decryption under adaptive chosen plaintext / ciphertext attacks.

We first define what is means for a symmetric encryption to be secure against key recovery. Key
recovery is the goal of the adversary. We consider two types of adversaries, given their capabilities:
those making chosen plaintext attacks, and those making chosen plaintext and ciphertext attacks.

Definition 2.3. A symmetric encryption scheme ({0,1}* D, N,Enc, Dec) is secure against key
recovery under chosen plaintext attacks (CPA) if for any PPT algorithm A, the advantage Adv is
negligible, where we define

Adv = Pr[game returns 1]

In the following game:
Game

DK & 0,1}

- Used « 0

. .AOE"C S K
return 1g—_g/

L~

Oracle OEnc(N, X):
5: if N € Used then return L > nonce-respecting: cannot reuse N
6: Used < Used U {N}
7: return Enc(K, N, X)

The probability is over the random selection of K and the random coins of A.
The symmetric encryption scheme is secure against key recovery under chosen plaintext/ciphertext
attacks (CPCA) if for any similar A, the advantage Adv is negligible in the following game:

Game Oracle OEnc(N, X): Oracle ODec(N,Y):
1 K& {0,1}% 1: if N € Used then return L 1: return Dec(K,N,Y)
2: Used + 0 2: Used < Used U {N}
3: AOEnc,0Dec _y 3: return Enc(K, N, X)

4: return 1g—_g/

In this definition, we say that an adversary is nonce-respecting if he never makes two encryption
queries with the same nonce. In practice, this may come from the nonce being picked by the
encryption device, so under no control of the adversary. He may make several decryption queries
with the same nonce though.

The motivation to introduce CPCA security is to be able to assess the security of the scheme
when used in an application. Indeed, the decryptor will receive input from insecure places which
can depend on the adversary, so the worst case consists of saying that the adversary selects
the input. Similarly, the result will go to some processing and produce visible reactions to the
adversary. In the worst case, we assume that the adversary sees the output of decryption.

We now define security against decryption attacks, in which the goal of the adversary is to
decrypt one given ciphertext.

Definition 2.4. A symmetric encryption scheme ({0,1}*, D, N, Enc, Dec) is secure against de-
cryption under CPA [resp. CPCA] if for any PPT algorithm A, the advantage Adv is negligible,
where we define

Adv = Pr[game returns 1]

In the following game:

10



Game Oracle OEnc(N, X):

K& {0, 1}* 1: ¢f N € Used then return L
2 X, S D, Ny SN 2: Used + Used U {N}

2: Yy + Enc(K, No, Xo) §: return Enc(K, N, X)

4: US(‘)eS <—oéN0} Oracle ODec(N,Y):

5: ACEnLODecl (N V) — X 4 if (N,Y) = (No,Yp) then
6: return 1x—x, return L

5: return Dec(K,N,Y)
(The ODec oracle is only used in the CPCA model.)

We can easily see that security against decryption attacks is stronger than security against key
recovery.

Theorem 2.5. Let & = ({0,1}*,D, N, Enc, Dec) be a symmetric encryption scheme. If € is secure
against decryption under chosen plaintext (resp. chosen plaintext/ciphertext) attacks, then &£ is
secure against key recovery under chosen plaintext (resp. chosen plaintext/ciphertext).

Proof. Let £ be a symmetric encryption scheme which is secure against decryption attacks. Let
A be a key recovery adversary. We define the following decryption adversary B:
Input: (V,Y)

1: run A — K’

2: compute X' = Dec(K’, N,Y)

3: return X’
Clearly, any key recovery implies arbitrary decryption capabilities. So, Pr[BE<(/$) (N, Enc(K, N, X)) —
X] > Pr[ABre(5) 5 K. If the former is negligible (because the encryption is secure against
decryption attacks), the latter must be negligible as well. So, £ is secure against key recovery. O

Finally, we formalize security against distinguishers, where the goal of the adversary is to
distinguish whether the real cipher Enc is used or the ideal one II.

Definition 2.6. A symmetric encryption scheme ({0, 1}’“,’1),/\/’, Enc, Dec) is secure against dis-
tinguisher (real or ideal) under CPA [resp. CPCA] if for any PPT algorithm A, the advantage
Adv is negligible, where we define

Adv = Pr[['y returns 1] — Pr[[y returns 1]

Game I'y, Oracle OEnc(N, X):
. kK& {0,1}* 1: if N € Used then return L
2: for every N, pick a length- 2 l.Jsed < Used U {N}
preserving permutation Iy 5 4 b = 0 then return
over D Iy (X)
9. Used < 0 4: return Enc(K, N, X)
4: ACEnelODec] — Oracle ODec(N,Y):
5: return z 5:9 b = 0 then return

(V)
6: return Dec(K,N,Y)

We can show that this notion is stronger than security against decryption attacks.

Theorem 2.7. Let £ = ({0,1}*, D, N,Enc, Dec) be a symmetric encryption scheme. If £ is se-
cure under chosen plaintext (resp. chosen plaintext/ciphertext) attacks, then £ is secure against
decryption under chosen plaintext (resp. chosen plaintext/ciphertext) attacks.

Proof. Let £ be a symmetric encryption scheme which is secure. Let A be a decryption adversary.
We define the following distinguisher B°(") having access to an oracle O(-):

1: pick X, query Y + O(X) > encrypt X

11



2: tun A%O)(Y) — X'
3: output 1x—_x
We have

Pr[BEU) 1] — Pr[BYC) 1] = Pr[AFU (N Enc(K, N, X)) = X] — PrlA"C)(N, TI(N, X)) = X]
> Pr[A wins] — negl(s)
because we show below that Pr[A"()(N,TI(N, X)) = X] = negl(s). So, if £ is secure against

distinguishers, we deduce that Pr[A wins] must be negligible, so &£ is secure against decryption
attacks as well.

The Pr[A"() (N, TI(N, X)) = X] = negl(s) bound is obtained as follows:
Pr[A"C) (N TI(N, X)) = X] = Pr[A"G)(N,Y) = TT7Y(N, Y)

where Y is random. Then, we wonder if Y was answered by the encryption oracle to any query
by A. We have

Pr[AYG) (N TI(N, X)) = X]
= Pr[A"C)(N,Y) =7 }(N,Y),Y not answered] + Pr[A"C)(N,Y) = II7}(N,Y), Y answered]
< Pr[A"G)(N,Y) =TT7Y(N,Y),Y not answered] + Pr[Y answered]
= Pr[A"G)(N,Y) =TT71(N,Y)|Y not answered] Pr[Y" not answered] + Pr[Y answered]
< Pr[A"C)(N,Y) = T7Y(N,Y)|Y not answered] + Pr[Y" answered]
1
< + Pr[Y answered
w4 }
1 q
= + Pr Y answered to ith fresh query
#D —q z:\/l
1 q
< + PrlY answered to ith fresh query
RN ]
1 (i
RS
< qg+1
#D —q
< negl(s)

Message authentication code. We similarly define a MAC.
Definition 2.8. A message authentication code is a tuple ({0,1}*,D,{0,1}",MAC) with a key

domain {0,1}*, a message domain D C {0,1}*, an output domain {0,1}7, and one polynomially
bounded deterministic algorithm MAC implementing a function
MAC: {0,1}fxD —  {0,1}7
(K,X) — MACK(X)

Definition 2.9. A message authentication code ({0,1}*,D,{0,1}7,MAC) is secure against key
recovery under chosen message attacks if for any PPT algorithm A, the advantage Adv is negligible,
where we define

Adv = Pr[game returns 1]
In the following game:

Game

12



1 K& {0,1}*
2: .AOMac — K’
3: return 11—y

Oracle OMac(X):
4: return Mac(K, X)

Of course, there is a similar notion with known message attacks.

Definition 2.10. A message authentication code ({0,1}*,D, {0,1}7,MAC) is secure against forgery
under chosen message attacks if for any PPT algorithm A, the advantage Adv is negligible, where
we define

Adv = Pr[game returns 1]

In the following game:

Game

K & {0,1}*

Queried < 0

AOMac N (X, t)

if X € Queried then return 0
return Iyac(x, x)=t

Oracle OMac(X):

6: Queried < Queried U {X}
7: return Mac(K, X)

Of course, there is a similar notion with known message attacks.

Theorem 2.11. Let M = ({0,1}*,D,{0,1}7,MAC) be a message authentication code. If M is
secure against forgery under chosen message attacks, then £ is secure against key recovery under
chosen message attacks.

Proof. Let M be a MAC which is secure against forgery attacks. Let A be a key recovery adversary.
We define the following forgery adversary B:

1: tun A0 - K

2: get an arbitrary X

3: compute t = MAC(K, X)

4: return (X,t)
Clearly, negl(s) = Pr[BMACK:) forges] > Pr[AMAC(K) — K]. So, M is secure against forgery
attacks. a

Just like for symmetric encryption, there is also a notion of security against distinguishers.
However, the most appropriate security notion for MAC is unforgeability. When it is secure
against distinguishers, we rather call them as PRF, for pseudorandom functions.

Definition 2.12. A message authentication code ({0,1}*,D,;{0,1}7,MAC) is a pseudorandom
function (PRF) if for any PPT algorithm A, the advantage Adv is negligible, where we define

Adv = Pr[l'y returns 1] — Pr[[y returns 1]

In the following game:

Game T Oracle O(N, X):
. K& {0,1}F 1: if b =0 then return F*(X)
2: pick F*: D — {0,1}7 2: return F(K, X)
3: A® = 2

4: return z

13



Theorem 2.13. Let M = ({0,1}*,D,{0,1}7,MAC) be a message authentication code. If M is a
PRF and 277 is negligible, then & is secure against forgery under chosen message attacks.

Proof. Let M be a PRF. Let A be a forgery adversary. We define the following distinguisher B:
1: Tun A9C) — (X t)
2: query t' < O(X) > authenticate X
3: output 1,—y

We have

Pr[BMAC(E.) 1) — Pr[BF0) - 1]
Pr[AMACE) wins] — Pr[AFC) wins)

negl(s)

Since Pr[A"() wins] = 277 = negl(s), we obtain that Pr[A wins] — 27 = negl(s). So, the MAC is
secure against forgery attacks. O

Key agreement. For the security of key agreement, we consider passive adversaries who let
the honest execution of the protocol run and watch the transcript of the protocol (i.e., the list of
exchanged messages between Alice and Bob). We can consider key recovery attacks, the purpose
of which is to recover K from the transcript, and distinguishers, who try to recognize if a given
value K’ is equal to the unknown value of K or just a random value. More formally, for key
recovery attacks A, the advantage is Adv = Pr[Game returns 1] in the game

Game

pick 74, Ty

execute A(1%;1,) <> B(1%;1p)
get transcript and K

run A(1°, transcript) 5 K
return 1x_ g/

For distinguishers A, the advantage is Adv = Pr[I'; returns 1] — Pr[[ returns 1] in the game

Game Iy,
1: pick 74,7
2: execute A(1%;7,) <> B(1%;rp)
3: get transcript and K3
4: pick Ky of same length as K; at random
5: run A(1%, transcript, K3) 5.
6: return z

Security against active adversaries is more subtle. Actually, if an adversary is active and can
modify on-the-fly messages which are sent between Alice and Bob, since none of them has any
private input, he can simulate Bob to interact with Alice and simulate Alice to interact with
Bob. The adversary would end up sharing an output K7 with Alice and an output Ky with
Bob. This type of man-in-the-middle attack is unavoidable, simply because communication is not
authenticated. So, we cannot consider security against this type of attack. There may be a more
subtle active attack making sure that K7 = Ks. If such attack is possible, then the adversary
can corrupt the key agreement phase and later remain passive while Alice and Bob communicate
based on the agreed key. Protocols should resist to this type of man-in-the-middle attacks making
K = Ks.

Public-key cryptosystem. Just like for symmetric encryption, we can propose formal defini-
tions.

14



Definition 2.14. A public-key cryptosystem is a tuple (Gen, M, Enc, Dec) with a plaintext do-
main M and three polynomially bounded algorithms Gen, Enc, and Dec. The algorithm Dec is
deterministic and outputs either something in M or an error L. It is such that

Vpt € M Pr [Dec(sk, Enc(pk, pt;re)) = pt] =1

Tg,Te

where (pk,sk) = Gen(1%;7).

We could define security against key recovery or decryption attacks, but we rather proceed directly
to security against distinguishers.

Definition 2.15. A PKC (Gen, M, Enc, Dec) is secure under chosen plaintext attacks (IND-CPA-
secure) if for if for any PPT algorithm A, the advantage Adv is negligible, where we define

Adv = Pr[l'y returns 1] — Pr[[y returns 1]

In the following game:

Game I'y,

1 Gen 3 (pk, sk)

3
2: Al(pk) — (pt07 ptlaSt)
3: if |pto| # |pty| then return
0

4: ct & Enc(pk, pt;)

5: Ag(st, ct) 5.

6: return z

It is secure under chosen plaintext/ciphertext attacks (IND-CCA-secure) if the same holds
with the following game.

Game I'y, Oracle ODecy (ct):
1: Gen 3 (pk, sk) 1: return Dec(sk, ct)

2: A9Pe1 (pk) 3, (pty, pty, st) Oracle ODecy(ct):
3 if |pty| # |pti| then return  2: if ct = ct* then return L
3: return Dec(sk, ct)

bt & Enc(pk, pt;)

5. A9Pe2 (st ct*) S 2

6: return z
(The IND-CPA game is depicted in Fig. 2. The IND-CCA game is in Fig. Z2.) As we can see from
this definition, no deterministic encryption can be IND-CPA secure, because the adversary could
encrypt pty and pt; by himself and compare with ¢. So, modern cryptosystems are probabilistic.

For cryptosystems encrypting plaintexts of variable length, it is required that the length of pt,
and pt; is the same, since it is impossible to perfectly hide the length of a plaintext on infinite
message spaces.

The semantic security aims at saying that every bit of information is hard to compute. It was
proposed with the Goldwasser-Micali cryptosystem [&1, B2], which only encrypts a bit.

There exist stronger security notions. For instance, we may consider the non-malleability
security [25]. Intuitively, it means that an adversary cannot replace a ciphertext ct (with unknown
Dec(ct) to him) into another ciphertext ct # ct’ such that Dec(ct) and Dec(ct’) are “related”. This
actually looks like an integrity protection for the plaintext.

One example where this notion of security is not satisfied is the traditional family of stream
ciphers, where ct = pt @ k. Indeed, replacing ct by ct’ = ct ® 0 leads to Dec(ct) and Dec(ct’) to be
within a difference of §. We can call this a relation and then have the malleability property.

There is a theorem saying that non-malleability is equivalent [d] to the IND-CCA security [51].
IND-CCA security historically followed another notion called IND-CCA1 security or lunchtime
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Adversary Challenger

public key
generate keys
select pt, pt; use Plo:Phy flip b
- y = Enc(pt;)
select z z wins if b = z
Figure 2.1: IND-CPA Game
Adversary Challenger
public key
generate keys
% please decrypt y*
select y
z x* = Dec(y*)
select xq, 1 e Tom flip b
Y y = Enc(zp)
select y* 7& y please decrypt y*
* x* = Dec(y*)

select b’ b

wins if b = b’
Figure 2.2: IND-CCA Game

attack [4d], where the adversary was not allowed to make decryption queries after having received
the challenge y.

In general, “textbook cryptosystems” are not IND-CCA-secure because they are malleable,
with some kind of homomorphic property. For instance, the ElGamal cryptosystem has the prop-
erty that if x is the decryption of (u,v), then xw is the decryption of (u,vw). So, the adversary
can take the challenge y = (u,v), compute y* = (u, vw), make a decryption query with y*, divide
the result by w and compare with g and x; to deduce b.

Digital signature scheme. We have similar definitions as for MAC.

Definition 2.16. A digital signature scheme is a tuple (Gen, D, Sig, Ver) with a message domain
D C {0,1}* and three PPT algorithms Gen, Sig, and Ver. The algorithm Ver is deterministic and
outputs 0 (reject) or 1 (accept). It is such that

VX € D  Pr [Ver(pk, X, Sig(sk, X;rs)) = ok] =1

TgiTs
where (pk,sk) = Gen(1%;7,).
We proceed directly to the security against forgery attacks.

Definition 2.17. A digital signature scheme (Gen, D, Sig, Ver) is secure against existential forgery
under chosen message attacks (EF-CMA) if for any PPT algorithm A, the advantage Adv is
negligible, where we define

Adv = Pr[game returns 1]

In the following game:

Game

1: Gen & (pk, sk)

2: Queries +

3: A%S&(pk) — (X, 0)
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4: if X € Queries then return 0
5 return lyer(pk,x,0)

Oracle OSig(X):
6: o < Sig(sk, X)
7: Queries + Queries U { X}
8: return o

There is also a stronger security notion, in which the adversary could have obtained a signature
of X from the oracle, but the forgery must be another signature.

Definition 2.18. A digital signature scheme (Gen, D, Sig, Ver) is strongly secure against existen-
tial forgery under chosen message attacks (strong EF-CMA) if for any PPT algorithm A, the
advantage Adv is negligible, where we define

Adv = Pr[game returns 1]

In the following game:

Game

Gen 5 (pk, sk)

Queries + ()

AOS (pk) 5 (X, )

if (X, 0) € Queries then return 0
return lyer(pk, x,0)

Oracle OSig(X):
6: o < Sig(sk, X)
7: Queries < Queries U {(X,0)}
8: return o

2.2 The Game Proof Methodology

There is a common technique to prove security based on game reduction. It was formalized by
Shoup in 2004 [69]. Indeed, most of the security results can be formalized in terms of an adversary
running a game (defined by rules), with a final winning condition. We assume that the game and
the winning condition can be efficiently computed by a simulator. The proof technique consists
of building up a sequence of games and their associated adversaries in such a way that the initial
game is the one to be proven, the final one is trivial to analyze, and we can show that every step
makes the winning probabilities similar, except with some negligible gap. There are several tools
for making these different steps.

First of all, we can consider an indistinguishability step. We start with a game I' with an
adversary A, in which there is somewhere the selection of some random variable X based on some
fresh coins which are not used any longer. We build a new game I'" with the same adversary A, but
the selection of X is replaced by the selection of some Y such that X and Y have indistinguishable
distributions. Assuming that X or Y come from outside the game, the simulation of the entire
game with an outcome set to the winning condition becomes a distinguisher between X and Y.
So, the winning probability must be very close for both games.

Second, we can use the difference Lemma. In a game I', we consider a “failure event F”, for
some event F' which can be efficiently checked and such that the game becomes somehow simpler
when F' does not occur. We define a new game I'V in which —F is an extra condition for winning.
If —=F occurs, the game IV works exactly like in I". The gap between the winning probability is
bounded by Pr[F]. Indeed, the probability to win in T is

Pr[win] = Pr{win, F] + Pr{win, = F]
r r r
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Figure 2.3: Goldwasser-Micali Cryptosystem

The first probability is bounded by Pr[F]. The second one is equal to Prr/|win], the winning
probability in TV.

Finally, we can consider bridging steps where a game I" and an arbitrary adversary A are
replaced by a game IV and an adversary C(A) such that the simulation of I'(A) and I'V(C(.A)) are
exactly the same. Here are some examples.

e We can permute two independent steps.

e We can make a “double bridge”: bridge I's(A) to I';(C(A)) for 8 = 0,1, because it will be
easier to connect I'((C'(A)) to T} (C(A)).

2.3 Goldwasser-Micali Cryptosystem

In the Goldwasser-Micali cryptosystem [B1, B2], the public key consists of a pair (z, N) where
N = pq, the product of two large primes, and = € Z}, which is neither a quadratic residue modulo
p nor modulo ¢ (see Fig. E=3). To encrypt b, we select r € Z% and give y = r?2” mod N. To
decrypt, we just find b such that (—1)® = (y/p). This is semantically secure. (Actually, since we
encrypt a bit, semantic security is equivalent to the hardness of the decryption problem.)

The semantic security definition is a bit complicated but it was shown to be equivalent to the
IND-CPA one.

In the case of the Goldwasser-Micali cryptosystem, the message space has only two elements:
the message 0 and the message 1. So, the only relevant case reduces to zog = 0 and z; =
1. Therefore, IND-CPA security is equivalent to the decryption hardness: to having Pr[b =
A(pk, Enc(b;7); p)] — % negligible. For the Goldwasser-Micali cryptosystem, this means Pr[b =
A(z, N, 22" mod N; p)] = 5 + negl(\).

There is an equivalent definition proposed with a slightly different game [563] in which the
adversary only proposes one plaintext xg, and either this one is selected, or a random x; one (see
Fig 22).

Definition 2.19. A cryptosystem (Gen, Enc, Dec) is IND§$-CPA-secure if for any PPT algorithm
A, the advantage Adv is negligible, where we define

1
Adv = Pr[I'y returns 1] — Pr[Ty returns 1] = 2 (Pr[z =b] — 2)

In the following game:

Game I'y,
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Adversary Challenger

public key
generate keys
use pt
select pt, 0 pt; = random
ct .
flip b, ct = Enc(pt,)
z . .
select z wins if b=z
Figure 2.4: IND$-CPA Game
il
Y A INDS$-CPA challenger
K K
A IND-CPA challenger P 2 —  select pk
!
P P select pk _Pro-PtL, flip M) flip b
Pt pt, = rand ProPh flip b pty = rand
ct ct
— —E = Enc(pt,) — +————  ct = Enc(pty)
z z - z z®B L
—_— e win if b = 2z —_—l — winifb=2® 8

Figure 2.5: IND-CPA security implies IND$- Figure 2.6: IND$-CPA security implies IND-
CPA security CPA security

Gen 5 (pk, sk)
3
2: A1 (pk) = (ptg, st)
3: pick pty of same length as pt,
bt & Enc(pk, pt;)
5: Ag(st, ct) 52
6: return z

~

This game is often called the real-or-random encryption game while the previous IND-CPA game
is called the left-or-right encryption game.

Theorem 2.20. IND-CPA security and IND$-CPA security are equivalent.

Proof. To show this, we first show that IND-CPA security implies IND$-CPA security. We consider
an adversary A in the real-or-random game. Let us transform it into an adversary A’ in the left-
or-right game (see Fig. ). To define A’(pk; p’), we first run pt, = A(pk; p) and select pt; of same
length of pt,. To define p from p’, we just run A(pk; p’) by watching at which coins in p’ are used
by A. The next unused coins are taken to select pt;. Finally, p is just p’ without the coins used for
pt, (that is, the left over coins are let in p for the next part). Then, we set (pty, pt;) = A’(pk; p’)
and we define A’(pk, ct; p’) = A(pk, ct; p). Clearly, A’ simulates well the selection of pt;. So, A and
A’ win with exactly the same probabilities in their respective game. Due to IND-CPA security,
A’ wins with probability % + negl. So, A wins with probability % + negl. Since this applies to any
A, we obtain IND$-CPA security.

Then, we show that IND$-CPA security implies IND-CPA security. For that, we consider an
adversary A in the left-or-right game. We define an adversary A’ in the real-or-random game as
follows. We let A’(pk; p") = pts where A(pk;p) = (ptg,pt;) and 8 is one coin from p’ which is
just removed to define p. Le., p’ = B||p. Then, A’(pk,ct;p’) = A(pk,ct;p) @ 8. We let b be the
bit selected by the challenger to define ct = Enc(ptg) if b = 0 or ct = Enc(random) otherwise.
(See Fig. E@.) Let p be the probability for A to win in the IND-CPA game. In our construction,
when b = 0, we have Pr[b = A’(pk,ct; p’)|b = 0] = p since this case perfectly simulates the IND-
CPA game. When b = 1, ct gives no information about 3, so Pr[b = A’(pk,ct;p/)[b = 1] = 1.
So, Pr[b = A'(pk,ct;p')] — 2 = 2(p — 1). Due to IND$-CPA security, A’ wins with probability
% + negl. So, A wins with probability p = % + negl. Since this applies to any A, we obtain
IND-CPA security. a
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The Goldwasser-Micali cryptosystem is not IND-CCA secure. Given y = r22? mod N, we can
compute s2z°y mod N for a random s and a random bit c¢. This would be a valid encryption of
b @ c with a correct distribution. If we can decrypt this new ciphertext, then XOR the result to
¢, we obtain b.

2.4 RSA Security

The textbook RSA cryptosystem is depicted in Fig. B
To assess the security of RSA, we essentially consider two problems:

e the RSA decryption problem: given an RSA public key (e, N) and a ciphertext y, compute
x such that y = 2° mod N.

e the RSA key recovery problem: given an RSA public key (e, V), find a number d such that
for all z € Z% we have 2° mod N = z."

We will compare them with some problems from number theory:
e the RSA factoring problem: given an RSA modulus N, find the factors p and q.
e the RSA order problem: given an RSA modulus N, compute ¢(N), the order of Z%.

e the RSA exponent multiple problem: given an RSA modulus N, find an integer k& which is
a positive multiple of A(N).

As for the last problem, we recall that the set of all k’s such that Vx € Z7} 2" mod N =1
is an ideal of the ring Z and that A(N) is the smallest positive such k. Since Z is a principal
ring, this ideal is generated by A(XN). Consequently, k is a multiple of \(N) if and only if Vz €
Zy rFmod N =1.

We can show, using Turing reductions, that the three above problems from number theory are
equivalent to the RSA key recovery problem and that the RSA decryption problem reduces to the
RSA key recovery problem. However, these two problems are not known to be equivalent although
both are believed to be hard to solve.

RSA decryption reduces to RSA key recovery. This is essentially trivial: assuming that
we have an oracle solving the RSA key recovery problem, given an instance (e, N,y) of the RSA
decryption problem, we can submit (e, N) to the oracle and get d such that for all y € Z%,
y**mod N = y. So, by taking 2 = y? mod N, we obtain that 2° mod N = y. This is just a
complicated way to say that if we can recover the secret key, then we can apply the decryption
algorithm to decrypt y!

RSA key recovery reduces to the RSA order problem. Assuming that we have an oracle
which can compute ¢(N) from the RSA modulus N, given an RSA public key (e, N), we can first
get o(N) using the oracle, then compute d = e~! mod p(N). Clearly, for all x € Z%;, we have
2°® mod N = z. So, this solves the RSA key recovery problem.

The RSA exponent multiple problem reduces to RSA key recovery. Given an oracle
which computes d from (e, N), the number k = ed — 1 satisfies 2¥ mod N = 1 for all z € Z%,. So,
we can solve the RSA exponent multiple problem by taking a valid e. Le., if we take a random e
and that by any chance we have ged(e, 9(IN)) = 1, we solve the problem. It is not guaranteed what
happens when e is not valid since we don’t know that the oracle returns (if it returns anything)
in that case. What we could do is to iterate on random e’s and compute the lcm of all obtained
k’s. Since eventually we will have a good e, it will return a solution k£ and the lcm will be another
solution.

I Actually, using the Chinese Remainder Theorem, it is easy to see that if we have 2% mod N = z for all z € Zy,
then we have it for all z € Zj .
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Figure 2.7: Factoring N using A(N)

The RSA order problem reduces to RSA factoring. Given an oracle computing p and ¢
from N, it is clear that we can compute p(N) = (p — 1)(g — 1).

RSA factoring reduces to the RSA order problem. Conversely, given an oracle computing
©(N) from N, we notice that p+¢ = N — ¢(N) + 1 and pg = N. So, the quadratic equation
X? — (N —p(N)+1)X + N = 0 over R has p and ¢ as roots. Since it is easy to solve these
equations in R, we solve the RSA factoring problem.

RSA factoring reduces to the RSA exponent multiple problem. This is the most tricky
reduction. Assuming an oracle giving an exponent multiple k£ from N, we factor N as follows:
first, we write k = 25¢ for some integers s and t such that ¢ is odd (i.e., we iteratively divide by
2, s times in total, until the result ¢ becomes odd). We know that for all x € Z%, if we square
iteratively s times the residue z* mod N, we must obtain 1. We pick z € Zy — {0} at random.
If gcd(z, N) # 1, we find either p or g by some incredible chance and can stop. Otherwise, we
deduce that z € Z%. We compute y = ' mod N. If y = 1, this is bad luck and we try again.
Otherwise, we iteratively square y until y2> mod N = 1. If y = —1 (mod N), this is bad luck and
we try again. Otherwise, y is a square root or 1 which is neither 1 nor —1. So, (y —1)(y+1) is a
multiple of N = pq such that neither y — 1 nor y + 1 is a multiple of N. So, gcd(y — 1, N) is either
p or ¢ and we solve the factoring problem (see Fig. 272).

To prove that this works, we define s, and s; such that ;;;1 and ‘12;1 are odd, then s’ =
max(sp, sq) — 1. Since k is a multiple of A(NV) = lem(p — 1,¢ — 1), it is a multiple of p — 1, so a
2"t

multiple of 2°» as well. So, s, < s. Similarly, s, < s. Hence, 0 < s’ < s. The mapping z — =
over Zy is a group homomorphism. Let H) be the set of images of this function. Clearly, H, is
a subgroup of {1, —1}. If s’ > s, this is H, = {1}. Otherwise, for s’ = s, — 1, we know that a
non-quadratic residue  modulo p would map to —1, so H, = {1,—1}. We define H, similarly.
Without loss of generality, we assume that s, > s,. So, H, = {1,—1}. Then we consider the
mapping 22" 7' over Z%,. This is a group homomorphism onto a group H which is isomorphic
to H, x Hy due to the Chinese remainder theorem. If s, = s,, we have H, = {1,—1}. So, H
contains four elements, including 1 and —1, and two “interesting” ones. (Le., equal to 1 modulo
either p or ¢ but not both, and equal to —1 modulo either p or ¢ but not both.) Otherwise, for
sp > 84, we have H, = {1}. So, H contains two elements, including 1 and an “interesting” one.
In both cases, half of the element are “interesting”. I.e., they are non-known square roots of 1.

Since the mapping = +— 2% T homomorphic, it is balanced from Z%; to H. Hence, mapping a
random element x gives an “interesting” element of H with probability % So, the above produce
works with probability at least % in one iteration. By iterating enough, it works, eventually.

To conclude, RSA key recovery is equivalent to RSA factoring and to computing (V) or any
multiple. RSA decryption reduces to this but may be simpler. The equivalence is an open research
problem.

Previously, we considered the security of encryption in terms of key recovery and decryption
problems. These security notions may be insufficient. For instance, a cryptosystem doing nothing
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(i.e., with a ciphertext y equal to the plaintext x no matter = or the secret key) makes key
recovery hard but is clearly insecure. A cryptosystem only encrypting one part of the message
may make the full decryption hard but would leak sensitive information and be considered as
insecure. Recovering one particular bit of the plaintext may be sensitive, and still be feasible
without decrypting completely.

In RSA, we can prove that recovering the least significant bit of the plaintext is equivalent to
decrypting completely. So, if the decryption problem is hard, the least significant bit is called a
hard-core bit.

More precisely, we define Isb(z) to be the least significant bit of x and Isbdec(y) to be the Isb
of the decryption of y. We show below that the RSA decryption problem reduces to computing
Isbdec. For that, we assume that we have a subroutine to compute Isbdec and we show that we
can decrypt y given the public key (e, N).

Let us now assume that we know that the decryption z of y is in some interval a < x < b with
a= %N and b = %N for some integers k£ and i. Note that we can start with £ = 0 and ¢ = 0.

2+{3Ngx<27€f7/3+1]\7

We can see now how to update k and increment . Indeed, we could write 2”§+ ST
a+b

with 8 = 0 or 8 = 1. So, we can update k to 2k + 3, meaning updating either a or b to %3,
if we could compute the bit 5. Since the inequality implies B% <2z —kN < (B+ 1)% So,
$ is such that 85 < 2lzmod N < (8 + 1)4. We deduce 8 = Isb(2°"'z mod N). Finally,
B = Isbdec(20*+ My mod N). We deduce the following algorithm:

1:a<0,b N

2: for i =0 to [log, V| do

3 if Isbdec(2*1¢y mod N) = 1 then

4 a<+ (a+10b)/2
5 else

6: b+ (a + b)/2
7 end if

8: end for

9: yield |a]

Chor and Goldreich have shown that computing Isbdec with errors also enables the full decryp-
tion [[H]. It was even shown that each bit of the plaintext has the same property [[]. This shows
that every bit of the plaintext is a hard core bit in RSA. However, this only applies to each bit of
the binary expansion of x, but not every bit of information about x is a hard-core bit. Indeed, we
can define a Boolean function on x which is easy to compute from x¢ mod N: we can just consider
the Jacobi symbol. Indeed, if we define

jac(z) = <%) , Jacdec(y) = (yd][n]\(;dN)

then we have jacdec(y) = jac(y)? = jac(y) since d must be odd to be invertible modulo ¢(N). So,
it is easy to compute jacdec(y). So jac(x) is not a hard-core bit.

The RSA cryptosystem (which is deterministic and homomorphic, so with no chance to be IND-
CCA secure or even IND-CPA secure) can be transformed into another one called RSA-OAEP [B]
which is proven to be IND-CCA secure based on some random oracle.

2.5 Rabin Cryptosystem

The so-called textbook-Rabin cryptosystem [60] works as follows (see Fig. E):

e for key generation, we generate two different prime numbers p and ¢, compute N = pq and
e(N)=(p—1)(¢—1).

e for encrypting a number z € Zy, we compute y = 22 mod N.

e for decrypting a number y € Zy, we compute x = ,/y mod N.
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Figure 2.8: Textbook Rabin Cryptosystem

With this description, it is not really a cryptosystem because the ,/y mod N operation is am-
biguous. Actually, there are four square roots of y and it is not clear which one to take for the
decryption. A technique to address this problem is to impose some redundancy in the plaintext
(e.g., that there are 64 special bit positions all equal to 0). Since it is unlikely that another square
root, will satisfy this redundancy, we can decrypt non-ambiguously.

To assess the security of the Rabin cryptosystem, we essentially consider two problems:

e the Rabin decryption problem: given a Rabin public key N and a ciphertext y, compute one
x such that y = 22 mod N (we do not consider the redundancy check here).

Game

Gen(1®) & N

pick x € Zy

y =22 mod N
A(N,y) LA
return 1,2 09 N=y

e the Rabin key recovery problem: given an Rabin public key IV, factor N.

Game s
1: Gen(ls) — N
$
2: A(N) — (P7 q)
3: return 11y N, N=pq

We can show that both are equivalent. Clearly, factoring N allows to compute square roots. So,
the Rabin decryption problem reduces to the Rabin key recovery problem. Conversely, if we have
an oracle solving the Rabin decryption problem, upon input IV, we can pick = € Z}; at random
then submit y = 22 mod N to the oracle who will return 2’ such that 2% = (2/)2. Since z is
a random square roots of y and that the oracle has no information on which one it is, we have
that x = +2’ mod N with probability % In the other cases, we deduce that ged(z — z’, N) is a
non-trivial factor of IV, so we can factor N.

On the one hand, we could favor the Rabin cryptosystem as opposed to RSA because the
decryption problem is known to be equivalent to factoring, whereas RSA decryption may be easier
than factoring. However, the proof of equivalence can also be viewed as a chosen ciphertext attack
which breaks the Rabin cryptosystem. This is a pretty paradoxical situation where knowing that
decryption is as hard as key recovery also leads to a devastating chosen ciphertext attack!
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When introducing plaintext redundancy to avoid decryption ambiguity, the equivalence no
longer holds, and nor does the attack. This continues the paradoxical situation... So, it seems
that in order to have a better security, decryption should not be as hard as key recovery!

2.6 Diffie-Hellman Security

The textbook Diffie-Hellman key agreement protocol [24] works as follows. We assume a standard
cyclic group which is generated by some element g. The group parameters and g are generated by
an algorithm Gen during setup. Alice has a secret key x € Z and a public key X = ¢g*. Bob has a
secret key y € Z and a public key Y = g¥. They both exchange X and Y and compute K = g*¥:
Alice computes K = Y* and Bob computes K = X¥Y. The final key shared by Alice and Bob is
K.

This protocol relies on several problems which are relative to the group parameters generation
algorithm Gen. We start with the computational Diffie-Hellman (CDH) problem:

Adv = Pr[game returns 1]

Game

Gen(1°) > (group, g)

pick X,Y € (g)

A(group, g, X,Y) 5K

define z,y s.t. X =g*, Y = ¢¥
return 1x_gey

A related problem is the discrete logarithm (DL) problem:
Adv = Pr[game returns 1]

Game 5
1: Gen(1%) = (group, g)
2: pick X € (g)
3: A(group, g, X) LA
4: return 1x_g«

Clearly, the CDH problem is not harder than the DL problem because from the discrete logarithm
x of X we can compute K = Y™,

A more subtle problem is the decisional Diffie-Hellman (DDH) problem: instead of computing
K, we want to figure out if a guess for K is correct.

Adv = Pr[I'; returns 1] — Pr[[y returns 1]

Game I'y,
Gen(1%) LN (group, g)
pick X,Y, Z € (g)
define z,y s.t. X =¢*, Y = ¢¥
K < g™
if b=0 then
Algroup, g, X,Y, Z) % ¢
else
A(group, g, X, Y, K) S
end if
return c

—
=

Clearly, the DDH problem is not harder than the CDH problem. To formally prove it, let us
assume that the DDH problem is hard and let us consider a CDH solver A(g, X,Y) — K. We
construct the distinguisher B(g, X,Y, Z) as follows:
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1: compute A(g, X,Y) = K
2: output 17—
Due to the DDH hardness, the advantage of B is

negl(s) = blirl[A(g,X,Y,K) =1] - bf;ro[,A(g,X, Y, K) = 1] = Pr[A suceeds] — #m

Since ﬁ is negligible, we deduce that Pr[.A suceeds] is negligible as well. So, the Diffie-Hellman
problem is hard.

Depending on Gen, the hardness of DDH, CDH, and DL can change. But it always goes in
this difficulty order.

2.7 ElGamal Security

The ElGamal cryptosystem is recalled in Fig. BH. The key recovery problem is clearly equivalent
to the discrete logarithm problem. The decryption problem in ElGamal can be defined as follows.

Game ;

Gen(1°) = (group, g, y)
pick m € (g)

Enc(y,m)  (u,0)
Algroup, g,y,u,v) % =
return 1,_,,

We can easily show that this is equivalent to the CDH problem.

The ElGamal cryptosystem, in a group (g), is also semantically secure if we assume that
the Decisional Diffie-Hellman problem is hard in (g) and if we only encrypt messages which are
elements of (g).

Theorem 2.21. If the DDH problem is hard in the group generated by the ElGamal cryptosystem,
and if the plaintext space is included in the group, then the cryptosystem is IND-CPA secure.

We remind that the DDH problem is not always hard. For instance, the DDH problem in Z7 is
easy.

We also observe that that the assumption that we only encrypt messages which are elements
of {g) may be a problem because we may have to map bitstrings (arbitrary messages) into group
elements in a reversible way. One possible instance is that we take a strong prime p. lLe., a
large prime number p such that ¢ = %1 is also prime. Then, we consider the subgroup of Z of
order g. Clearly, —1 is not in this subgroup since (—1)? # 1 (because ¢ must be odd). So, for
every m, either m or —m is in the subgroup. We can define map(m) = +m in the subgroup for
1 < m < ¢. This mapping is invertible. So, we can encrypt integers between 1 and ¢ by encrypting
the subgroup element map(m), assuming that the DDH problem is hard in this subgroup.

Proof. We show IND$-CPA security. Let A be an adversary for the real-or-random game. We
construct a distinguisher A’ for the DDH problem as follows. In the DDH problem, A’ receives an
order ¢ and a group generator g, some y = g* for €y Z,4, and a pair (u,v’) in which u = g" for
r €y Z, and either v/ = y" or v’ is random in the group generated by g. Clearly, (¢, g,y) simulates
the generation of an ElGamal public key. Let zg = A(q, g,y). Given (u,v’), we define v = zov’.
Clearly, (u,v) simulates the ElGamal ciphertext obtained by submitting x¢ in the real-or-random
game: either it is (¢",zoy") or it is (¢", random x y") for random in the subgroup generated by g.
Let b be the guess from A. Clearly, b is a guess for the DDH problem which is correct if and only
if A wins. So, the distinguisher has the same advantage of A. Since the DDH problem is hard,
the wining probability of A is £ + negl. O
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One problem with the ElGamal cryptosystem is that the DDH problem is not always hard.
Furthermore, when is it (believed to be) hard, it is not easy to use the group as a message domain.
Ideally, we would like to map bitstrings (of bounded length) to a group element in a reversible
way in order to encrypt a bitstring. But such mapping is not always easy.

The is one case where we can have such mapping: if p and ¢ are odd primes with p = 2q + 1,
the subgroup QR), of Z is cyclic of order ¢. It does not contain —1 because (—1)? # 1. Hence, for
every integer m > 0, we obtain that either +m or —m belongs to QR,, but no both. We can map
{1,...,q} to QR, in a bijective way by having map(m) = =m. Then, it is easy to map {1,...,q}
to bitstrings.
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Chapter 3

Cryptanalysis (Public-Key)

In this chapter, we review some case studies about situations where things can become badly
insecure with public-key cryptography. We also start a systematic study of security analysis, to
try to assess the difficulty of breaking security.

3.1 RSA

The so-called textbook-RSA cryptosystem [62] works as follows (see Fig. BI):

e for key generation, we generate two different prime numbers p and ¢, compute N = pq and
@(N) = (p—1)(g — 1). Then, we pick some e such that ged(e,o(N)) = 1 and compute
d = e~ mod p(N) using the extended Euclid algorithm. The public key is (e, N) and the
secret one is (d, N).

e for encrypting a number x € Zy, we compute y = € mod N.
e for decrypting a number y € Zy, we compute z = y% mod N.
For signature, we sign y by computing = y? mod N and we check that x is a valid signature of y

by checking y = ¢ mod N. Interestingly, y can be extracted from x in the RSA case, so we could
have a signature with message recovery (see Fig. B2).

‘ Adversary ‘
M cQe M QA O
&b‘ Encrypt e‘bﬂ_AN—' Decrypt ‘ﬂb-
& z° mod N Y y% mod N
. + AUTHENTICATION A
Public key e, N  INTEGRITY | | Secret key d, N
‘ ‘ Generator
\ \ ¥
Y
N = pq
e(N)=(p-1(g—-1)
1 = ged(e, @(N))
d = e ! mod p(N)

Figure 3.1: Textbook RSA Encryption
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1 = ged(e, ¢(N))
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Figure 3.2: Textbook RSA Signature

RSA engineering. The textbook-RSA cryptosystem looks nice in textbooks. But using it in
practice is not a piece of cake. Actually, we first have to realize that messages are not integers in
practice, so we need some formatting rules. Then, there are usage and implementation issues. For
instance, broadcasting a message to several users (each receiving the encryption of that message
with his key) is insecure if the encryption exponent e is small. In general, there are many problems
related to small e’s or d’s. In addition to this, implementation may leak some information through
side channels.

Side channels can have various forms. For instance, devices provided with external power leak
how much power they use over time. When stressed, devices can make computation errors, and
the type of error may leak some information. The execution time may also leak some information.
Finally, formatting rules added by protocols may also leak. We will see some leakage examples
later.

RSA ISO standard. The ISO/IEC 9796 standard is an RSA signature standard providing
message recovery, but suffering from some vulnerabilities. To sign a message, we apply an invert-
ible formatting rule to transform it into a number, then sign that number using textbook RSA
signature. When applying the textbook RSA extraction to the signature, we recover the number
and can invert the formatting rule to recover the message.

The formatting rule looks like a cook recipe. What is important for the cryptanalysis to follow
is to know that given a four-byte message m = mymgs, momy such that m; = 66 in hexadecimal
and the most significant bit of S(my) is 1 for some byte permutation S, then formatting the
message will lead to the number

z(m) x T

for the constant I' = 1 4 264 + 2128 4 ... 4 2k=64 (where k is the modulus bitlength, assumed to
be a multiple of 64) and

x(m) = S(myg)msS(msz)msS(ma)m22266

Actually, the ISO standard requires that a single bit of x(m) x I" is flipped. However, we will
ignore it in what follows.

To break the standard (or, actually, the variant of it with no bit flip), we prepare many messages
m of the above form and factor z(m). (Since xz(m) has a bitlength of 64, this is easy.) Then,
we only keep messages m such that z(m) has no prime factor larger than 2°. With a pool of
a few hundred of such messages, it is likely that we find four messages mgy, mp, m;, m; such that
x(mg) x x(myp) = x(m;) X &(m;). Consequently, if the ¢’s denote the signature of these messages,
we obtain that o, x 0, = 0; X 0; (mod N). So, we can make an existential forgery under chosen
message attack: we just query the signatures oy, 04, 0; and we construct the signature o;.
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This attack was presented in [['7]. It was later extended to the full ISO signature standard [Ig].

Attack on broadcast RSA with low exponent. Assuming n users having an RSA public
key (e, N;), i =1,...,n with same e and e so low that e < n, if someone broadcasts the message x
(i.e., sends y; = 2 mod N; to the ith user, i = 1,...,n), then an adversary can easily decrypt .
Indeed, he can compute y = ¢ mod N for N = Ny --- N,, using the Chinese remainder theorem.
Then, since x must be lower than all N;’s, we have ¢ < N. So, y = x° over Z. Now, we can
use one’s favorite algorithm to extract eth roots to y over Z to obtain x. This attack is due to
Hastad [B6]. It can be extended when the e’s are different but all small.

Attack on related messages. There are extensions of the previous attack when several mes-
sages (with a known algebraic relation between them) are all encrypted with the same RSA public
key. For instance, if a message x is concatenated with a counter (e.g., because the protocol re-
quires messages to be numbered) and sent several times with a different counter, we can recover
x. Typically, we can extract x from y = 2° mod N and ¢y = (z 4+ 1)° mod N when e is small.
The idea is essentially the same as the Euclid algorithm: we consider the ideal polynomials (in
z) spanned by 2¢ —y and (z + 1)¢ — ¢'. This is a pair of polynomials generating the ideal. By
linear combination, we can reduce this pair into another equivalent pair where one polynomial is
unchanged and the degree of the other is lowered. Typically, if the polynomial P(z) with lowest
degree starts has leading monomial az? and the other Q(z) has Bzd/7 we replace the latter by
Qz) — gzd/_dP(z) mod N. We iterate this reduction until we obtain a pair with a polynomial
of form az — 3, yielding the solution z = g mod N. This attack was proposed by Coppersmith,
Franklin, Patarin, and Reiter [21].

Attacks on low exponents. There are other problems related to low e’s. Actually, the Cop-
persmith algorithm [I9, 20] can be used to solve modulo N a polynomial equation of degree
e when a root is known to be lower than Nt. This can be used to decrypt a message when
% of the plaintext bits are already known and e = 3. For instance, using a standard of form
Enc(z) = (pattern||z)® mod N with z over ¢ bits and N larger than 3¢ bits, we can write the
equation y = (2‘pattern + )2 mod N and solve it with the Coppersmith algorithm.

There are other insecurity cases when d is short. For instance, for d of 64 bits, the Wiener

algorithm [63] computes d from e and N.

Power analysis. Using the square-and-multiply algorithm, an RSA-decryption device just scans
all the bits of d. For every bit, it is doing a squaring operation. If the bit is 1, it is doing an
extra multiplying operation. In some implementations, these operations are done by an arithmetic
coprocessor which is using more power than the microprocessor alone. Furthermore, squaring is
typically faster than multiplying. So, when looking at the power consumption over time, we can
see the square and multiply operations over time (see Fig. B3). We deduce all bits of d. This
power analysis works for some smartcards, since they use external power sources. The smartcard
industry has to address these potential problems by having countermeasures to smoothen the
power consumption, of other decryption algorithms.

There are several possible attacks based on power consumption or on the time variation of
computations. (See Kocher [BY, 40].)

Differential fault analysis. When RSA decryption is implemented using the Chinese remain-
der theorem, the device computes y¢ mod p, y? mod ¢, and reconstruct y? mod N using CRT.
If the device is stressed (by heating, increasing the power voltage, the clock frequency, etc) at
some point it starts making errors. If there is only one computation error, it is likely to be done
during either y? mod p or y¢ mod g. An adversary who feeds the device with y = z® mod N for
some random z will get some z’ which is equal to £ modulo either p or ¢ but not both. Hence,
ged(z — 2/, N) is a prime factor of N and we can deduce p and ¢. This attack was presented by
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Figure 3.3: Simple Power Analysis

Boneh, DeMillo, and Lipton [[3]. To defeat that, smartcards should have sensors to disconnect
when some external stress is detected.

A protocol side channel in PKCS#1v1.5. The PKCS#1v1.5 standard imposes that plain-
text messages shall start with 0002 in hexadecimal. Hence, for a k-byte long modulus, the plaintext
is between 2 x 256%~2 and 3 x 25672, An adversary who has got a ciphertext y can try to sub-
mit sy mod N to the server for some chosen s. The server will decrypt and accept it as a valid
message only when sx mod NN is in this interval. This can be used as an oracle to query whether
sz mod N is in this interval for some chosen s. Bleichenbacher [[2] made this observation and
derived an algorithm which, by using such oracle, is able to fully decrypt y into . The algorithm
was improved by Bardou et al. [8].

3.2 Diffie-Hellman

The so-called textbook Diffie-Hellman key agreement protocol [24] works as follows. We assume
a standard cyclic group (such as Z;,, a subgroup of it, an elliptic curve, etc) which is generated
by some element g. Alice has a secret key x € Z and a public key X = ¢*. Bob has a secret key
y € Z and a public key Y = g¥. They both exchange X and Y and compute K = ¢g*¥: Alice
computes K = Y?® and Bob computes K = X¥. The final key shared by Alice and Bob is K.

If an adversary — Eve — can interfere with the communication, she can perform a man-in-
the-middle attack. 1t consists in running protocols independently with Alice and Bob, then ending
up with sharing a key K; with Alice and a key K5 with Bob. The protocol is supposed to resist
to passive attacks: i.e., a passive Eve cannot infer K given g, X, and Y.

To assess the security of the protocol, we consider first the two following problems:

e the Diffie-Hellman problem: given (g, X,Y’) in a given group, where X,Y € (g), compute
K = XY where Y = g¥.

e the discrete logarithm problem: given (g,Y) in a given group, where Y € (g), compute y
such that Y = ¢¥.

Clearly, the Diffie-Hellman problem reduces to the discrete logarithm. However, the converse is
still an open problem.
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It must be stressed that the discrete logarithm problem is not always hard. Actually, in the
group Z,, which is cyclic, with additive notations, computing the discrete logarithm of Y in basis
g means finding y such that Y = gy mod n. This is clearly easy to solve by using the extended
Euclid algorithm.

If n is a smooth number, i.e., if all its prime factors are less than a bound B which is small,
then the discrete logarithm in a group of order n can be solved with O(v/Blogn) group operations
by using the Pohlig-Hellman algorithm. So, the hardness implies a large prime factor in the order
of the group. Consequences to cryptography were explored by van Oorschot and Wiener [d5].

The Pohlig-Hellman algorithm [AR] works as follows: in a group of order n = p{™* x -+ x p&r
where the p;’s are pairwise different primes and the «a;’s are non-negative integers, we compute
the logarithm of y in basis g

1: fori=1,...,rdo

2: g gn/ri’

3 g// — g/p?’v’il

4: y < yn/ri

5: T; < 0

6: for j =0toa; —1do

7: y" y’p?mi1

8: compute the discrete logarithm w of ¢ in the subgroup of order p; which is spanned
by ¢ (next algorithm)

9: y/ — y//g/u-Pf .

10: T  x; +u.p!

11: end for

12: end for

13: reconstruct and yield = such that z = z; (mod pj**)

Essentially, for each i we do «; discrete logarithms in a group of order p;. The idea is that for
each i, by raising y and g to the power n/p*, we end up in a group of order p;"* where the new y
has the same logarithm in the new basis, modulo p;*. Then, we recover all “basis-p; digits” of the
logarithm from the least significant to the most significant. If some digits are known, we divide y
by g raised to the known part power, then raise the remainder to some power of p; so that we end
up in a group of order p;, to compute the next digit. The final reconstruction is done by applying
the Chinese Remainder Theorem.

To compute a logarithm in a group of prime order p, we apply the Baby-step Giant-step
algorithm by Shanks [BR]:
Precomputation
1: let £ = [v/B] be the size of a “giant step”
2: fori=0,...,/—1do

3. insert (¢%, i) into a hash table
4: end for
Computation
5. for j=0,...,/—1do
6: compute z = yg_j
7: if we have a (z,4) in the hash table then
8: yield z = if + j and stop > we get yg 7 = g*¢
9: end if
10: end for

Essentially, we store all “giant steps” g in the table and make “baby steps” g~/ from y until we
reach one value of the table. This algorithm has a complexity bounded by O(,/p) group operations.
So, the Pohlig-Hellman algorithm has a complexity bounded by O((a; +- - -+ «,.)/max; p;). Since

the sum of the a;’s is bounded by logy n and p; is bounded by B, we obtain (’)(\/Elog n).
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The decisional Diffie-Hellman problem. We already defined the CDH and the DDH prob-
lems. Intuitively, the DDH problem consists of deciding whether a value K is the solution to the
Diffie-Hellman problem (g, X,Y") or something independent.

There are some groups for which this new hardness assumption does not hold. Among them,
we have those for which the discrete logarithm problem is easy, but there are others. For instance,
when p is an odd prime, Z; does not satisfy this hardness assumption. Indeed, we can define

A(g, X,Y, K) as producing 1 if and only if the property (%) = —1 holds at the same time as the

P
are not quadratic residues. In exp;, we know that if either X or Y is a quadratic residue, then

its logarithm is even, so the solution to the Diffie-Hellman problem is always a quadratic residue.
So, A always outputs 1 in this experiment. In exp,, K is independent from (X,Y’) so A output 1
with probability 2. Thus, Adv(A) = 4. This is not negligible!

We can generalize this distinguisher to any group with order equal to some integer w multiplied
by a smooth number. Indeed, by raising every element to the power w, we end up in a group in
which we can compute logarithms. So, we can have a distinguisher

property (%) = (X> = —1. That is, K is not a quadratic residue if and only if both X and Y

A(g, X,Y,K) =1 = log . K" = (log,u X") x (log,. Y")

Using the same arguments, the advantage of A is 1 — %, where n is the order of g. So, the order
is close to 1.

Other man-in-the-middle attacks. We could refine the man-in-the-middle attack to make
sure that Ky = K5 and that Eve can have it as well. A trivial way consists, for Eve, in sending
the public key 1 to both Alice and Bob. Clearly, we end up with K; = Ko = 1. An easy way to
avoid this attack is to check that the public keys are not equal to 1.

A more subtle attack works when the order of the group has small factors. For instance, if the
order of the group is 2w, Eve can receive X from Alice and send X™ to Bob, receive Y from Bob
and send Y% to Alice. The final key for Alice and Bob is K = ¢g*¥*. We have X’ and Y” living
in the subgroup of the square roots of 1. The group is generated by g*. So, Eve can compute the
logarithm of X’ in basis ¢* (which is a bit £) and raise Y¢ to obtain K.

More generally, if the order is bw and b is smooth, Eve can proceed the same way. X' = XV
will be in a subgroup of order b, which is smooth, so she will be able to compute its logarithm in
basis g, obtain ¢ (which is now a residue modulo b), and raise K = Y%,

To summarize, what could happen with small factors is as follows.

e The discrete logarithm problem is easy if the order is smooth.

e The Diffie-Hellman problem can have problem if the order has small factors. For instance:
active attacks leading to K; = Ko, or leakage of static keys.

e The DDH problem is easy if the order has small factors.

To avoid these problems, we could mandate that the group has a prime order.
For the (supposedly) hard cases, we will consider a large subgroup of prime order of Z, or of

an elliptic curve. In the Z; case, one way to define Gen is as follows:

1: pick a random prime ¢ of size s

2: pick a random number p of size poly(s) such that glp — 1

3: start again until p is prime

4: pick a random h of Zj

p—1

5: set g=h ¢ modp

6: if g = 1, start again with a new h
In the Diffie-Hellman protocol, it is also important to check membership to (g) to avoid other
attacks. For g € Z7, this can be easily done with the following result.
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Alice Bob

pick z € Z%, X + ¢* —————— if X & (g) — {1}, abort
if Y & (g9) — {1}, abort —r pick y € Z7, Y «+ g¥
K « KDF(Y?) K + KDF(XY)

(K = KDF(g™))
Figure 3.4: The Diffie-Hellman Key Agreement Protocol

Theorem 3.1. Let p,q,g be integers such that p and q are prime, q divides p — 1, g mod p # 1,
and g? mod p = 1. Then, (g) is a subgroup of Z; of order q. Furthermore, (g) is the set of all
Y € Z;, such that Y9 mod p = 1.

So, to check membership of Y, we only have to check Y? mod p = 1.

Making the Diffie-Hellman protocol secure. Another problem could be that K has a weird
distribution depending on how the group is represented. To avoid that, we should consider K as
a seed for a key derivation function KDF.

Finally, we consider the following Diffie-Hellman protocol: a parameter g generates a group of
prime order g. Alice selects her secret key = € Z; and takes her public key X = g”. Bob selects
his secret key y € Z7 and takes his public key Y = g¥. Alice and Bob check that the received
public keys X and Y are in the group but not equal to 1. Alice and Bob compute X¥ = Y?* = ¢g*¥
then K = KDF(g®¥).

One property of this protocol is that if Alice is honest and Y is selected independently of X,
then Y?* is uniformly distributed in the group except 1. If Bob is honest, then XV is uniformly
distributed in the group except 1.

3.3 ElGamal

We assume a cyclic group generated by some g. The ElGamal cryptosystem [26] works as follows:
(see Fig. BH):

o for key generation, we pick an integer x as a secret key and compute the public key y = ¢°.

e for encrypting a group element m, we pick an integer r and compute the ciphertext (u,v) =
(g",my").

e for decrypting (u,v), we compute m = vu~7.

We note that encryption is probabilistic. Indeed, running it multiple times will produce many
different ciphertexts which all decrypt to the same message.
To assess the security of the ElGamal cryptosystem, we essentially consider two problems:

e the ElGamal decryption problem: given an ElGamal public key y and a ciphertext (u,v),
compute m such that v = my" for some r such that u = g".

e the ElGamal key recovery problem: given an ElGamal public key y, find x such that y = g*.

Clearly, the ElGamal key recovery problem is equivalent to the discrete logarithm problem.

We can also show that the ElGamal decryption problem is equivalent to the Diffie-Hellman
problem. Indeed, given a Diffie-Hellman solving oracle, we decrypt (u,v) for key y as follows: we
compute X = v and Y = y and submit (g, X,Y") to the oracle to get K = ¢"*. Then, we just
divide v by K to obtain m. So, ElGamal decryption reduces to the Diffie-Hellman problem.

Conversely, given an ElGamal decryption oracle, we solve the Diffie-Hellman problem (g, X,Y)
by setting v = X, y = Y, picking v at random in (g), sending (g,y,u,v) to the oracle to get
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Message Message
| Encrypt | | Decrypt |
m (u,v) vu” "
A
Public key y+ A‘UTHENTICATION Secret key
INTEGRITY | |
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\ \ 7}
Y
domain parameter: =

group spanned by g

Figure 3.5: Textbook ElGamal Cryptosystem

m = vu~®. Then, we set K = v/m and it solves the Diffie-Hellman problem. So, the Diffie-
Hellman problem reduces to ElGamal decryption. Therefore, both problems are equivalent.

Clearly, the ElGamal cryptosystem is not deterministic. We will further show (in another
chapter) that it is IND-CPA-secure, assuming that the DDH problem is hard.

ElGamal signature. The ElGamal digital signature scheme [26] works in the cyclic group Z,
generated by some g. It works as follows (see Fig. BH):

e for key generation, we pick an integer x as a secret key and compute the public key y = g*.

e to sign a message M, we pick k € Zy_; at random and the signature is (r,s) with r =

g¥ mod p and s = W mod (p — 1), where H is a hash function.

e to verify that (r, s) is a valid signature for M, we check that 0 < r < p and that y"r* = gH (M)
(mod p).

Clearly, the key recovery problem is equivalent to the discrete logarithm problem in the same
group. There exists a security result further saying that making existential forgeries under chosen
message attack is hard, on average over the random choice of the parameters (p,g), and in the
random oracle model, provided that the discrete logarithm problem is hard [#9]. We will explain
the random oracle model in an upcoming chapter. Unfortunately, security is only guaranteed for
the average case: we will see that there are indeed some unfortunate choices of p and g which
could make the signature scheme weak.

First, we have to stress that the condition 0 < r < p in the signature verification is important.

If we miss it, we can easily make universal forgeries. For that, we first pick rp_1,s € Z;_; at
H(M) Tp— . . .
random. Then, we set r, = g~ = y~ = mod p. By using the Chinese remainder theorem, we

can find r such that » mod (p — 1) = rp—1 and r mod p = r,, at the same time. So, we easily see
that (r,s) is a valid signature for M, except that r is of order p? instead of p. So, we really have
to check that 0 <r < p.

Next, we see an unfortunate choice for p and g which was found by Bleichenbacher [I1]. We
have to assume that p — 1 = bw with b smooth (e.g., we could take b = 2 since p is odd), and that
we know some relation g'/* mod p = cw for some integers t and ¢. As an example, whenever b
generates Z; and p mod 4 = 1, we can take g = b, t = %, and ¢ = 1. Indeed,

(cw)' = <p91> o = *g% =g (mod p)




kez .

r = g"” mod p ‘ ‘ 0<r<p
. = H(Afk?—xr mod p — 1 Adversary y"r® = g7 (mod p)
‘ ‘ Message
M M
cesvage | Sign Verify
M M,r,s M,r,s
| T —
‘ ‘ ok?
A
Secret key = AUTHENTICATION +l:’ublic key y
[ [ INTEGRITY |
Generator ‘ ‘

y = g* mod p ‘ ‘

p prime
g generator of Z7

Figure 3.6: Textbook ElGamal Signature

Once we have these two assumptions p—1 = bw and ¢'/* mod p = cw, we make a universal forgery
for M by setting r = cw, finding the discrete logarithm z of y“* in basis g°*, i.e., y** = g°~*

, and
taking s = ¢(H (M) — cwz) mod (p — 1). We clearly have 0 <r < p and

yTTS = ycw(cw)t(H(]\/[)fcwz) cw H(M)—cwz = gH(JW)

=y“yg (mod p)

So, (r,s) is a valid signature for M
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Chapter 4

The Power of Interaction

An essential cryptographic protocol is the notion of interactive proof. Typically, a client would
prove his credentials to a server. Here, the client plays the role of a prover and the server is a
verifier. Ideally, his credential should not leak from the protocol, even to the verifier who could be
malicious. This is the notion of zero-knowledge protocol. In this chapter, we formalize the notions
of interaction, proof, zero-knowledge, and provide building blocks.

4.1 Interactive Proofs

We consider
e an alphabet 7, ie., a set of letters;
e the set Z* of finite strings made of elements in Z, i.e. the set of all words;
e the subsets of Z* are called languages, i.e. sets of words.

Given a language L and a word x, we consider the problem of deciding whether or not x belongs
to L. This is the membership problem.

Languages for which the membership problem can be decided by a deterministic algorithm
within a time bounded by a polynomial in terms of |z|, the length of the string z, are called P
languages.

Sometimes, we will consider = as a statement and L be the language of statements which are
true. True statement may be proven by a proof w which will be called a witness. Given a
predicate R(x,w) checking whether w is a correct proof for x, the language L is defined by

L={x€Z*3weZ" R(z,w)}

(For convenience, proofs are encoded into a word so that we can also assume that the witness is
a word.)

Languages such as the above, where R can be evaluated in a time bounded by some polynomial
in terms of |x|, and where the witness must have a length also bounded by a polynomial, are called
NP languages. The complement of an AP language is called a co-N P language. It is known that

P CNPNco-NP

i.e., any P language is both an AP language and a co-NP language. This is illustrated on Fig. B
A big open question in complexity is whether P = NP or not. There is an inclusion, but it is
not known if all AP language can be recognized in polynomial time or if some of these languages
do not have any polynomial-time algorithm to decide membership. Another open question is to
wonder if NP = co-NP or not. ILe., for languages for which membership can be checked with a
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witness in polynomial time, can we always check non-membership with a witness as well? Note
that if P = NP then P = N'P = co-NP.

We already used the notion of Turing reduction but there is another notion due to Karp.
We say that a language L; reduces to a language Lo if there exists a function f computable
by a deterministic polynomial-time algorithm such that for all words z, € L; is equivalent to
f(z) € Ly. Compared to the Turing reduction, this means that the oracle for Ly-membership can
be invoked only once.

There exist languages L which are A"P-hard. This means that for each L' € NP, L’ reduces
(in the sense of Karp) to L. There even exist N'P-hard languages in the class NP itself. These
languages are called N’P-complete. For example, assuming a way to encode Boolean terms on
Boolean variables in the form of a word, the language SAT of encoded terms that can evaluate to
“true” by at least one assignment of the variables is N'P-complete [22]. Consequently, P = NP
is equivalent to SAT € P.

Next, we define an interactive machine as follows.

Definition 4.1. An interactive machine is an algorithm A taking as input some x, a list of
incoming messages mq, ..., my of variable length, and a (long enough) sequence of random coins
r and computing an outgoing message A(z,m1,...,my;7). The tuple (x,mq,...,my;7) is called
the partial view of A.

We assume a special symbol in the alphabet. Messages ending with this symbol are called

terminal messages. We assume that if m,, is a terminal message, then A(x,mq,...,mu;7) is a
terminal message as well.
If A(z,mq,...,mpu;7) is a terminal message, (x,m1,...,my;7) is called the final view of A.

A pair of interactive machines (A, B) (with A called the initiator) is called an interactive
system. An experiment exp = (A(r 4) B(TB)> is characterized by an input xz and the coins
r4 and rp for each participant. It consists of iteratively defining

a; = A(x,bl,...,bi_l;’/‘,q)
bj = B(x,al,...,aj;rB)
fori=1,...,n4, where n4 is the smallest ¢ such that a; is a terminal message, and j = 1,...,np,

where np is the smallest j such that b; is a terminal message. Namely, A initiates the interaction
with the message a1 = A(x;r4) to B. Then, B sends the message by = A(z,a1;7r5) to A.
Then A carries on with as = A(xz,b1;74) and so on. We define the outputs of both participants
Out 4(exp) = an, and Outg(exp) = b,,, and the final views View 4(exp) = (x,b1,...,bp,—1;74)
and Viewp(exp) = (z,a1,...,0n5;TB).

We are now ready to define an interactive proof.

Definition 4.2. Given a language L over an alphabet Z, an interactive proof system is an inter-
active system (P,V), where P is called a prover and V is called a verifier, such that there exists
a polynomial P and some real numbers o and B such that 0 < f < a <1 and

e (termination) for any © and every coins, the experiment P &V makes V terminates within
a complezity bounded by P(|z|);

e (a-completeness) for any x € L, the experiment P &V makes V output “accept” with
probability at least « (the probability is taken over the random coins);

e (B-soundness) for any x ¢ L and any interactive machine P*, the experiment P* &V
makes V output “accept” with probability at most B (the probability is taken over the random
coins).

This means that a prover P can convince a verifier V that x € L, with probability at least o, and
that no malicious prover P* can convince the verifier when this is not true, with probability larger
than 5. We note that we assume no complexity bound on P or P*. We often consider « = 1 in
which case we say we have perfect completeness.
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It is trivial to see that languages in P and NP have an interactive proof system: for a language
in P, we just consider a prover doing nothing and a verifier running the verifying predicate defining
the language by himself. For a language in NP, we just consider a prover finding the witness w
then sending it to the verifier and the verifier checking that this is a correct witness. The protocol
is as follows:

Prover Verifier

T
w (terminal)

find w

accept (terminal)

if R(z,w) =1

It can be much more complicated to see if languages in co-NP have an interactive proof system.
One non-trivial example is the Goldwasser-Micali-Rackoff proof GMRS&5 [B3] for non-quadratic
residuosity. Here, we consider words encoding a pair (n,v) of integers and the language

L = {(n,v) integers;v € Z},v € QR(n)}

We recall that
QR(n) ={y € Z};3r y=2° mod n}

To construct a proof system we consider the following verifier:
1: pick r €y Z%, e €y {0,1}, compute y = v°r? mod n and send y

n?

2: receive f. If ged(v,n) = 1 and e = f, output the terminal message “accept”, otherwise, output
the terminal message “reject”

The prover is defined by

1: receive y, solve the equation y = 22 mod n, if it is solvable, output the terminal message f = 1,
otherwise, output the terminal message f =0

The protocol runs as follows:

Prover Verifier
(n,v)
pick r,e=0or 1

Yy
y = v°r? mod n

solve y = 22 mod n
f - { 0 if solvable f (terminal)

1 otherwise
accept (terminal)

if e= f and ged(v,n) =1

Termination and perfect completeness are trivial. To prove %—soumdness7 we consider an arbitrary

prover P* receiving y and sending f as a function of n,v,y. We assume that (n,v) ¢ L. If

*

v & Z7, it is clear that the verifier always rejects. If now v € Z}, since (n,v) € L, we can write

v = w? mod n for some w. So, the distribution of y = (w®r)? mod n is uniform in QR(n), no

matter the value of e. Hence, f is independent from e. Thus, Prle = f] = 3.

Soundness amplification. For simplicity, we consider perfect completeness. l.e., @« = 1. In
the case of the GMRS&5 protocol, it may be unsatisfactory to have a proof in which a prover could
cheat with probability % To solve that, we can amplify the soundness by sequential composition.
Namely, we could construct a new interactive proof in which we sequentially run the previous
proof n times and accept only if all executions accepted. We could show that the new soundness
probability would become 8.

Amplification works very well for sequential composition but there are tricky things if we
consider parallel composition, i.e., if we run the n executions in parallel. As for interactive proofs
as we defined them, it works, but for slightly different notions of interactive proofs (e.g., variants
in which the prover is computationally bounded), it does not. So, we must be careful when
considering parallel composition of interactive systems.
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ip

Figure 4.1: Complexity Classes of Languages

As an example, we define the DD game of Bellare, Impagliazzo, and Naor [6]. A verifier
commits to a random bit e, then a prover commits to a random bit €, then both open their
commitment and the verifier accepts the “proof” if e # ¢’:

Prover Verifier
pick r,e=0or 1
y = commit(e; )

pick 7/, ¢/ =0 or 1

y' = commit(e’; ")

check y' = commit(e’; ')
if e £ ¢

accept (terminal)

If the prover is computationally bounded and the commitment is hiding and binding, there is no
way to prove with probability significantly larger than % So, we could think that for two parallel
composition of this protocol, there is no way to prove with probability larger than i. However,
this is not the case as the following strategy shows. The prover just repeats the two parallel
commitments of the verifier in the opposite order and win with probability %:

Prover Verifier
pick 71,79, e1,ea =0 or 1
Y1,Y2

y; = commit(e;; ;)
Y1:Y5

set yi = v2, yh =11

T1,€1,72,€2

T2,€2,T1,€1
2 check

So, soundness amplification is not so trivial for parallel composition.

The class of languages with an interactive proof. We define ZP, the class of languages for
which there exists an interactive proof. There is a famous theorem from 1992, due to Shamir [67],
saying that ZP corresponds to the class PSPACE of languages for which there is a deterministic
algorithm deciding on membership or not which run with bounded space complexity, i.e. a poly-
nomially bounded number of memory cells. Intuitively, this class includes the exhaustive search
algorithm and others.

Theorem 4.3. ZP = PSPACE.

So, the class ZP is much larger than A'P and co-A'P. This is depicted on Fig. .
When considering NP languages with an interactive proof, we said that the proof is trivial: the
prover finds a witness (e.g., by exhaustive search), gives it to the verifier, and the verifier can check
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that it is a valid witness. For cryptographic application, this interactive proof is not satisfactory.
Ideally, we would like the prover to prove the existence of the witness without revealing it, and
without revealing anything that the verifier could not find by himself. This it the next notion to
study: zero-knowledge.

4.2 Zero-Knowledge

We define a notion corresponding to interactive proofs where the verifier learns no information
except the membership status of the input z.

Definition 4.4. An interactive proof system (P,V) is x-zero-knowledge if for any p.p.t. interac-
tive machine V* there exists a p.p.t. algorithm S (called a simulator) such that for any x € L

Viewy« (P(TP) & V*(TV))

and S(x;r) produce x-identical distributions.

There are three notions of zero-knowledge, depending on the notion of identical distributions (the
* in the definition):

e x=perfect: *-identical really means identical!

o x=statistical: *-identical means that the statistical distance is negligible in terms of |z|, i.e.,
any adversary has a negligible advantage.®

e x=computational: x-identical means any p.p.t. distinguisher has a negligible advantage.

As an example, we consider the following proof by Goldwasser-Micali-Rackoft (GMR&9) [B4] for
the language of quadratic residues:

L = {(n,v) integers;v € QR(n)}

*
n?

1. the prover finds s such that v = s2 mod n, picks » € Z*, and sends z = 2 mod n to the

verifier;
2. the verifier picks a random e € {0,1} and sends it to the prover;
3. the prover sends y = sr mod n;

4. the verifier accepts if gcd(n,v) = 1 and y? = v°x (mod n).

Prover Verifier

(n,v)
find s st v = s2 mod n

pick 7, x =2 mod n
= e=0orl

Yy

y = s°r mod n check ged(n,v) = 1, y? = vz (mod n)

Termination and completeness are straightforward to check for this protocol. For soundness, we

show that if a malicious prover P* makes the verifier V' accept with probability strictly greater

than %, then it must be the case that (n,v) € L. Clearly, we have that n and v are coprime.

Now, the probability is an average over the random coins of P*, so there must be some fixed coins
1

making V' accept with probability strictly greater than 5. This actually means that there must

be a P* which is deterministic. By running the proof twice with P*, with different e’s, we thus

IStatistical distance was defined on p. B2.
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obtain the same x, but some answer yo to e = 0 and some answer y; to e = 1 which satisfy y2 =
(mod n) and y? = vx (mod n). So, y1/yo mod n is a square root of v, so (n,v) € L.

To prove zero-knowledge, we construct a simulator S based on a malicious verifier V* as
follows: S first picks a guess eg € {0,1} for e and a random y € ZZ, then simulate the prover
giving = = y?v~™% mod n to V*. If V* gives e # ¢, this is bad luck and S restarts. Otherwise,
e = eg and S can continue by giving y to V* and obtain the final view of V*. We have to prove
that the bad luck happens with probability % and that the obtained distribution is identical to
the one obtained by running P and V*.

We note here that the simulator S is a black-box simulator. L.e., it is constructed by using V*
as a subroutine and does not depend on V*. All the zero-knowledge protocols that we will see use
a black-box simulator.

It was shown in 1986 by Goldreich, Micali, and Wigderson [35], that all A"P languages have a
computational zero-knowledge proof.

Theorem 4.5. For every language L in N'P, there exists a computational zero-knowledge inter-
active proof system.

They show it by the following GMW86 protocol for an N"P-complete language: the language of
3-colorable graphs. A graph (V, E) is specified by a vertex set V and an edge set £ C V2. A
3-coloring is a mapping ¢ : V' — {1, 2, 3} such that for every edge (u,v) € E, we have p(u) # ¢(v).
The GMW86 protocol runs as follows:

1. the prover finds a 3-coloring ¢ of (V, E);
2. P and V run #F times the following protocol;

(a) the prover picks a random permutation 7 of {1,2,3}, some coins r, for each u € V,
computes R, = commit(m(¢(u)),ry), and sends all R, to the verifier;

(b) the verifier picks a random (u,v) € E and sends it to the prover;

(c) the prover sends 7., 7y, ¢, = w(p(u)), and ¢, = 7(p(v));

d) the verifier checks that R, = commit(cy, ), Ry = commit(c,, 7y ), and ¢, # ¢y;

(
3. if all iteration succeeded, the verifier accepts.

Prover Verifier
(V. E)
find ¢
repeat #FE times
pick m € S3
r, for each u € V
cu = m(p(u))
R, = commit(cy,Ty,) n

pick (u,v) € E
check R,, R,
check ¢, # ¢,

if (u,v) € E

The protocol is based on a commitment scheme which is computationally hiding and perfectly
binding.

Finally, instead of proving membership, we would like that a prover proves his knowledge of a
witness.

Definition 4.6. Given a language L € NP over an alphabet Z defined by a relation R, an
interactive proof of knowledge for L is a pair (P,V) of interactive machines such that there exists
a polynomial P, a, B such that 0 < f < a <1 and

e termination: this is like for interactive proof systems
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e «-completeness: this is like for interactive proof systems

e [(-soundness: there exists an oracle algorithm & called extractor verifying what follows. For
any P* we let

g(r)= Pr [OUtv (P*(Tp) & V(rv)) = accept}
Ife(z) > B then EP” () outputs w such that R(x,w) holds with complexity at most P(|x|)/(e(z)—
B)-

Our typical prover starts with finding w then runs a polynomial-time algorithm. So, an equivalent
notion could be to say that P has a private input with w and that P is a polynomially bounded
algorithm. Indeed, if we want to prove knowledge of w, we must give w to P! We give examples
of proof of knowledge in the next section.

4.3 Zero-Knowledge Construction from > Protocol

We consider simple protocols running in three phases: the prover sends some message a, the
verifier sends some random challenge e selected from a set F, the prover sends back an answer z,
and the verifier decides to accept or not. With additional properties, this defines 3-protocols.

Definition 4.7. Given a language L € NP over an alphabet Z defined by a relation R, a X-
protocol for L is a pair (P,V') of interactive machines such that

e V is polynomially bounded

e 3-move: P starts with a message a, V answers with a challenge e €y E, P terminates with
a response z, V accepts (always for x € L) or reject only depending on (x,a,e, z)

e special soundness: there exists a polynomially bounded algorithm £ called extractor such that
for any x, if (z,a,z;7) and (z,a,2’;7") are two accepting views for V such that e # e’ where
e=V(x,a;r) and e =V (x,a;r") then E(x,a,e, z,€,2") yields w such that R(z,w)

e special honest-verifier zero-knowledge (HVZK): there exists a polynomially bounded algo-
rithm S called simulator such that for any © € L and e, the transcript (a,e, z) of the
interaction P(rp) & V(ry) conditioned to e has same distribution as S(x, e;r).

To fully define a Y-protocol we thus need

e a relation R defining the language;

a function for a« = P(x,w;rp);

a samplable domain F for e;

a function for z = P(z,w,e;rp);

a verification relation V (z,a, e, 2);

: / ’\.
a function £(z,a,e, z, €', 2');

a function S(z, e;7).

The properties to satisfy are:
1. R, P,V &, S and sampling are polynomially computable in |z|;
2. V(z,w) € RVrpVee E V(z,a,e,z),

with a and z defined by a = P(z,w;rp) and z = P(z,w,e;rp);
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3. Va Ve, e’ € EVa,z,2 (e#e,V(z,a,e,z2),V(z,a,¢,2)) = R(z,E(x,a,e,z,€¢,2"));
4. Y(xz,w) € RVe € E distrib,,(a,e, z) = distrib, (S(z, e; 1)),

with a and z defined by a = P(z,w;rp) and z = P(x,w,e;rp).

What is nice with >-protocols is that they are already proofs of knowledge, honest-verifier
zero-knowledge, and composable in parallel. This is stated in the results below. Before anything
more, we provide an example.

Goldreich-Micali-Wigderson for graph isomorphism. One example of ¥-protocol is the
Goldreich-Micali-Wigderson protocol GMWS86 for graph isomorphism from 1986 [34]. It is for the
language of pairs of isomorphic graphs (G, G1). Clearly, a witness can just be the isomorphism
@ from Gy to G;. The obtained protocol could hold for any notion of isomorphism, not only for
graphs. We just require that ¢ is a bijection, that p(Go) = G4, and that it must be hard to find
o given Gy and G (which is believed to be the case for graphs).

In the GMWS86 protocol, the set of challenges is E' = {0,1}. The prover starts by selecting a
random permutation 7 and sending H = w(Gy). After receiving e, he answers by o = 7 if e =0
and 0 =mop tife=1. So, 0 = mo ¢ ¢ Then, the verifier accepts if and only if H = o(G.).

Prover Verifier
%) st (p(Go) = G1 (Go,Gl)
pick 7 invertible pick e € {0,1}
H = 7(Go) i
o=mop ¢ 2 O'(Ge);H

The extractor works based on o(, the answer to e = 0 for some H, and on o1, the answer to
e = 1 for the same H. Since H = 0(¢(Gyp) and H = 01(G1), we have that Ufl oog is a valid witness
for (Go, G1) since 01_1 o 09(Go) = G1.

The simulator works based on Gy, G1, and e. It picks ¢ uniformly and sets H = o(G,).

Clearly, a malicious prover could cheat by predicting whether the challenge is 0 or 1. More
generally, we can always consider the following malicious prover P*:

1: pick eguess € F > a guess for e
2: run S(z, eguess) —* (4, Eguess; )

3: send a to the verifier

4: receive the challenge e

5: if e # eguess: abort > the prover failed

6: send z to the verifier

Clearly, P* succeeds with probability § = ﬁ We show below that the ¥-protocol is actually a
proof of knowledge with soundness probability 5.

Theorem 4.8. A X-protocol (P, V) for an N'P language L defined by a relation R is an interactive
proof of knowledge for L. The soundness probability is § = ﬁ, where E is the set of possible
challenges in the %-protocol.

Proof. Termination and 1-completeness are straightforward. It is less easy to show the soundness
of the proof of knowledge. For that, we define the knowledge extractor £ as follows. We denote
by (z) the probability that P* makes V accept on the instance z and we assume that e(x) > 3.
To define the extractor, we first pick some random rp,ry, 7, and make the oracle P* run twice
with the same random coins rp and interact with a simulation of V, first with V' (ry ), then with
V(r{,). By construction, the a set by P*(rp) is the same in both executions since rp is the same
and no message from V' is used to compute a. We let e resp.e¢’ be the challenge set by V(ry ) resp.
V(ri,), and z resp. 2’ be the response of P*(rp). We let b resp. V' be the acceptance bit from
the verification. Clearly, if e # e’ and b =¥ = 1, we can execute the Z-extractor £(z,a, e, z, €', 2)
and obtain a witness w for x which is given as output of the knowledge extractor. Clearly, all
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this is polynomially bounded. Below, we prove that Prle # e/, = b = 1] > e(z)(e(x) — 8). Since

e(x) > B and S is a constant, we need O (ﬁ) attempts of the above process to succeed to

extract a witness. This shows the result.
Now, we analyze Pr[e # ¢/,b = V' = 1]. When P*(rp) interacts with V(ry), we have Pr[b =
1] = e(x). We denote e(z,rp) = Pr[b = 1|rp]. Hence, E(e(z,rp)) = e(x) over a random rp.
Since 7y and r{, are independent, we have Pr[b = = 1|rp] = e(z,7p)?. So,

Prb =0 =1,e#¢€|rp| =e(x,rp)> —=Prlb=b = 1,e = ¢'|rp]
We note that if e = ¢/, then P* will give z = 2’ so b = ¥'. Hence,
Prb=V =1,e=¢|rp]| =Pr[b=1,e = ¢|rp]

Let A be the set of all e for which P* produce a z leading to b = 1. We have
Prlb=1,e=¢|rp| = Z (Pr[pick €])® = Z Pripick €]8 = e(z,rp)B
ecA ecA

since the challenge is uniformly distributed so Pr[pick e¢] = § for all e. So, we have
Prb=b =1,e#€|rp| =e(x,rp)(e(z,rp) — B)

We consider the random variable Z = e(z, rp) defined by a random rp. We have Pr[b = = 1,e #
e'lrp] = f(Z) for f(z) = z(z—f). Since f"(z) > 0, f is a convex function, we can apply the Jensen
inequality to obtain E(f(Z)) > f(E(Z)). This gives Prjb=b =1,e # €| > e(z)(e(x) — ). O

Theorem 4.9. Given an integer t and a X-protocol with set of challenges E, we consider the
St-protocol consisting in executing t times in parallel the X-protocol and having the verifier accept

if and only if all executions accept. This define a new X-protocol in which the set of challenges is
Et.

So, the soundness probability is seriously amplified.

Definition 4.10. An interactive proof system (P, V) is x-honest verifier zero-knowledge if
there exists a PPT algorithm S such that

Views (P(T‘p) & V(rv)>

and S(x,r) produce x-identical distributions.

This is just the regular zero-knowledge property, but only guaranteed when the verifier is following
the honest protocol.

Theorem 4.11. A X-protocol (P,V) for an NP language L defined by a relation R is honest
verifier zero-knowledge.

Proof. Since the honest V' does not depend on a to select e, we can just run V with some dummy
ap and random coins 7y to get e with the good distribution, then run the 3 simulator S(z, e;7) on
some random r to obtain a transcript (a, e, z) with the correct distribution. We can then produce
(z,a,z;ry), the simulated view of V. Clearly, it has the good distribution. O

We can say more if E is small.

Theorem 4.12. A Y-protocol with a challenge set E with polynomially bounded size is zero-
knowledge.

Proof. The simulator works as usual.
1: pick some random coins p to set up the verifier
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pick eguess € E > a guess for e
run S(z, eguess) — (@, Eguess, 2)

send a to the verifier

receive the challenge e = V(a; p)

if € # eguess: Tewind and try again > the simulation failed this trial
send z to the verifier

8: output (a, z; p)

IR -

In each iteration, we know that (a, €guess, 2) has a distribution identical to the transcript (a, e, z) of
an honest execution. Hence, a is statistically independent of eguess. This implies that e = V(a; p) is
also independent from eguess. Since egyess is uniformly distributed, this implies that a trial succeeds
with probability 1/#FE. So, it terminates with expected polynomial time. Furthermore, it gives
some (a, z) which is distributed like for the honest prover. So, we perfectly simulate the protocol.

O

To summarize what happens with parallel or sequential composition, we recall the following
facts.

e The soundness of proof systems amplifies well for both types of composition.

e Parallel composition works well with Y-protocols, but not sequential composition as it de-
stroys the structure of X-protocols.

e Zero-knowledge does not always amplify with parallel composition (indeed, we know that X-
protocols are zero-knowledge on small challenge sets but could become not zero-knowledge on
a large one, e.g. after parallel composition), but amplifies well with sequential composition.

Fiat-Shamir for modular square root. Another famous example is the FS86 protocol by Fiat
and Shamir [27] for the language of pairs of integers (n,v) such that v € Z}, and there exists s (the
witness) such that s?v mod n = 1. Again the set of challenges is E = {0,1}. The prover starts by
selecting a random r € Z? and sending z = r? mod n. After receiving e, he answers by y = r if
e=0and y = rsmod n if e = 1, i.e., y = rs® mod n. The verifier accepts if y?v°® mod n = z, and
v,y € LY.

Prover Verifier
sst svmodn =1 (n,v)
pick r € Z7, pick e € {0,1}

z=r2modn

? ?
y = rs® mod n y*v®mod n =z, v,y € Z

The extractor is based on the answer y,. to e = 0,1 with the same z. It computes y1 /yo mod n

which is such that )
(y1> vmodn =1
Yo

so, a valid witness. The simulator picks y € Z and computes z = y?v® mod n from e.

Schnorr for discrete logarithm. Finally, another famous protocol is the Schnorr protocol
from 1989 [b4, 66] for the language of (G, g, g,y) tuples with the following properties:

e G is a group in which it is easy to do operations (product and inverse) and comparisons;
e ¢ is an element of G of prime order ¢;

e it is easy to check if a value belongs to (g);

* y<(g).
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The relation R is defined by R((G, q,g,y),z) if and only if y = g*. Le., z is the discrete logarithm
of y.

The Schnorr protocol has a parameter ¢ which must be such that ¢ > 2. The set of challenges
is E = {1,...,2'}. The prover starts by selecting a random k € Z, and sending r = g*. After
receiving e, he answers by s = ex + k mod ¢. The verifier accepts if ry¢ = ¢* and y € (g).

Prover Verifier
zst gt =y (G,4,9,v)
pick k € Z, pick e € {1,...,2!}
r=gF - q prime > 2¢

e

g of order ¢7, y4 ]
ry® = g°

S

s =ex + k mod ¢

The extractor is based on the answers s and s’ to e and ¢, for e # ¢, and with the same
r. Since ¢ is prime and 1 < e,e’ < 2t < ¢, e — ¢’ is invertible modulo ¢ and we can show that

s—s’

ge— =1y. So, z:j mod ¢ is the extracted witness. The simulator picks s € Z, and computes
=gy

—e

Strengthening Y-protocols. A malicious verifier could select his challenge e based on the first
message sent by the prover. If the set of challenges is very small, this is not a problem and we
can actually show that honest-verifier zero-knowledge and zero-knowledge are equivalent. When
the set of challenges is large, this is no longer equivalent. In the Schnorr protocol, a malicious
verifier could select e = f(y,r) and his view may become unforgeable by a simulator. As we will
see later, this could indeed be used to construct a signature scheme with unforgeable signatures.
However if we do want to obtain a zero-knowledge protocol, we must enrich the ¥-protocol with
a commitment.

One solution could be that the verifier first commits to his challenge (without revealing it).
Then, after receiving the first message from the prover, he would open his commitment and let
the protocol continue as before. If the commitment is binding (i.e., a malicious verifier could not
change his mind), this protocol becomes fully zero-knowledge. However, we now have troubles
to prove soundness as we need to extract two answer with the same message from a malicious
prover who would have received a commitment of the challenge. One solution to get around this
is that we use a trapdoor commitment: a commitment in which there exists a trapdoor to break
the binding property. The construction runs as follows:

1. P generates a commitment trapdoor 7 and its associated key h and sends h to V;
2. V selects his challenge e and commit to it with key h; the commit value is sent to P;

P starts the Y-protocol and sends the message a;

-~ w

V opens his commitment to e;

5. P answers to the challenge by z and also discloses 7.

Prover Verifier
w st R(x,w) x
pick rp pickee E
pick 7
h=g¢" modp h

Commity, (e;r)

pick r

a=P(z,w;rp)

verify Commit(e;r)

z="P(z,w,e;rp) V(z,a,e,2)?, h . g™ mod p



This protocol becomes computationally zero-knowledge and remains a proof-of-knowledge. One
example for a trapdoor commitment is the following one.

Pedersen commitment 1991 [@7]. We set up the commitment with some parameters (p, q, g),
where p and ¢ are prime, ¢ divides p — 1, and g is an element of Z7 of order g. The trapdoor
is an element 7 € Z,. The key is h = ¢g” mod p. To commit on X with coins r € Z,, we
compute ¢ = gXh” mod p. This is unconditionally hiding, and computationally binding (breaking
the binding property is equivalent to computing 7, i.e., solving the discrete logarithm problem
for h). With 7, we can equivocate a commitment to X, with coins ¢ to any X. We just set
r=10+ @ mod ¢ and we have

¢ = ¢gX°h" mod p = ¢°h" mod p

4.4 Setup Models

In the previous strengthened model, the use of an ephemeral trapdoor in the commitment looks
artificial, since we never need the equivocation property of the commitment in practice. Fur-
thermore, it is dangerous for security. We could adopt a more practical approach by having the
commitment key to be set up once and for all participants, with the trapdoor held by nobody.
This is in line with what we call the common reference string (CRS) model. In that case, there is
a CRS (e.g., the commitment public key) which is set up for all participants.

To show soundness/zero-knowledge, we may need to assume that the extractor/simulator can
use the trapdoor. This is fine, except that one property of zero-knowledge may be a bit trickier:
deniability. This assumes that having run the protocol can be denied as the verifier can extract
no evidence of having run it in the protocol. Normally, zero-knowledge protocols are inherently
deniable since whatever the verifier extracts can be simulated. However, when the simulator needs
the trapdoor, since no participant has the trapdoor in practice, what the practical verifier extracts
may become non-simulatable. Clearly, this does not expose the secret of the prover but could still
leak evidence of having run the protocol.

Besides the CRS, another setup model is the Random Oracle Model (ROM). In this model, we
have an oracle H who answers at random to any query, but consistently. I.e., making the same
query several times will produce the same response. This oracle can be accessed by all participants.
In the notion of zero-knowledge proof of knowledge, the extractor/simulator may further simulate
the behavior of H. lL.e., they answer at the place of H to all queries, but they must do it in a way
which is indistinguishable from querying a real random oracle. Again, we may loose deniability.
But otherwise, we can have more efficient protocols. In the strengthening, we commit to e by
disclosing H (e||r) and open by revealing e and r.

There are other setup models. For instance, we can assume that all participants are initialized
with a public/private key pair. We can assume the existence of a public directory, to which we
could register public keys. We can assume the existence of secure hardware tokens. Etc.

4.5 A Building Block for Making Cryptographic Primitives

In 1986, Fiat and Shamir [27] proposed to transform (what is now called) a X-protocol into a proof
which is non-interactive. This is the notion of a Non-Interactive Zero-Knowledge proof (NIZK).

The idea is that the verifier is now simulated by a hash function. That is, the challenge e used
in the X-protocol is computed by e = H(z|la). Namely, to prove z, the prover computes a as
usual, then e = H(x||a), then the answer z. The (a, z) pair is the proof. It is verified as usual, by
re-computing e.

Note that here, the verifier is choosing e adaptively based on a, which is normally not allowed.
Consequently, we may loose the simulatability. Even worse: we do need to loose this property.
Otherwise, a malicious prover could forge a proof by running this simulation!
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The Fiat-Shamir construction is also used to create a signature scheme. Essentially, we take
e = H(message||z||a) and do the same. ILe., the signature is the (a, z) pair. We will prove (Th. B3
in the next chapter), in the random oracle model, that this construction is secure against existential
forgeries under chosen message attacks (EF-CMA), when the relation of the X-protocol is such
that finding a witness w for x is a hard problem.

Y-protocols can also be used to construct other cryptographic primitives. As an example, we
construct a trapdoor commitment. Assuming that finding a witness for R is hard and that we
have a ¥ protocol for R, we take as a common reference string and instance x and as a trapdoor a
witness w for this instance. So, R(x,w) holds. We can commit on elements of the set of challenges
E. To commit on e € E, we pick some random coins r and compute (a,e,z) = S(z,e;r). The
commit value is a and the opening value is (e, z). For opening, we just check that V(z,a, e, 2)
holds. We can check that the commitment is perfectly hiding as the distribution of a is like in
the correct interactive proof, so independent from e. We can also check that the commitment is
computationally binding. Indeed, being able to open a commitment a on two values of e would
lead (thanks to the ¥ extractor) to a witness for z, which is assumed to be hard to find. Finally,
using w we can equivocate the commitment by just running the correct interactive protocol: P
produces a, the commit value. Then, if we want to open to e, we just compute the correct z by
using w.
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Chapter 5

Cryptanalysis (Conventional)

In this chapter we review some notions of cryptanalysis for block ciphers. More precisely, we
describe differential and linear cryptanalysis. We apply it to DES reduced to 8 rounds. Then,
we present some theory on the analysis with the notion of distinguisher. We discuss about the
optimal one and see how to analyze the security of block ciphers with the notion of decorrelation.

5.1 Block Ciphers

One technique for symmetric encryption is based on block ciphers. This treats messages by blocks
of fixed length, e.g., ¢ bits. Formally, a block cipher is a deterministic algorithm taking as input
a plaintext block 2 € {0,1}* and a secret key K and returning y = Cx(x), a ciphertext block y €
{0,1}*. Tt comes with another deterministic algorithm denoted by C~! such that C;' (C () = x
for all x and K. So, for each K, Cx is a permutation of the set {0, 1}*.

The perfect cipher has 2¢! possible keys and is such that every possible permutation over {0, 1}
has a key defining it. In terms of security, this is the best block cipher that we can dream of.
Unfortunately, it is by far impractical as the key would be way too long to be representable.
Indeed, we know the Stirling formula

n! ~V2rnn"e "

which implies that log,(n!) can be approximated by nlog, n when n is large. So, the most efficient
binary representation of the keys requires log,(2!) bits for a key, which is approximately ¢2¢. For
¢ = 64, which is nowadays considered as a too short block length, we obtain that we need more
than one million of Petabytes to store a single key.

Instead of using the perfect cipher, we can still try to make ciphers look like the perfect one
for the given usage. For instance, if the cipher is meant to be used only once, it is fair enough to
require that for any x, the random variable Ck (), defined over the random choice of the key K,
is uniformly distributed.

If the cipher is meant to be used only twice, we can simply require that for any x1,zs with
1 # x2, (Ck(x1),Ck(x2)) is uniformly distributed among all pairs (y1,ys2) satisfying y; # yo.
This is the notion of pairwise independent permutation.

This generalizes to n-wise independent permutations: for all x1, ..., x, which are pairwise dif-
ferent, the tuple (Ck(z1),...,Ck(zy)) is uniformly distributed among all (y1,...,y,) of pairwise
different ciphertext blocks. If a cipher satisfies this criterion and if an adversary gets to learn no
more than n pairs (z;,y;), then what he sees has the same distribution as what he would see if C
was the perfect cipher. So, the cipher would ideally look like the perfect one, up to n samples.
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Figure 5.1: Splitting a Block Cipher for Differential Cryptanalysis

5.2 Differential Cryptanalysis

Differential cryptanalysis was invented by Eli Biham and Adi Shamir. In 1990 [R], it was used to
break some ciphers looking like DES. In 1992 [d], an attack was proposed (with a complexity too
high for the technology of that time) against DES. In 1993 [i0], it was observed that any slight
variant of DES would be subject to a more efficient and actually practical attack. Then, in 1994,
Don Coppersmith (one of the designers of DES), released a technical report [I6] showing that
DES was built to resist to this type of attack. Indeed, this report showed that the technique of
differential cryptanalysis was already taken into account by the DES designers in the 70’s, even
though it was not publicly known.

Differential cryptanalysis is a key recovery attack with chosen plaintexts. First, it requires to
split the block cipher into three elements: a key schedule transforms K into K; and Ky; X is
processed by the core encryption using K7; then the result Z is processed by the post-encryption
using Ks. This yields Y = Ck(X) (see Fig. BEl). Second, we must find a deviant property of the
core encryption of the form Pr[Z' — Z = b| X’ — X = a] is large, when X and X’ are random, Z
resp. Z' is the core encryption of X resp. X’, and a and b are constants. Here, we use the XOR
@ as a notion of difference. le., Z/ —Z = 7' ® Z and X' — X = X' ® X. To find this deviant
property, we will use heuristics (see below). Third, we isolate some verifiable information based
on Y and Y’ and a piece of information x of K5. This is a predicate R(x,m(Y,Y”)) which is true
whenever Z/ @ Z = b and & is correct, and which is exceptionally true otherwise. The function 7
is used to compress Y and Y to the required information needed in order to evaluate R. Finally,
we run the attack based on statistics.

Precomputation:
1: initialize SubCandidate,, to empty set for all u
2: for all u and all k such that R(x,u), insert x in SubCandidate,,

Collection phase:
3: collect n pairs ((z,y), (z’,y’)) of plaintext-ciphertext pairs, with 2’ =z ® a

Analysis phase:
4: initialize counters m, to 0
5: for each pair ((z,y), (z',y')) do
6: compute u = w(y,y’)
7 for all x € SubCandidate,, increment m,
8: end for
sort all possible k in decreasing order of m,,

©

Search phase:
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10: for each sorted k, exhaustively look for K

In the precomputation phase, we prepare some tables SubCandidate, to quickly yield all possible k
such that R(k,u) holds. In the collection phase, we collect pairs of pairs (x,y) and (2,y’) such that
y=Ck(x),y = Ck(2'), and 2’®x = a. This is done by chosen plaintext attack. Then, during the
analysis phase, we compute u = 7(y, y’) and increment the counter of each key in SubCandidate,,.
Then, we can look at the score of all candidates and sort them by decreasing score. Finally, the
search phase will treat each x in the sorted list as the potential value corresponding to K. The
idea is that with enough samples, the highest score will be made by the correct value.

Given a function f mapping p bits to g bits, we define a function DP/ by

DP/(a,b) = Pr{f(X &a) = f(X) & ]

for a € {0,1}?, b € {0,1}?, and X uniformly distributed in {0,1}?. This is the differential
probability. Clearly, we have the following properties:

e DP/(0,0) = 1 and DPY(0,b) = 0 for all b # 0;
e 3, DP/(a,b) = 1 for all g;
e 27 x DP’(a,b) is an even integer.

The last property comes from the fact that the number of x such that f(z ® a) = f(z) ® b must
be even: if z satisfies the relation, then x @ a as well, so all these x’s come in pairs. Clearly, the
deviant property which is used in differential cryptanalysis can be expressed by DP%: (a,b) being
high.

To find the deviant property, we write the block cipher as a computation circuit, we look at the
propagation of differences of plaintexts X and X’ in this circuit, and we follow some heuristics.
Clearly, if we have a linear gate M mapping an input X to an output Y, if two inputs are within
a difference of AX, the resulting outputs will be within a difference of AY = M x AX. This can
be applied to a duplicate gate mapping X to M x X = (X, X),so M = (1 1), or to a XOR gate,
mapping (X,Y) to M x (X,Y)=X®Y,so M = (11). When crossing a non-linear gate, we look
at a plausible difference transform (by studying the differential properties of that gate) and we
do the heuristic approximation that the difference propagation through all non-linear gates will
be independent. So, we approximate DPC% (a,b) by the product of the probabilities that these
propagations hold.

For the differential cryptanalysis for DES reduced to 8 rounds (instead of 16), we find a
deviant property with a probability close to 27134, We can further show that s has 30 bits and
that each key pair increases the score of 2'° counters m,. We assume that the selection of these
counters look like random. So, each counter (for a wrong value) is incremented with probability
Py A % = 2720 by each pair, and that the counter for the correct value  is incremented with
probability p; = 27134, The final score of this value will be np; on average, where n is the number
of pairs. Typically, the distance to the expected value will be of order ,/np;. This comes from
the total score being the sum of n independent, identically distributed, random boolean variables
with expected value p;. So, the expected value of the sum is np; and the standard deviation of
the sum is y/np1 (1 — p1) = \/np1. Similarly, the expected value of m,, for a bad & will be within
a distance of \/nps to nps. Clearly, p1 > p2. So, np1 — np2 = np; and /np1 > /np2. Hence,
whenever ,/np; < np;, we can separate the good counter from the bad ones and deduce s (see
Fig. B2). The condition for this to be the case is thus that n > 1/p;.

5.3 Linear Cryptanalysis

In 1990 [B0, 60], Henri Gilbert and his colleagues invented a way to break FEAL, a block cipher
looking like DES. This inspired Mitsuru Matsui to develop linear cryptanalysis in 1993 [42], then

Lwhere (1 1)t denotes the transposed matrix of (1 1)
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Figure 5.3: Splitting a Block Cipher for Linear Cryptanalysis

to successfully apply it to DES in 1994 [43]. His attack is a key recovery known plaintext attack
requiring 2*3 known plaintexts.

Like for differential cryptanalysis, it first requires to split the block cipher into three elements:
a key schedule transforms K into K7 and Ko; X is processed by the core encryption using K ; then
the result Z is processed by the post-encryption using K5 (see Fig. B3). This yields Y = Cx (X).
Second, we must find a deviant property of the core encryption of the form “|Pr[a X=b-Z]—- %
is large”, when X is random, Z is the core encryption of X, a and b are constants, and x - y is
the modulo 2 dot product between the vectors  and y. Third, we isolate some way to compute
a-X®b-Z from X, Z, and a piece of information x of Ky. This is a function P(k,n(X,Y))
which is equal to a- X @ b- Z whenever k is correct, and which is uniformly distributed otherwise.

Finally, we run the attack based on statistics.

Collection phase:

1: for all possible u = 7(z,y) do

2: initialize a counter n,, to zero

3: end for

4: collect n plaintext-ciphertext pairs (z,y)
5: for each (z,y) do

6: compute u = 7(z,y)

7: increment n,,

8: end for
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Analysis phase:
9: for all possible x do
10 compute My = 32, s p(suy=0 Mu
11: end for
n |

12: sort all x in decreasing order of |m, — %

Search phase:
13: for each sorted x exhaustively look for K
In the collection phase, we just count how many pairs (z,y) give 7(z,y) = u, for each u. Then,
for each k we compute m, which is how many times P(k,7(x,y)) is equal to 0. Then, we can
look at the score of all candidates and sort them by decreasing distance to 5. Finally, the search
phase will treat each x in the sorted list at the potential value corresponding to K. The idea is
that with enough samples, the highest score will be made by the correct value.

Given a function f mapping p bits to g bits, we define a function LP/ by

LPf (a,b) = (2 Pra- X =b- f(X)] - 1)2

for a € {0,1}?, b € {0,1}9, and X uniformly distributed in {0, 1}?. This is the linear probability.
Clearly, the deviant property which is used in linear cryptanalysis can be expressed by LPCk (a,b)
being high.

To find the deviant property Prla- X = b- Z] far from %, we proceed in a way which is the dual
of what we did for differential cryptanalysis: we write the block cipher as a computation circuit,
set the output mask b, and follow the computation backward to see what input mask to set. If we

have a linear gate M mapping X to Y = M X, we know that
b-Y=b-(MX)= (M) -X=0a-X

when a = M'b. So, an output mask b to M corresponds to an input mask M®b. When crossing a
non-linear gate S with output mask b, we look at the possible masks a making Pra- X =b-S(X)]
far from % We obtain b- S(X) = (a- X) & B for a biased bit B. When piling up all equations,
the final relation around the core encryption looks like

(a-X)&(b-2) :bit(K)@EnBBi

for some Boolean function bit(K) of the key K and some biases bits B; corresponding to the
non-linear gates. To measure the bias of a random bit B, we define

LP(B) = (2Pr[B = 0] — 1)
Then, we make the heuristic assumption that all B;’s are independent? and apply the following
result:

Lemma 5.1 (Piling-up Lemma). Given some independent random bits By, ..., B,, we have
LP(B1®---® B,,) =LP(By) x --- x LP(B,,)

Proof. To prove this, we observe that LP(B) = (E ((—1)3))2 and apply the properties of inde-
pendent variables. O

It is interesting to see how differential and linear cryptanalysis are dual of each other. On one
case, we were doing the computation forward on differences, applying the linear transforms M,
computing DP’s. On the other case, we were doing the computation backward on masks, applying
the transposed linear transforms M?, computing LP’s. Unsurprisingly, there is a nice link between
DP’s and LP’s. Actually, one is the discrete Fourier transform of the other, which is expressed by
the following result.

2This is of course not true, but in cryptanalysis, we often make some approximations to be able to make estimate,
and we only care if the final implementation works: if we do recover the secret key, we do not care whether our
mathematics analysis was formally correct or not!
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Theorem 5.2. If f is a function mapping p bit to q bits, we have

DP/(a,b) =277 "(=1)**®*PLP/ (q, B)
a,f3
and

LP/(a,8) =277 "(~1)"*®**DP/ (a,b)
a,b

Proof. We first observe that
LP/ (a, B) = (E ((_1)<a~X>@<B-f(X>>))2 -E ((_1)(a-<X@Y))@<ﬁ-<f(X>@f<Y>>>)

where X and Y are independent and uniformly distributed in {0, 1}P. Then, we compute

S (—1)2 R BLP (a, 8) = E [ 37 (—1)(@ @@Xev)e 6o (08/ ()
a,f a,f

Given X and Y, the inner sum over a and S is always zero, except if X®Y = aand f(X)@f(Y) =
b, in which case the sum is 2P™4. So,

D (1) LR (@, ) = 2PVUE (Ixgy—a, f(x)25(v)=b)
P

= 29DP/(a,b)

which gives the first equation. To obtain the second, we compute the right-hand side of the
equation and replace DF/ by the expression we have just got:

S (1) IDPS (a,5) = 2793 (~1)r00 B 3 (1) O Lpd (o, )

a,b a,b al,B’
SRR ML) T
o', B’ a,b

The inner sum is zero except for a = o/ and 8 = ', for which it is 274, So, this expression is
equal to 2 x LPY(a, B). O

We could do a complexity analysis of the linear attack method. What we would obtain is
that the required number of samples to find the correct x with good probability has of order of
magnitude 1/ LPCi, (a,b). Again, this is a result similar to the one of differential cryptanalysis
where it was the inverse of DPC#1 (a,b).

5.4 Hypothesis Testing in Cryptography

In cryptography, we are often concerned about distinguishing if some random samples follow a
given distribution P, or a given distribution P;. Concretely, we have a random source generating
independent samples 1, ..., x4 following the same distribution P. Then, an algorithm A called a
distinguisher analyzes x1, ..., x4 and tries to guess whether P = Py or P = P. Le., A(z1,...,2q)
is a bit. The ability to distinguish P, from P; is measured by the notion of advantage: we define

AdV_A(Po,Pl) = PI'[A(LCh...,(Eq) = 1|P = Pl] —PI‘[A(LCh...,{Eq) = 1|P = P()]

We say that Py and P; are (g, ¢)-indistinguishable if for any A limited to ¢ samples, we have
|AdV_A(P(), P1>| S E.
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In the theory of hypothesis testing, A is testing the null hypothesis
Hy: P=PF
against the alternate hypothesis
H: P=hP
The frequentist approach studies two types of errors:

e the type I error: o = Pr[A(z1,...,24) = 1|P = Py, the error made by A thinking that the
distribution is P; when it is actually Pp;

e the type II error: § = Pr[A(z1,...,x4) = 0|P = P1] the error made by A thinking that the
distribution is Py when it is actually P;.

The Bayesian approach rather considers that both hypotheses have a probability 7y resp. 71 and
studies the probability of error

P, = amy + pmy

In the typical case that we will use in this course, we have my = 7 = %, SO
Advy(Py, P )=1-2P.=1— (a+ )

When limited to ¢ = 1 sample a natural way to distinguish Py from P, is to take a decision
based on whether Py(x) < Pj(x): if this inequality holds, then it is more likely that P = P; so
we can output 1. This strategy is actually optimal as we can show. First, we can assume without
loss of generality that A is deterministic. So, A is characterized by the set A~!(1) of values of =
producing the output 1. We have

Adva(Po, 1) = Y (Pi(x)— Po(x))
reA-1(1)

Y (Pi) - Poa))

z:Py(z)<P1(x)

= IR - R

IN

with equality when A71(1) = {x : Py(z) < Pi(z)}, which corresponds to the above natural
strategy. Given some real functions fy and f1, we define the statistical distance (or L, distance)
between fy and f; by

1
d(fo, f1) = 3 Z |f1(z) = fo()]
We obtain the following result:

Theorem 5.3. For any A limited to ¢ = 1 sample, we have Adva(Py, P1) < d(Py, P1). The
equality is reached for the algorithm producing 1 if and only if Po(x) < Pi(x).

Proof. We have already proven the inequality. To study the equality case, we have to see what it
implies in the proof for inequality. Clearly, equality implies that

Yo (@) -R)= Y (Ple) - Ro(x)

r€A-1(1) z:Po(2)<Py(x)

which means that A~!(1) contains all = such that Py(z) < Pi(z) and maybe some extra x such
that Py(z) = Py(x). O
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Given a distribution P on values x and an integer ¢, we define P®9 a distribution on g-tuples
of values (z1,...,xz4) by
P®(xq,...,24) = P(x1) -+ P(z,)

We can see the general case as a particular case of the ¢ = 1 one: g samples can be considered as
one sample of a g-tuple! So, we obtain the following result [2]:

Theorem 5.4. For any A limited to q independent samples, we have Adv 4(Py, P1) < d(P0®q7 P{g’q).
The equality is reached for the algorithm producing 1 if and only if Po(z1) - - - Po(xq) < Pi(z1) -+ Pi(zq).

One remaining question is the following: how large must be ¢ so that d(ng 1 P1® ) is significant
for cryptanalysis? We can easily show by induction that d(sz) K P1® 1) < qd(Py, P1). So, we need
at least ¢ > 1/d(Py, P1), but it is not guaranteed that this would be enough. In what follows, we
want to have a more precise estimate, based on some notions from the theory of large deviations.

Given a sample vector x = (21, ..., x,), we define the observed distribution (which is sometimes
called a type) P, by P.(y) = %#{i : x; = y}. Given two distributions Py and Py, we define the
Kullback-Leibler divergence

Py(z)
P1 (.T)

D(R|lP) = > Py(z)log
z€Supp(Po)

where the log is in basis 2. Although this is not symmetric, this is very similar to a notion of
distance: it is non-negative and equal to 0 if and only if Py = P;. We define

II={P: D(P||P) < D(P||Fy)}

the set of distributions which are “closer” to P; than to Py. We can easily see that the strategy

from the above theorem outputs 1 if and only if the observed distribution of z = (z1,...,2,) isin
II. Indeed,
Po(l‘) 1 k Po(xi) 1 Po(J?l)Po(J? )
D(P,||P1) — D(P.||Py) = P.(y)lo =- lo =-lo 2
(PlP) =D = D, Pelwloe by = 2108 (0 = G 8 By (o) (o)

We can take some simple examples.

e For the distribution of a coin flip (head or tail) with Py being uniform and P; being biased,
e.g. Pi(head) = %(1 + ¢€), if ghead and gy are the number of occurrences in i.i.d. samples,
the likelihood ratio is less than 1 if and only if ghead log(l + &) + graiilog(l — &) > 0. This is
roughly equivalent to grail < Ghead-

e If Py is uniform over a set A C B and P; is uniform over the set B, the likelihood ratio is
less than 1 if and only if all samples belong to A.

e Using normal distributions, if Py = N (u,0) and P = N (i, o), the likelihood ratio for one
sample is computed using the pdf:

1 (w—p)?

(,0#70(1') = \/ﬂ

The likelihood ratio is less than 1 if and only if z > %’/

e Using n i.i.d. samples of Bernoulli variables of expected value py or pi, with py ~ p; and
po < p1, the vector of samples is equivalent to their sum. Their sum can be approximated to
a normal distribution of expected value np, and standard deviation o, = v/n — Py(1 — pp),
for b=0,1. Using o¢ =~ 01, the previous case says that the likelihood ratio is less than 1 if
and only if = > %.
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5.5 Decorrelation

We assume that a distinguisher is given access to an oracle implementing some random function
from a set A to a set B. We know that either it has the distribution of a random function F' or a
distribution of an ideal random function F*. For instance, F' is a random cipher C (set up with
a random key) on the set A (and B = A) and F* is the perfect cipher C* over A. As another
example, F' is a function defined by a MAC with a random key and F* is a uniformly distributed
random function. We assume that the distinguisher is limited with the number of queries ¢ that
he can make. The distinguisher is not limited in complexity.

Given a random function F' from A to B and an integer ¢, we define a (huge) real matrix [F]?

in which rows have an index corresponding to a tuple « = (x1,...,24) of ¢ inputs and columns
have an index corresponding to a tuple z = (y1,...,y,) of ¢ outputs. The element [F]gy at
position (x,y) is the real number Pr[F(z1) = y1,. .., F(z4) = y,4]. Decorrelation to the order ¢ is

the distance between [F]? and [F*]1.

It is convenient to define the distance in terms of a matrix norm. Matrix norms are norms (i.e.,
[|M]| is always positive, equal to 0 if and only if M = 0, [|AM|| = |A| x || M]], and |M + M'|| <
[[M ||+ || M']]) with the additional property that ||[MM'|| < || M| x ||M’||. For instance, the co-norm
over the vectors ||v]|oc = maxy |v,| induces a companion matrix-norm

[IM]]|oc = max [ Moo = max Y [M,,]
1 x
Yy

llvlloo <

This norm bridges the theory of decorrelation with the theory of best non-adaptive distinguishers
as the following result shows. A distinguisher is non-adaptive if it prepares all its queries at once.
Namely, it does not adapt a query x; based on the response from previous queries.

Theorem 5.5 ([62]). For any random functions F and G, the best advantage of a non-adaptive
distinguisher between F and G, limited to q queries, is equal to 3|||[F]? — [G]7|]oo.

Proof. A non-adaptive distinguisher can be assumed to prepare the g queries x1,...,z4 before
making any query. Then, he obtains a vector (Yi,...,Y;) of random variables defined by Y; =
F(z;) in the F case and Y; = G(z;) in the G case. So, this reduces to distinguish the distributions
of (F(z1),...,F(zq)) and (G(x1),...,G(x4)). We know from Th. B33 that the best advantage is
half of the statistical distance between the two distributions, hence

1
Adv = 5 Z [Pr[F'(z1) = y1,..., F(zq) = yq] = Pr[G(z1) =11, ..., G(zq) = Y4l
Y1;5--4,Yq

The best advantage over the choice of z1, ...,z is

1
Adv = 3 ,nax Z [Pr[F(z1) = v1,- .., F(zq) = yq] — Pr[G(z1) = 11, ..., G(xg) = y4]]
Y1s--3Yq

which is 3I[F)7 — (G| -

To compute the advantage of a distinguisher which can be adaptive, we use the norm

1M]q = max > max Y M) s
q
Y1 Yq

This is indeed a matrix norm [62]. Just like the previous theorem, we can prove the following
result.

Theorem 5.6 ([62]). For any random functions F and G, the best advantage of a distinguisher
between F and G, limited to q queries, is equal to 1||[F]? — [G]?||,.

Decorrelation enjoys the following property.
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Theorem 5.7 ([62]). If Cy and Cy are independent random permutations, to be compared with
a uniformly distributed random permutation C*, for any matriz norm, we have that

[[Ca 0 1] = [C7)7|| < [ICH]T = [CF)] > [I[Ce]* = [C7)1]

Proof. We first observe that [Cy o C1]? = [C1]? x [C5]4.

Then, we notice that [C*]? has an absorbing property. Indeed, [C1]? x [C*]? is equal to
[C* o C1]?. Since C* and C; are independent, in the group of permutations, and that C* is
uniformly distributed, C* o C; and C* have the same distribution. So, [C* o C1]? = [C*]? from
which we deduce [C1]? x [C*]? = [C*]9. We similarly show that [C*]? x [Co]? = [C*]9.

Now, we have

([Ce]7 = [C7)7) x ([Co)? = [C7)7) = [Ca 0 1) = [C7)

by expanding the product, thanks to the absorbing property of [C*]9. Due to the matrix norm
multiplicative property, we have

[[Cy 0 1] = [CF)7|] < NICH] = [ > [I[Ce]* = [C7)1

We can apply this result on the Luby-Rackoff Theorem.

Theorem 5.8 (Luby-Rackoff 1986 [A1]). Let Fy, F5, Fy be three independent round functions
with uniform distributions from the set of %—bit strings to itself. We consider the 3-round Feistel
scheme C = U(Fy, Fy, Fy) to be compared with the ideal cipher C*. For all distinguisher limited
to q queries, the advantage to distinguish C' from C* is bounded by q2.2_%.

Proof. We split an input x; into z; = (27, 2}). Similarly, we split and output y; = (2},23). We
further define 27 = 2? @ Fy(z}). Clearly, x; maps to y; if and only if 2} = 2! & F5(2?) and
2} = 22 @ F;(23) (see Fig. B34). Let E be the event that for i = 1,...,q, we have 2} = 2} & F5(22)
and z} = 27 @ F3(2}). We obtain that [C]4 , = Pr[E].

Let Y be the set of all y = (y1,...,y,) such that for all i # j, y; and y; define some 2} and 25’

such that 23 # zf If we take a uniformly distributed random y, the probability that it is not in

Y is Pr[3i < j 2} = z3]. This is bounded by UL times Pr[zd = 23] = 27%. So, we have

PrlyedY]|>1—¢

with € =
Let z be arbitrary and let y € ) be arbitrary but in ). We define the event E? that all 22 are
pairwise different. Just like above, we have Pr[E?] > 1 — e. Then, we have

(g=1)o— L
CUSIPEES

[C]¢,, = Pr[E] > Pr[E, E?] = Pr[E|E?] Pr[E?]

If the 22 are pairwise different, the Fi(2?) are uniform and independent. Since we also know that
the 2 are pairwise different, the F (2?) are also uniform and independent. Hence Pr[E|E?] = 27,
We deduce
[ClE, = (L—e)27 = (1 -¢)[F]L,
Therefore, we have found a set ) such that Prly € Y] > 1 —¢ and [C]{ , > (1 — ¢)[F™]Z , for
all y € V. By applying Lemma B9 below, we deduce that the best advantage to distinguish C'
(denoted by F' in Lemma BE9) from F* limited to ¢ queries is bounded by 2e = ¢(q — 1)2_5.
In Lemma BT0, we show that the best advantage to distinguish C* from F* is bounded by

Q—;Q*e. For ¢ < 257 the sum is bounded by q2’§. For ¢ > 25, it is bounded by 1, so by q2’§ as
well. So, the best advantage to distinguish C' from C* limited to g queries is bounded by q22*§.
For ¢ larger, this bound is larger than 1 so the advantage is also bounded by this. a

The lemma below is inspired by Patarin’s “H coefficient technique” [46].
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Figure 5.4: Proof of the Luby-Rackoff Theorem

Lemma 5.9. Let F' be a random function from a set My to a set Ms. We let X be the subset
of M{ of all (z1,...,x4) with pairwise different entries. We let F* be a uniformly distributed
random function from My to Msy. We assume there exists a subset ) C ./\/lg and two positive
numbers €1 and ex such that

° #ﬂg 21l-a

eVzeX Wyey [Fli, > ghn(l-e).

.Yy —

Then the best advantage to distinguish F from F* limited to q queries is bounded by €1 + €3.

Proof. We know that for all z € X and y € M3 we have [F*]Z = po for the constant py =
(#My)~9.

Without loss of generality, the best distinguisher is deterministic. Let x; be its ith query and
y; the response from the oracle. (Note that x; can depend on yi,...,y;—1.) Let A be the set of
all y1,...,y, making the distinguisher output 1. We assume without loss of generality that z € X
(if a query repeats, we can replace it by an arbitrary new one and substitute the answer to the
previously known answer of the repeating query). The advantage is

Adv =" ([F12, - [FI2,)

yeEA

For y € Y, we have [F*|4  — [F]4, < es[F*] . Otherwise, we use [F*|4  — [F]4, < [F*]¢,. So,

Adv < e Z [F* )3,y + Z [F7]8,y < &2 Z[F*]gv + Z[F*]gy <er+Prlyg Y] <erter
yEA,yey yeA,ygY yey ygy

a

It is interesting to look at the structure of the [C*], , matrix. We note by Part(x) the partition
of {1,...,¢} such that ¢ and j are in the same class if and only if 2; = x;. When Part(z) #
Part(y), we have [C*],, = 0. When Part(z) = Part(y) and there are exactly m classes, then
[C*)ay = 22(22_1)_}(22_”14_1). Contrarily, if each class in Part(x) is a subset of a class of Part(y),

we have [F*],, = 27™¢ Otherwise, [F*],, = 0. Below, we bound the distance between [C*], ,
and [F*], .

Lemma 5.10. Let F* be a uniformly distributed function from a set M to itself. Let C* be a
uniformly distributed permutation on M. The best advantage to distinguish C* from F* limited

to q queries is bounded by q2((\1,/\_/11|)'
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Proof. Let A be a distinguisher limited to ¢ queries. We assume w.l.o.g. that A never repeats a
query. Let x; be the ith query.

Conditioned to the event E that no F(x;) collide, the distribution of (F(z1),..., F(z4))|E and
(C(z1),...,C(zq)) are identical. So,

Pr[AY = 1] — Pr[AY = 1] < Pr[A" = 1|E] — Pr[A° = 1] + Pr[-E] = Pr[-E]
by using the property
Pr[A] = Pr[A4, E] 4+ Pr[A, —E] < Pr[A|E] Pr[E] + Pr[-E] < Pr[A|E] 4+ Pr[~E]

Then, we have Pr[-E] < E?Sing Pr[F(z;) = F(z;)] = %2_4. ad

The Luby-Rackoff Theorem is not so usable in this form since we don’t have uniformly dis-
tributed functions F;. If we have some independent functions Fi, F», Fy such that 1| [F;]" —
[F]"|le < e, we obtain

1 n *1n 1 n * n

I B, B)" = [C°]"lla < SITO(EL, B2, B)]" = [W(FY, Fo, B5)]"]|a +
1 * n * * n
§||[\IJ(F17F23F3)} 7[\IJ(F17F27F3)] Ha+

1 * * n * * *\1"n
S IWCET, By, B)]" — [W(EY, By, B3]l +

1 * * *\11 *1n
S IWCET, By, B = (O]l
Each of the first three terms in the sum can be considered as the advantage of a distinguisher

between F; and F}", respectively, so they can be bounded by €. We thus obtain
1
SR, o, F)]" = [C*]"[la < 32 + n?27%

Now, we can use the amplification result and obtain the following theorem.

Theorem 5.11 ([62]). Let Fy,..., F3 be 3r independent round functions such that || [Fi]™ —
[FF]"]|a < e. We consider the 3r-round Feistel scheme C = U(Fy,..., F3,) to be compared with
the ideal cipher C*. For all distinguisher limited to q queries, the advantage to distinguish C' from

C* is bounded by (2(12.2_% + 65) )

Proof. We have already proven the r = 1 case. We note that C is the product of r independent 3-
round Feistel ciphers. So by using Th. 674, we conclude by the equivalence between best advantage
and decorrelation (Th. 68). O

If we wanted to apply this to DES, we would have £ = 64. Even in some ideal case with n < 21°
and ¢ = 0, we obtain a distinguisher with advantage bounded by 2~7 for 18 rounds. This is not a
good security result.

However, we could apply the theorem with ¢ = 2 and obtain interesting results. Namely, every

T
distinguisher limited to two queries has an advantage bounded by % (66 + 8.275) . Applying this

to linear and differential distinguishers with a single iteration, we deduce that for every a and b,
E(DP%(a,b)) and E(LP(a,b)) are low. Namely, we have the following result.

Theorem 5.12 ([62]). For a # 0 and b # 0, we have

BOPO(@h) < g+ g lCF ~ [Pl
BUP(a0) < g +2lOP ~ [CP
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So, decorrelation theory can already be used to show that there is no good E(DPC(a,b)) and
E(LP%(a, b)) for differential or linear cryptanalysis.

Proof. We write
E(DPC(Q, b)) =27¢ Z 1z2@z1:a,yz®y1:b[0]a2c,y

T1,22,Y1,Y2

So, we (easily) deduce that E(DPC" (a,b)) = .
We consider the non-adaptive distinguisher picking z; and x4 of difference a then querying z;
and x5 to obtain y; and ys and producing 1 if and only if yo @ y; = b. Clearly, the advantage is

E(DP%(a,b)) — 57— . Due to the equivalence between advantage and decorrelation, we have

1
E(DPY - o0
(DP(a,1)) — g < 5IIICP ~ [C°Pl|
For the LP, we use the Fourier transform:
E(LP (o, 8)) = 27 fz 1)*®># B(DPY" (a, b))
— 2— _1_2—@ Z a()/@bﬂ 1
1
a,b#0
_ 1
o201
then
2
E(LPC(a,b)) = E( 1)aweb: C<w>) >
- E (( 1 a-x1®b-C( 1,1)( 1>a~wg®b'C(7;2)>
_ E( a-(z1©w2)®b: (cm)@cm)))
= E( X 1,. (z1®x2)=b-(C(21)®C(x2)) — ]')
= 2 (2 2 1a'(x1@x2)=b~(y1€9yz)[C]i,y> -1
T1,21,Y1,Y2
SO
1 «
C - C _ C
E(LP (a,b)) T E(LP (a,b)) E(LP (a,b))

= 92x92°% Z 1a-(ac1€9x2):b*(y1€9y2) ([C]i,y - [C*]i,y)

1,T1,Y1,Y2
< 2max Z ’[C]iy — [C*}i7y|
s Y1,Y2
= 2[|[C]* = [C*Pll
O

As an application, we can consider the DFCv2 cipher, which is an 8-round Feistel scheme for
which was can prove |||[C]? — [C*]?||| < 27115,
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Chapter 6

Proving Security

Foundations of cryptography, as presented in the previous chapter about interaction, show that
proving techniques heavily rely on the notion of modeling, simulation, interactive Turing machine
rewinding, complexity reduction, etc. In a former chapter, we intuitively introduced some notions
of security for encryption and signature. In the present chapter, we present some techniques to
achieve provable security.

6.1 The Random Oracle Model

In the random oracle model (ROM), all participants in the game can query an oracle H, but do not
see the queries of others. The oracle is responding randomly (so the name), but consistently. That
is, the answer to a fresh query will be random, but forthcoming identical queries will produce
the same response. So, a random oracle models a deterministic function which is selected at
random before the game starts. Formally, the response is a “long enough” bitstring. In most of
applications, we assume it is a string of pre-determined length. The trick in the random oracle
model is that reductions can simulate the random oracle (so that it looks like a real random oracle)
but with some hidden but useful information.

Signatures with Full-Domain Hash (FDH). The FDH signature scheme [7] is based on
RSA (see Fig. B): we consider that the random oracle H returns random Z% elements, given the
RSA modulus N. The signature of a message m is the RSA signature of H(m). The verification
algorithm then follows.

Theorem 6.1. If the RSA decryption problem is hard, then FDH is EF-CMA-secure. le., it
resists to existential forgeries under chosen message attacks.

Proof. We give here the proof by Coron [23]. We consider an adversary A playing the EF-CMA
game. l.e., he is given oracle access to H and the challenger also makes hash queries. He receives
some public key (e, N). He can make signing oracle queries: he chooses one message m and gets its
signature o by an oracle call. Then, he produces one pair (m, o) and wins if o is a valid signature
for m and m was not queried to the signing oracle.

By changing A a bit, we reduce without loss of generality to cases where either the attack
aborts or the final output is always valid, m was not queried to the signing oracle, and m was
queried to the hash oracle.

Then, we construct an algorithm B to solve the RSA decryption problem: B receives a public
key (e, N) and a ciphertext y and must decrypt it. For that, B simulates A receiving (e, N) as a
public key, then playing with a simulation for the hashing oracle and the signing oracle.

B simulates H as follows: he answers consistently to repeating queries. For a fresh query m,
B picks r €y Z%; and flips a biased coin b such that Pr[b = 1] = p for some magic parameter p to
be later explained. Then, B answers as if H(m) = y°r® mod N. It is clear that H(m) is perfectly
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Figure 6.1: Full Domain Hash (FDH) Signature

distributed, even if b is fixed. So, this is a valid simulation of H. More importantly, B keeps a
record of y and b such that H(m) = y*r¢ mod N as they will play a role.

B simulates the signing oracle as follows: to sign a message m, he queries m to H and takes
y and e such that H(m) = y’r® mod N. Then, if b = 1, B aborts. Otherwise, we have H(m) =
r¢ mod N, and the signature of m is clearly r. We can thus simulate without the signing key,
unless we abort. Clearly, this simulation is also perfect, except when aborting.

Since the simulations are perfect, A behaves with the same probability as in the EF-CMA
game and either aborts or produces a forgery (m, o).

Finally, when the simulation of A terminates on (m, o), B takes y and e such that H(m) =
y’r¢ mod N. Then, if b = 0, B aborts. Otherwise, we have H(m) = yr® mod N. Since o is a valid
signature, we also have H(m) = ¢ mod N. So, y = (¢/r)¢ mod N. Hence, the decryption of y is
o/r mod N.

The probability that B succeeds is the probability that all hashing queries by the challenger
used b = 0, that the hashing query related to the forged signature used b = 1, and that A succeeds.
By assumption, the message in the forgery was not queried to the signing oracle. So, this happens
p(1—p)9s times the success probability of A, where gg is the number of signing queries. By taking
p= ﬁ7 we have )

e
1_ as >
p(1—p) |

Since the RSA decryption problem is hard, we deduce that Pr[A succeeds]/(gs + 1) is negligible.
Since ¢g is polynomially bounded, this means that Pr[A succeeds] is negligible as well. So, A
cannot win in the EF-CMA game except with negligible probability. a

Hybrid RSA encryption in ROM. We consider a cryptosystem based on RSA, in which
the encryption of m is a pair (s, ¢) such that s is the RSA encryption of some random r, and
¢ =m @ H(r) (where messages have a fixed length and H(r) is assumed to be as long as the
message). (See Fig. 62.)

Theorem 6.2. If the RSA decryption problem is hard, then the above cryptosystem is IND-CPA
secure.

Proof. Let A be an adversary playing the IND-CPA game and wining with probability % +e. We
want to show that ¢ is negligible. Following the rules of the game, A receives a public key (e, N),
makes some hash queries to H, selects mg and m, gets a ciphertext (s, ¢) which encrypts m;, and
makes a guess for b.

We let E be the event that A makes a query r to H that is such that ¢ mod N = s. Note
that by running A, we can always check if E occurs once A terminates. Clearly, if F occurs, the
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decryption of (s,c) must be ¢c® H(r). So, we can construct another adversary who always answer
by ¥’ such that my = ¢ ® H(r) when E occurs. Without loss of generality, we assume that this is
what A does.

We note that if E holds, A always win. If E does not occur, we have that » = s mod N is not
queried to H by A and ¢ = my® H(r) with H(r) random. Note that H(r) is uniformly distributed
and only used to compute c. So, c¢ is statistically independent from b. Therefore, the view of A is
independent from b and the probability that A guesses b is exactly % We deduce that

% + & = Pr[A wins|E] Pr[E] + Pr[A wins|-E](1 — Pr[E]) = % + %Pr[E]
So, e = 1 Pr[E].

We construct an algorithm B to solve the RSA decryption problem. This algorithm receives
an instance (e, N,y). Then, he picks 1 € Z%, and runs A playing with a simulation of H and the
challenger.

To simulate H receiving a query r, if (r/r¢)¢ mod N = y, the simulation stops and B answers
r/ro mod N. Otherwise, the simulation of H is natural.

To simulate the challenger receiving mg and m; by A, B picks ¢ of same length and answers
by (s,¢) where s = yr§ mod N.

Clearly, this perfectly simulates A playing the IND-CPA game in the case that £ does not
occur. When E occurs, B wins. Now, since the RSA decryption problem is hard, Pr[E] must be
negligible. So, ¢ is negligible as well. a

Fiat-Shamir signatures [27]. A X-protocol (R, P,V,E,S) in which the set of challenges F is
large enough can be transformed into a signature scheme in the random oracle model. Concretely,
we are given a pair (z,w) such that R(z,w) holds, x is a public key and w is the secret key. To sign
a message m, we simulate the prover P who sends a = P(z,w), receives e = H(m,a), and sends
z (see Fig. B3). The signature is (a, z). To verify the signature, we check that V (z, a, H(m, a), z)
holds.

Theorem 6.3. If the problem of finding a witness for x is hard and if 1/#E is negligible, then
the above signature scheme is EF-CMA-secure.

This construction can be applied to some parallel repetitions of the Fiat-Shamir Y-protocol. (In-
deed, the Fiat-Shamir ¥-protocol has only 2 possible challenges, so we need some parallel repe-
titions to make 1/#FE negligible.) This is based on the problem of finding square roots in ZZ.
It can also be applied to the Schnorr Y-protocol to obtain the Schnorr signature scheme (see
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Fig. 64). The only change to make to obtain the Schnorr protocol is to use (e, s) as a signature
for m instead of (r,s). This is valid since we can compute (m, e, s) from (m,r,s) and vice versa.
It is more interesting to use (m, e, s) because the hash e is typically much shorter than the group
element r. It is based on the discrete logarithm problem.

The idea of the proof of this last theorem is that we transform an EF-CMA adversary into a
witness finding algorithm as follows:

e First, we transform it into an EF adversary making no chosen message queries. To do this,
we simulate the original adversary. We also keep track of the history of queries to H and
their responses. Whenever it makes a signing query m, the simulator can select a random
e € E and run S(z,e) = (a,e, z), then insert ((m,a),e) in the table collecting the queries
to H, as if we had queried H(m,a) and obtained e. The simulator can then answer (a, z)
to the signing query. Additionally, any query H(m,a) should be intercepted and the answer
replaced by e.

Technically, we must check that there is no prior (m,a) query to H which would conflict
with this simulation.

e Then, we run the adversary making no chosen message query and simulate the random oracle
H. We show that the message m from the final forgery (a, z) must be queried together with
a to H(m,a) (otherwise, there is a negligible probability that the forgery is correct). Then,
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we run again with the same coins and same simulation for H, until this query (m,a) is
responded differently. The magic in this trick, called the forking lemma [9], is that we are
likely to obtain two simulations producing the same m and a with two different H(m,a).
Then, we can call the extractor £ to create a witness w.

For this, we will first show two lemmas.

Lemma 6.4. Given a relation R s.t. it is hard to find witnesses and a %-protocol for its language
s.t. 1/#FE = negl, we consider the signature scheme obtained by the Fiat-Shamir construction
using a random oracle.

There is a compiler which can transform an adversary A playing the EF-CMA game into
another adversary A" making no chosen message queries such that the complexity of A’ is the one
by A multiplied by some polynomial and

Pr[A" wins| = Pr[A wins] — negl

Proof. The EF-CMA game is depicted by the interaction between the adversary A, a challenger,
and a random oracle H (see Fig. 63). The challenger selects  and w and sends z to A, then
answers to any signature query m by computing some signature with the help of the random
oracle: the challenger picks r, computes a = P(z,w;r), queries m|la to H, gets e, computes
z = P(xz,w,e;r), and answers (a, e, z) to A.

We denote by (m,a,z) be the final forgery produced by A. We first define an equivalent
adversary A; as follows:

o A; simulates A until A yields its final forgery.

e If m was queried to the challenger (A4; can see it), A; aborts. So, there is no oracle query
from challenger of form (m,a’).

If (m,a) was not queried to H by A, query it to get e = H(m, a).

If V(z,a,e,z) returns false, abort.

Yield the forgery (m,a, z).

We obtain a new EF-CMA adversary 4; with similar complexity and same success probability,
who either aborts or yields a valid forgery (m, a, z), and who always queries (m/|la) to H.

We let ¢ = Pr[A wins|] = Pr[4; wins].

We now define another adversary As as follows:

e A, simulates A4; and makes a list of all queries to the random oracle. During this simulation,
Ay will have to forward queries m from .4; to the challenger and the response (a, z) back to
the simulation of A;. By doing so, A can deduce the query (m,a) made by the challenger
to the random oracle.
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e If the challenger does a query (m,a) (as observed, Ay can deduce it) which was made to the
random oracle before Ay aborts. We let ¢’ be the probability that such a repeating query
happens during the game.

We obtain a new EF-CMA adversary A, with similar complexity and success probability € — &’
such that the challenger makes queries which are fresh.

Since the total number of queries to H must be polynomially bounded, we have & < poly x
max, p, where p, = Pr[P(x,w;r) = a]. If we prove that p, is negligible for all a, we deduce that
¢’ is also negligible.

Let us now prove that for all a, p, is negligible. The algorithm running S(z, e; r) and S(z, e’; 1)
with random e, e/, r, 7’ yields a twice with probability p?. When it is the case, it can then run &€
to extract w. This works with probability p2(1 —1/#FE). Since we assumed that finding a witness
was hard, this must be negligible. So, p, is negligible.

We finally define A’ as follows:

o A’ simulates As until a query m to the challenger is made.

e Upon the query m, A’ picks r, e, computes (a, e, 2) = S(z,e;r), and returns (a, z). Since a
has the correct distribution, (m,a) must look like a fresh query to H. Since e was selected
at random, it looks like a correct response from H. So, A’ just takes note that (m,a) is
supposed to hash onto e.

e If Ay makes a (m,a) query to H, A’ intercepts it and answer e. Since this cannot be the
query corresponding to the final forgery, this does not affect the correctness of the final
forgery.

Clearly, this simulation of the challenger queries to H are made with the correct distribution. So,
it does not affect the probability of success. We thus obtain an EF-CMA adversary A’ making no
chosen message query, with similar complexity and success probability € —&’. Since &’ is negligible,
we obtain the result. O

The Forking Lemma was first proposed by Pointcheval and Stern in 1996 [29]. We give here a
generalized version of it.

Lemma 6.5 (Forking Lemma). We consider a finite tree and a mapping dist which maps any
leaf \ of the tree to one of its ancestors dist(\). We call it a distinguished ancestor. We assume
we are given a distribution which defines a random leaf X. We let visit(v) be the event that the
descent from the root to X goes through v, i.e. that v is an ancestor of X. We let succ(\) be true
if and only if dist(A) # X. When it occurs we say that X is successful. We let p = Pr[succ(X)],
d = E(depth(X)), and f(v) = Pr[succ(X) and dist(X) = v|visit(v)].

For any real number 8 > 0, we have

Pr | f(dist(X)) > (1 — 9)§)SUCC(X)} > 0.

So, if a random descent going to X is successful, another random descent starting from the
distinguished ancestor of X is likely to be successful (with probability at least (1 — 6)%) with the
very same distinguished ancestor. We can even estimate the probability that the two consecutive
descents are successful with the same distinguished ancestor:

E(f(dist(X))) = / Prf (dist(X)) > £, succ(X)] d
0
= p/1 Pr[f(dist(X)) > t|succ(X)] dt
0

1
Z p/OEX]-tS%dt

p2

4d
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Figure 6.6: EF-CMA Game with a Random Oracle and no Chosen Message

So, if p is not negligible and d is polynomial, then E(f(dist(X))) is not negligible. This will be
used later to prove the theorem.

Proof. We have Pr[dist(X) = v|succ(X)] = f(l/)w. We let Bad be the set of v’s such that
f(v) <(1-6)E. We have

d
Pr[dist(X) € Bad|succ(X)] = Z ) Pr[vi]soit(y)]
vEBad
< (1- G)W
< 1-46
so, Pr[dist(X) ¢ Bad|succ(X)] > 6. -

We can now fully prove the Fiat-Shamir signature security.

Proof (of Th. B233). By first applying Lemma 64, we reduce to the case where the adversary makes
no chosen message queries. So, we are in the situation of Fig. 68.
We define an algorithm B(x) as follows (see Fig. 622):

e B simulates A with initial z and simulates H to A.

e If A does not output any (m, a, z), B aborts. Otherwise, B runs A again with same random
coins. The answers from H use the same random answers until (m, a) is queried to H. Then,
they use fresh coins.

e If A does not output any (m, a, z’), B aborts. Otherwise, BB gets two forgeries (a, z) and (a, 2)
with same a so he can get the corresponding e and e’ then extract w = £(z,a, e, z,€’,2").

We build the tree of the A executions depending on the random answers from H (each node v
corresponds to a query by A, each leaf \ corresponds to a termination).

A random descent in the tree corresponds to a complete execution of A interacting with H.
This descent ends up to a random leaf X. This defines a distribution on leaves. We say that
X is successful and write succ(X) is the leaf corresponds to an execution yielding a valid forgery
(m,a,z). By construction, (m,a) must have been queried. The query to (m,a) corresponds to
a distinguished ancestor dist(X) of X. If X is not successful, we just define dist(X) = X. So,
the second execution of A corresponds to a second descent starting from dist(X). Let Y be the
leaf obtained in this second descent. If Y is successful and dist(X) = dist(Y'), then we have two
forgeries (m,a, z) and (m,a,z’) with the same (m,a), corresponding to some e and e’. If e # €,
the extractor finds a witness and B succeeds.

Since Pr[e = €] = negl, the success probability of B is greater than E(f(dist(X)))— negl. Since
extracting a witness is assumed to be hard, E(f(dist(X))) must be negligible. Thanks to the
Forking Lemma, we deduce that Succ(X) is negligible as well. So, A has a negligible probability
of success. a
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Controversy about the random oracle model. This model has been controversial, because
random oracles are never used in practice. They are replaced by a practical hash function. How-
ever, we can construct schemes which are secure in the random oracle model but insecure whenever
the random oracle is replaced by any hash function. We give as an example a construction pro-
posed by Canetti, Goldreich, and Halevi in 1998 [I4].

We use a construction similar as FDH. To sign a message m, we first interpret m as the code
of an algorithm implementing a function h,, (we must define a programming language and add
safeguards so that the execution of these algorithms always terminate in due time). Then, we pick
some r, query H(r), and compute hp,(r). If H(r) = hy,(r), the signature is set to the RSA secret
exponent d. Otherwise, the signature is H(m)? mod N. Clearly, in the random oracle model,
there is nearly no chance that H(r) becomes accidentally equal to h.,(r), so the security proof
works like for FDH. When we replace H by a concrete hash function h, we could consider the code
m implementing it (i.e., m such that h,, = h), and we suddenly obtain h(r) = h,,(r) whatever
the selection of r. So, any signing query will obtain the RSA secret exponent which is enough to
make forgeries. So, this is EF-CMA insecure.

6.2 Hybrid ElGamal

We can now consider a variant of the ElGamal cryptosystem which encrypts strings of m bits (and
not group elements). To encrypt M, one has to pick some random r and random n and compute
(¢", M & h,(y"),n) where h is a family of universal hash functions (see Fig. EX)." The idea is
that " when written as a bitstring, which has a terrible distribution but some decent min-entropy
Ho.(y"), can be replaced by some h,(y") with n random to have a better distribution.? This is
called the leftover hash Lemma.

Lemma 6.6 (Leftover Hash Lemma, Impagliazzo-Levin-Luby 1989 [88]). Given a ran-
dom variable X, if m < Hyo(X) —2 log% (where Ho, denotes the min-entropy), if h is a family of
functions from the support of X to {0,1}™ such that Prlhy(z) = hy(a')] =27 for all x # o/,
where N is uniformly distributed, then (hn(X), N) and (U, N) are e-indistinguishable, where U is
uniformly distributed in {0,1}™.

Proof. We let Py be the distribution of (hy(X),N) and P; be the distribution of (U, N). We

IRecall that this means Pr[hy(z) = hy(2’)] = 27™ for all = # ’, where N is uniformly distributed in the key
space and 2™ is the range size of h.
2The min-entropy of a random variable X is defined by Heo(X) = — logs max,; Pr[X = z].
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denote by A the support of N. We compute the Euclidean distance between Py and P:

1 2
— 2 = = =
LRI (Bl (0 =8 =)= )
= [> Prih(X)=k N =n]? St
P X,N 27”#./\/'
1
o _ , / _ N
= X,XI/),Jrv,N/[hN(X) =hn(X'),N = N'] SN
_ 1 oyt _ ' 1
1—2=m 9
which we obtain by splitting x = 2’ and = # z’. So,
1—2=m 1—-2=m 1

We then use d(distr(X), uniform) < ||distr(X) — uniform||2v/#domain to obtain d(Py, P,) <e. O

By using this lemma and some bridging steps, we can prove that this variant of the ElGamal
cryptosystem is IND-CPA secure if the DDH problem is hard.

Theorem 6.7. Assuming that the DDH assumption in the group spanned by g is hard and that
hy is a family of functions from this group to {0,1}™ such that for all x # x' and a uniformly
distributed N, Prlhy(x) = hy(2')] = 27™. The ElGamal Cryptosystem Variant of Fig. is
IND-CPA secure.

Proof. We let T denote the IND-CPA game using bit b. We want to show that T') and I'} return
0 with probabilities with negligible difference. The game '} works as follows:
game ['}:

1: run key generation and get y

2: pick random coins p and set view = (y; p)

3: run A(view) = (mg, my)

4: pick r €y Z, and set u = g"

73



pick n €y N and set v =mp & hy, (y")
set view = (y, u, v, n; p)

run A(view) = bV’

: return b/

N> @

We first bridge to the following game by reordering the steps.
game I'Y:
1: pick ¢ €y Z, and set y = ¢g*
pick r €y Z, and set u = g"
set X = ¢*" and erase x and r
pick random coins p and set view = (y; p)
run A(view) = (mg, mq)
pick n €y N and set v = my D h, (X)
set view = (y, u, v, n; p)
run A(view) = b’
return b’

© % NPTk

We use the indistinguishability in the DDH assumption to reduce to the following variant.
game I':
1: pick x €y Z4 and set y = g*
pick r €y Z4 and set u = g"
pick s €y Zg4, set X = g°, and erase x and r
pick random coins p and set view = (y; p)
run A(view) = (mg, mq)
pick n €y N and set v = my D h, (X)
set view = (y, u, v, n; p)
run A(view) =/
return b’

© P NPT

We bridge again by reordering steps.
game I'}:
1: pick x €y Z4 and set y = g*
pick r €y Z4 and set u = g"
pick random coins p and set view = (y; p)
run A(view) = (mg, mq)
pick s €y Z, and set X = g°
pick n ey N, set vg = h,,(X), and erase x and r
set v =myp D vy
set view = (y, u, v, n; p)
run A(view) =/
return b’

© P NPT

—_
=

We then use the Leftover hash Lemma to obtain what follows.
game I'}:
1: pick z €y Z, and set y = ¢g*
pick r €y Z, and set u = g"
pick random coins p and set view = (y; p)
run A(view) = (mg, m1)
pick U
pick n ey N, set vg = U, and erase U
set v = my D Vg
set view = (y,u,v,n;p)
run A(view) = bV’
return b’

© P NP R XD

-
<

We reorder again the steps.
game I'%:
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set v = my B vy and erase vy
set view = (y, u, v, n; p)

run A(view) = b’

return b’

1. pick z €y Z, and set y = ¢*

2: pick r €y Z4 and set u = g"

3: pick random coins p and set view = (y; p)
4: run A(view) = (mg, my)

5: pick n ey N

6: pick vg

T

8:

9:

H
@

We use the indistinguishability between vy and v.
game I'3:
1: pick ¢ €y Z4 and set y = ¢g*

set view = (y, u, v, n; p)
run A(view) =/
9: return b’

2: pick r €y Z4 and set u = g”

3: pick random coins p and set view = (y; p)
4: run A(view) = (mq, mq)

5: pick n €ny N

6: pick v

7

8:

Finally, '} never uses b, so '} and I'} are identical. We have the following chain:

0 bridge 0 DDH 0 bridge 0 lemma 0 bridge 0 domain 0
Ty —~ Ty ~ ry —~ s = ry S I = ll"*e
1 bridge 1 DDH 1 bridge 1 lemma 1 bridge 1 domain 1
Ty ~ Iy ~ Iy ~ I3 ~ Ty —~ Ty = Tg

Piling everything together, we have that Pr[['§(.A) = 0] — Pr[['§(.A) = 0] is negligible. Hence, we
have IND-CPA security. a0

6.3 The Fujisaki-Okamoto Transform

In 1999, Fujisaki and Okamoto proposed a standard way to transform a weakly secure cryp-
tosystem into an IND-CCA secure one [28, 29]. More precisely, they start from a cryptosystem
(Geng, Encg, Decy) which is secure against decryption under CPA and also ~-spread. This latter
notion is actually new. It means that there is no ciphertext value which is taken too often. More
precisely

Vpk, pt, ct Pr[Encp(pt) = ct] <277

The construction also uses a one-time secure cipher (which we take as one-time pad below) and
two random oracles G and H. The new cryptosystem is defined with Gen = Geng as follows:

Encpx(pt): Decqk(cty, ct2):
1: pick o 1: o « Decos(ct1)
2: cty + pt® G(o) 2: if 0 = 1 then return L
3: cty EnC07pk(O'; f](o’7 Ctg)) 3: if cty 75 Enco,pk(a; H(O’, Ctz))
4: return (cty,cta) then return L

4: pt < cta & G(0)
5: return pt

Theorem 6.8 (Fujisaki-Okamoto [2R, 24]). If (Geng, Encg, Decy) is OW-CPA secure and -
spread, in the random oracle model, the above cryptosystem (Gen, Enc,Dec) is IND-CCA secure.

Proof (sketch). We modify the decryption oracle so that it does not use sk but only the oracle
tables: if there is no (o,cte,h) € H such that ct; = Encgpi(o;h), then the decryption oracle
returns 1. Otherwise, it decrypts by using G. We then modify F and G on the challenge o
point. O
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In 2016, Targhi and Unruh revisited the Fujisaki-Okamoto transform so that it additionally
resist to quantum attacks on the random oracle [61]. The modification essentially adds a third
component in the ciphertext.

Encp(pt): Dec(cty, cta, ct3):

1: pick o 1: o « Decosk(ct1)

2: cty + pt® G(o) 2: if 0 = 1 then return L

3: ¢ty + Encopk(o; H(o, ct2)) 3: if ct1 # Enco,pk(o; H(o,ct2))
4: ctz + H'(0) then return |

5: return (cty, cto, ct3) 4: if ct3 # H'(o) then return L

5: pt < cta ® G(0)
6: return pt

In 2017, Hotheinz, Hévelmanns, and Kiltz reshaped the Fujisaki-Okamoto transform in a mod-
ular way [37]. We present three of their transformations here.
First of all, S transforms a OW-CPA secure cryptosystem into an IND-CPA secure one.

OWCPA 555 INDCPA

Decsk(cto, - - ., Cte):

1. x; DeCo75k(Ct¢), t=1,... ,f
2: pt(—ct()@F(xl,...,xg)

3: return pt

Encox(pt):
1: pick z1,...,x¢
2: Cto + pt® F(z1,...,2¢)
3: ct; (i Enco,pk(xi), i=1,...,¢
4: return (cto,...,cte)

The OWCPA — INDCPA reduction is loosing a factor ¢'/* in the advantage, where ¢ is the number
of random oracle queries the adversary can make. This factor can be huge. We can increase ¢ to
make it smaller but it makes encryption more costly.

Second, T' transforms a IND-CPA secure and ~-spread cryptosystem into an IND-PCVA secure

one.

INDCPA L5 OWPCVA

Encpx(pt):
1: ct « Enco,pk(pt; G(pt)) 1:
2: return ct 2
3:
4:

Decqk(ct):

pt < Decg s(ct)

. if pt = L then return L

if ct # Encopk(pt; G(pt)) then
return |
return pt

Finally, U transforms a OW-PCVA secure cryptosystem into an IND-CCA secure KEM.

OWPCVA 5 INDCCA ke

Encpx(pt):
1: pick pt at random 1:
2 ct & Enco,pk(pt)
3: K < H(pt,ct)
4: return (K,ct)
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Decqk(ct):

pt < Deco sk(ct)

2: if pt = 1 then return L
3: K < H(pt,ct)
4: return K
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