

Exercise Sheet #8

Advanced Cryptography 2021

Exercise 1 Interactive Proof Systems

1. Let us consider the following Square number proof:

- Statement: $x = (x_1, \dots, x_n, m)$ where m, x_1, \dots, x_n are positive integers and n is even.
- Witness: $w = (y_1, \dots, y_n)$ such that for all i we have $y_i^2 \equiv x_i \pmod{m}$.
- The verifier V chooses a subset $I \subseteq \{1, \dots, n\}$ with $|I| = \frac{n}{2}$.
- The prover P sends y_i to V for all $i \in I$.
- The verifier checks whether $y_i^2 \equiv x_i \pmod{m}$ for all $i \in I$.

Specify a witness relation R_c for which the completeness bound c is equal to 1, and a witness relation R_s for which the soundness bound s is equal to 0. In both cases, give a completeness and soundness bound.

2. Show that every language in NP has an interactive proof system (with polynomial-time prover and verifier) with perfect completeness and with soundness 0. (More exactly, for every language $L \in \text{NP}$, there is a relation R such that there is a proof system for R with perfect completeness and with soundness 0.)
3. Let (P, V) be an interactive proof system for some relation R with soundness s and completeness c . Let (P°, V°) be the following proof system:

- On input (x, w) , P° executes $P(x, w)$ $|x|$ times sequentially. (That is, P° runs $P(x, w)$. When $P(x, w)$ terminates, $P(x, w)$ is run again, and so on. Each execution of $P(x, w)$ uses independent randomness, i.e., the different executions of $P(x, w)$ do not have any common data except x and w .)
- On input x , V° executes $V(x)$ $|x|$ times sequentially. V° outputs 1 if and only if all invocations of V have output 1.

Prove that (P°, V°) is a proof system for R with soundness $s^{|x|}$ and with completeness $c^{|x|}$

Exercise 2 Σ -Protocol for \mathcal{P} (final 2011)

We consider an alphabet Z , a polynomial P , and a predicate R . We assume that R can be computed in polynomial time. Given $x \in Z^*$, we let

$$R_x = \{w \in Z^*; R(x, w) \text{ and } |w| \leq P(|x|)\}$$

where $|x|$ denotes the length of x . We define the language L from R by

$$L = \{x \in Z^*; R_x \neq \emptyset\}$$

1. In this question, we assume that there is an algorithm \mathcal{A} such that for any $x \in L$, we obtain $\mathcal{A}(x) \in R_x$ and that for any $x \in Z^*$, the running time of $\mathcal{A}(x)$ is bounded by $P(|x|)$.

Construct a Σ -protocol for L . Carefully specify all protocol elements and prove all properties which must be satisfied.

Exercise 3 Combined Proofs (final 2011)

Let $Z = \{0, 1\}$ be an alphabet. We consider two Σ -protocols Σ_1 and Σ_2 for two languages L_1 and L_2 over the alphabet Z defined by two predicates R_1 and R_2 . We assume that Σ_1 and Σ_2 use the same challenge set E which is given a group structure with a law $+$. For Σ_i , $i \in \{1, 2\}$, we denote \mathcal{P}_i the prover algorithm, V_i the verification predicate, \mathcal{E}_i the extractor, and \mathcal{S}_i the simulator.

2. (**AND proof**) Construct a Σ protocol $\Sigma = \Sigma_1 \text{ AND } \Sigma_2$ for the language defined by

$$R((x_1, x_2), (w_1, w_2)) \iff R_1(x_1, w_1) \text{ AND } R_2(x_2, w_2)$$

(**OR proof**) In the remaining of the exercise, we now let

$$R((x_1, x_2), w) \iff R_1(x_1, w) \text{ OR } R_2(x_2, w)$$

This predicate defines a new language L . We construct a new Σ -protocol $\Sigma = \Sigma_1 \text{ OR } \Sigma_2$ for L by

- $\mathcal{P}((x_1, x_2), w; r_1, r_2)$ finds out i such that $R_i(x_i, w)$ holds, sets $j = 3 - i$, then picks a random $e_j \in E$ and runs $\mathcal{S}_j(x_j, e_j; r_1) = (a_j, e_j, z_j)$. Then, it runs $\mathcal{P}(x_i, w; r_2) = a_i$ and yield (a_1, a_2) .
- Upon receiving e , $\mathcal{P}((x_1, x_2), w, e; r_1, r_2)$ sets $e_i = e - e_j$, runs $\mathcal{P}(x_i, w, e_i; r_2) = z_i$ and yields (e_1, e_2, z_1, z_2) .

The verification predicate is

$$V((x_1, x_2), (a_1, a_2), e, (e_1, e_2, z_1, z_2)) \iff \begin{cases} e = e_1 + e_2 \text{ AND} \\ V_1(x_1, a_1, e_1, z_1) \text{ AND} \\ V_2(x_2, a_2, e_2, z_2) \end{cases}$$

3. Show that Σ is complete and works in polynomial time.
4. Construct an extractor \mathcal{E} for Σ and show that is works, in polynomial time.
5. Construct a simulator \mathcal{S} for Σ and show that is works, in polynomial time.