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Homework 1

• This homework contains two questions: (1) Temperamental oracles (2) Identity-
based encryption

• You will submit a report that will contain all your answers and explanations. The
report should be a PDF document. You can use any editor to prepare the report, but
Latex is usually the best choice for typesetting math and pseudocode.

• We ask you to work alone or in teams of two. If you work in a team, please register
it on Moodle and indicate both teammates’ name on the report. Feel free to ask
questions to the T.A.

• We expect all answers to be formally justified in order to get full points. Please pay
attention to the rigour and clarity of your answers.

• We might announce some typos for this homework on Moodle in the “news” forum.
Everybody is subscribed to it and does receive an email as well. If you decided to
ignore Moodle emails we recommend that you check the forum regularly.

• The homework is due on Moodle on March 27th, 23:59.

1 Temperamental oracles

Group action cryptography is considered as a post-quantum candidate and is a natural ex-
tension of the discrete logarithm setting in the classical cryptography realm. We find group
action analoguous of the discrete logarithm problem and the Computational Diffie-Hellman
(CDH) problem (See Definition 3).

Much like in the classical setting, an interesting question is to relate the hardness of these
two problems. Clearly, if one has access to a discrete logarithm oracle, one can solve the
Computational Diffie-Hellman problem, both in the classical setting as well as in the setting
of group actions. An interesting question is whether the converse is true: is it possible to
solve the discrete logarithm problem given a CDH oracle?
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In 2021, Galbraith, Panny, Smith and Vercauteren gave a positive answer to this question
in the setting of group action. Their reduction is however quantum (i.e. it requires use of
a quantum algorithm) and requires an oracle with perfect correctness (i.e. an oracle that
always returns a correct output). However, in practice it is not realistic to assume access to
a perfect oracle, and subsequent work has looked into extending the result to imperfect oracles.

In this exercise, we will look into the notion of imperfect oracles and into the problem of
transforming them into perfect ones.

We start with a few reminders and definitions.

Definition 1 (Group action). We say that a group G acts on a set X if there exists a map
⋆ : G×X → X such that :

• Identity: If e is the identity element of G, then for any x ∈ X, e ⋆ x = x;

• Compatibility: For any g, h ∈ G, and any x ∈ X, (gh) ⋆ x = g ⋆ (h ⋆ x).

Such a group action can be denoted (G,X, ⋆).

We call a group action transitive if for any two elements x, y ∈ X, there exists a group
element g ∈ G mapping x to y, i.e. y = g ⋆ x.
We say a group action is free if for each g ∈ G it is the identity element if and only if there
exists an element x ∈ X such that x = g ⋆ x.
A group action is called regular if it is both transitive and free.
It is called abelian if the group that is acting is an abelian group.

Definition 2 (Effective group action). We call a group action ⋆ : G×X → X effective if the
following properties hold :

• G is finite and there exists a PPT algorithm for the following operations : group oper-
ation, computation of inverses, membership testing, equality testing and sampling.

• X is finite and there exists a PPT algorithm for membership testing and for computing
a unique representation of elements in X.

• There exists a distinguished element x0 ∈ X such that its bit-string representation is
known. We call this point the origin.

• ⋆ can be computed efficiently for any g ∈ G, x ∈ X.

Definition 3 (GA-CDH). Consider a regular effective group action (G,X, ⋆) with distin-
guished element x0, then the computational Diffie-Hellman problem is hard if for any PPT
algorithm A we have

Adv(A) = Pr[GA-CDH(A)→ 1] = negl(λ)

GA-CDH(A)

1: g1, g2
$←− G2

2: A(g1 ⋆ x0, g2 ⋆ x0)→ x′

3: return 1(x′=(g1g2)⋆x0)

Throughout the exercise, we assume that the group action (G,X, ⋆) is an abelian regular
effective group action.
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1.1 Random self-reduction

Consider a probabilistic oracle O such that

Pr
g1,g2,coins in O

[O(g1 ⋆ x0, g2 ⋆ x0) = g1g2 ⋆ x0] ≥ α

Reduce it to an oracle O′ such that for any g1, g2 ∈ G×G,

Pr
coins in O′

[O′(g1 ⋆ x0, g2 ⋆ x0) = g1g2 ⋆ x0] ≥ α

1.2 An example of imperfect oracle

We now turn our attention to the case of probabilistic oracles and study two different exam-
ples.

Let h2, h3 ∈ G be group elements such that h22 = 1 = h33.

Consider the following imperfect CDH oracle O1, which on input y, z = (g1 ⋆ x0, g2 ⋆ x0)
returns:

• g1g2 ⋆ x0 with probability 1/4

• h2g1g2 ⋆ x0 with probability 1/4

• h3g1g2 ⋆ x0 with probability 1/4

• x′ for some random element x′ ∈ X with probability 1/4

i.e. we have

O1(y, z) ▷ (We have y = g1 ⋆ x0, z = g2 ⋆ x0)

1: b
$←− {0, 1, 2, 3}

2: if b = 0 then return g1g2 ⋆ x0
3: end if
4: if b = 1 then return h2g1g2 ⋆ x0
5: end if
6: if b = 2 then return h3g1g2 ⋆ x0
7: end if
8: if b = 3 then return x′

$←− X
9: end if

1. Show that for any y ∈ X, there exists a unique g ∈ G such that y = g ⋆ x0.

2. Give an adversary B, which, given access to the oracle O1, wins the GA-CDH game
with overwhelming probability (i.e. with probability at least 1− negl(λ)).

1.2.1 Another imperfect oracle

Let us now modify the above oracle O1 into an oracle O2 that behaves in the same way as
O1 except that in the last case instead of returning a random x0, it returns h2h3g1g2 ⋆ x0.
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O2(y, z) ▷ (We have y = g1 ⋆ x0, z = g2 ⋆ x0)

1: b
$←− {0, 1, 2, 3}

2: if b = 0 then return g1g2 ⋆ x0
3: end if
4: if b = 1 then return h2g1g2 ⋆ x0
5: end if
6: if b = 2 then return h3g1g2 ⋆ x0
7: end if
8: if b = 3 then return h2h3g1g2 ⋆ x0
9: end if

Can you still give an efficient adversary B that wins the GA-CDH game? If yes, give a
description of B. If not, argue why.

2 Identity-based encryption

We give below a formal definition of a cryptographic primitive called ”identity-based encryp-
tion”.
Intuitively, it differs from regular public key encryption as there is a master pair of public and
secret keys, that allows to derive user specific secret keys. To encrypt a message, one only
needs a user id (typically this could be a string such as a username or email address) and the
master public key. To derive a user key, one needs the user id and the master secret key. To
decrypt a message addressed to a given user, one needs the associated user secret key.

Definition 4 (Identity-Based Encryption). An Identity-Based Encryption (IBE) scheme Π
with message spaceM and ciphertext space C is a tuple of algorithms defined in the following
way :

• Setup(1λ)→ pp : On input the security parameter λ, it outputs public parameters pp.

• KeyGen(pp) → (mpk, sk) : On input the public parameters, it outputs a master public
key mpk and master secret key sk.

• Extract(pp, sk, id) → skid : On input the public parameters, the master secret key and
a user id, it returns an associated user secret key skid.

• Enc(pp,mpk, id,m) → c on input the public parameters, a user id and a message, it
returns a ciphertext c.

• Dec(pp, skid, c) → m : On input the public parameters, a ciphertext c the user secret
key skid, it returns the plaintext m.

2.1 Formalism

Propose a notion of one-way security for identity-based encryption together with the associ-
ated security game.
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A concrete proposal Consider the following identity-based encryption algorithm with
message spaceM = {−1, 1}. Our scheme does not need any Setup procedure.

Keygen: Choose two random primes p, q such that gcd(p− 1, q − 1, 3) = 1. Let N = p · q
and set mpk = N and sk = (p, q).

Extract(sk, id): Let H : {0, 1}∗ → Z∗
N be a hash function. Let a = H(id). Using the

knowledge of p, q compute skid = a1/3 mod N . Return skid.
Enc(mpk, id,m): Let a = H(id). Choose a random v such that(

v3 − a

N

)
= m

where ( x
N ) denotes the Jacobi symbol.

Return the ciphertext c = v(v3+8a)
4(v3−a)

mod N .

Dec(mpk, id, skid, c): Return ( c−skid
N ).

2.2 Correctness

Prove that this IBE is correct.

2.3 Attack

Show that you can break the one-way CPA security of this scheme.

Hint: You might want to expand out the identity (v6 − 20av3 − 8a2)2 and try to relate it
to some combination of your ciphertext c and a.

2.4 Generalization

Consider now a generalization of this scheme.

Suppose that the master key generation stays the same, but we modify the extract pro-
cedure in the following way:

Extract(sk, id): Let H : {0, 1}∗ → Z∗
N be a hash function. Let a = H(id). Using the

knowledge of p, q compute skid = a1/k mod N . Return skid.

Let f(X) be a polynomial of degree at most k− 1 chosen by the person who encrypts, i.e.
they set c+X = tf(X)2 mod (Xk − a) with

(
t
N

)
= m.

Explain how to decrypt in this general case and show the correctness.

In the case k = 3, deduce some constraints on the shape of f and show how we can reduce
to the case of the previous section.
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