E A s E E Advanced Cryptography
lasec.epfl.ch

SECURITY AND CRYPTOGRAPHY LABORATORY moodle.epfl.ch/course/view.php?id=13913

Advanced Cryptography
Spring Semester 2025

Homework 2

e This homework contains one question: Dinstinguishing Attacks on CROSS

e You will submit a report that will contain all your answers and explanations. The
report should be a PDF document. You can use any editor to prepare the report, but
Latex is usually the best choice for typesetting math and pseudocode.

e We ask you to work alone or in teams of two. If you work in a team, please register
it on Moodle and indicate both teammates’ name on the report. Feel free to ask
questions to the T.A.

e We expect all answers to be formally justified in order to get full points. Please pay
attention to the rigour and clarity of your answers.

e We might announce some typos for this homework on Moodle in the “news” forum.
Everybody is subscribed to it and does receive an email as well. If you decided to
ignore Moodle emails we recommend that you check the forum regularly.

e The homework is due on Moodle on May 19th, 2025 at 23 : 59.



1 Distinguishing Attacks on CROSS

In this exercise, we will look at the zero-knowledge property of the CROSS protocol in the
version 2.0

We use this document for reference: https://www.cross-crypto.com/CROSS_SecurityDetails_
v2.0.pdf and follow all of its notations.

CROSS is a digital signature protocol, based on an identification protocol that has been
submitted to the NIST additional call for digital signature. It relies on the hardness of the
restricted syndrome decoding problem with a subgroup.

Let E denotes a cyclic subgroup of the multiplicative group F, with generator g and
order some z. We denote by x the component wise multiplication in G < E”. We define
G = (a,...,am) == {aql_“ x ...k alm|u; € F,}.

Definition 1 (Restricted Syndrome Decoding Problem with a subgroup). Let G = (a1, ..., a,)
for a; € E", H € Fén_k)xn and s € IF‘I(jn_k). Does there exists a vector e € G with eH” = s.

We introduce below the CROSS identification protocol as in the v2.0 of the security
document.The protocol corresponds to Figure 4. of the security specifications. It proves
knowledge of the following relation

R((s,H),e|s =eH" e € G)
for a public G C E™. We have that (s, H) is the statement with s € F ™" and H € F,(,"_k)xn
and e € G.
1.1 Understanding the protocol
Question 1
What is the advantage of sending digest, over y directly? Why do we send Seed as the
response in the chally = 1 case?
Question 2
Can you informally explain the role of commitment cmtg and commitment cmt; with respect
to the relationship proven in the protocol?

Question 3

In a Fiat-Shamir fashion, propose a way to make this protocol non-interactive. Be careful,
you have two rounds of challenges to take care of.
You do not have to prove the security of the resulting protocol.

1.2 Analysis

We recall the definition of Honest Verifier Zero-knowledge used in the security specification
(Definition 19).



Definition 2. (Honest-verifier zero-knowledge). Let II = (P, V) be an interactive proof
system for an hard relation R C X x Y. We say that II is honest-verifier zero-knowledge if
there exists a probabilistic polynomial time algorithm S, called the simulator, such that the
following two distribution ensembles are indistinguishable:

{(z,y, transcript(P(z,y), V(z)))|(z,y) & R}

and
{(z,,5(2))|(z,y) & R}

where transcript(P(x,y), V(x)) denotes a transcript of an honest execution between a prover,
knowing both x and y, and a verifier, knowing only x.

In this definition, x stands for the statement and y for the witness.
We recall below the proof HVZK and the proposed simulator as per Proposition 24 of
their specifications.

Simulator S starts by sampling a random bit challs. Then, depending of the value of challs,
S does the following:

e chall; = 0: The simulator picks a random chall; € F), then computes e* € F}) such that
e*HT = s. Then, S selects a random v* € G and a vector u* € Fy, and computes
u* = v*~! x e*. Finally, it computes s* = v*H” and cmty = Hash(s*,v*). Then, S
computes y* = u'* 4 chall;e™*. Finally, S set cmt; as a random binary string with length
2. Since challs = 0 this commitment is never revealed, and thus, in the Random Oracle
Model, this has the same statistical distribution as an honestly computed com;. It is
easy to see that the transcript produced by S (i.e., the values y* and v*) follows the
same statistical distribution as those of an honestly produced transcript. Indeed, in an
honest execution, y is uniformly random over F; because v is uniformly random over
. This guarantees that v’ + challe’ is uniformly random over F}}, and the same holds
after multiplying with v. Finally, in an honest execution of the protocol, v is uniformly
distributed over G. Indeed, for any ¢’ € G there is a unique v € G such that vx¢e’ = e.
If ¢’ is uniformly random over G, then v also follows the same distribution.

e challo = 1: in this case, the simulator simply executes the protocol by sampling the seed
and computing cmt; analogously to what the honest prover P would do. For the other
commitment, cmtg, it is enough to use a random binary string again.

Question 4

Show that the protocol is not honest-verifier zero-knowledge according to Definition 2 by
exhibiting a distinguisher D.

Hint: Observe that, according to Definition 2 the distinguisher is given access to both the
statement and the witness.

Question 5

Identify which variant of zero-knowledge the protocol actually satisfies. Give a formal defini-
tion of that variant and prove your statement.



Private Key e € G

Public Key G CE", He Fy" " s=eH' e F1*

PROVER

VERIFIER

// Sampling Seed to compute €’,u’

Seed & {o,1}*

(e',u’) <~ CSPRNG(Seed) // with co — domain G x Fp

// Computing v,u,s’
viex(e) !
u«viu

s’ —uH"

// Computing commitments
cmtg + Hash(s'|v)
emty + Hash(u'le)

// Computing first response
y + u’ +challye’
digest, « Hash(y)

// Computing second response
If chally = 0, resp « (y,v)
If chally, = 1, resp + Seed

cmtg,cmty
_—

// Sampling first challenge
Sl chall, & F

dlgesty

// Sampling second challenge
chall, & {o,1}

challs
—=2

resp

// Verification
If chall; = 0:
y —vxy
s’ « y'HT — chall;s
Accept if:
1) Hash(y) = digest,
2) Hash(s'|[v) = cmto
Jved
If chally, = 1:
(e’,u’) + CSPRNG(Seed) // with co — domain G x Fp
y + u’ + chall;e

Accept if:

1) Hash(y) = digest,
2) Hash(u'le’) = cmt;

Figure 1: CROSS identification protocol



