
Advanced Cryptography
lasec.epfl.ch

moodle.epfl.ch/course/view.php?id=13913

Exercise Sheet #4
Advanced Cryptography 2022

Exercise 1 PRF Programming (Final 2013)

A function δ(s) is called negligible and we write δ(s) = negl(s) if for any c > 0, we have
|δ(s)| = o(s−c) as s goes to +∞.

Let s be a security parameter. For simplicity of notations, we do not write s as an input of
games and algorithms but it is a systematic input.

A family (fk)k∈{0,1}s of functions fk from {0, 1}s to {0, 1}s is called a PRF (Pseudo Random
Function) if for any probabilistic polynomial-time oracle algorithm A, we have that

|Pr[AfK(·) = 1]− Pr[Af∗(·) = 1]| = negl(s)

where K ∈ {0, 1}s is uniformly distributed, f∗ is a uniformly distributed function from {0, 1}s
to {0, 1}s, fK(·) denotes the oracle returning fK(x) upon query x, and f∗(·) denotes the oracle
returning f∗(x) upon query x.

Given a PRF (fk)k∈{0,1}s , we construct a family (gk)k∈{0,1}s by gk(x) = fk(x) if x 6= k and
gk(k) = k. The goal of the exercise is to prove that (gk)k∈{0,1}s is a PRF.

We define the PRF game played by A for g, f , and f∗ by

Game Γg

1: pick K ∈ {0, 1}s
2: run b = AgK(·)

3: give b as output

Game Γf

1: pick K ∈ {0, 1}s
2: run b = AfK(·)

3: give b as output

Game Γ∗

1: pick f∗ : {0, 1}s → {0, 1}s
2: run b = Af∗(·)

3: give b as output

For each integer i, we define an algorithm Ai (called a hybrid) which mostly simulates A until it
makes the ith query. More concretely, Ai simulates every step and queries of A while counting
the number of queries. When the counter reaches the value i, Ai does not make this query k
but it stops and the queried value k is returned as the output of Ai. If A stops before making i
queries, Ai stops as well, with a special output ⊥. We define the following games:

Game Γf
i

1: pick K ∈ {0, 1}s

2: run k = AfK(·)
i

3: if k = ⊥, stop and output 0
4: pick x ∈ {0, 1}s
5: if fk(x) = fK(x), stop and output 1
6: output 0

Game Γ∗i
1: pick f∗ : {0, 1}s → {0, 1}s

2: run k = Af∗(·)
i

3: if k = ⊥, stop and output 0
4: pick x ∈ {0, 1}s
5: if fk(x) = f∗(x), stop and output 1
6: output 0

Let F (Γ) be the event that any of the queries by A in game Γ equals K. We assume that the
number of queries by A is bounded by some polynomial P (s).

1

lasec.epfl.ch
moodle.epfl.ch/course/view.php?id=13913

1. Show that |Pr[Γf → 1]− Pr[Γ∗ → 1]| = negl(s).

2. Show that Pr[Γg → 1|¬F (Γg)] = Pr[Γf → 1|¬F (Γf)] and Pr[¬F (Γg)] = Pr[¬F (Γf)].

3. Deduce |Pr[Γg → 1]− Pr[Γf → 1]| ≤ Pr[F (Γf)].

4. Show that Pr[F (Γf)] ≤
∑P (s)

i=1 Pr[Γf
i → 1].

5. Show that |Pr[Γf
i → 1]− Pr[Γ∗i → 1]| = negl(s) for all i ≤ P (s).

6. Show that Pr[Γ∗i → 1] = negl(s) for all i ≤ P (s).

7. Deduce |Pr[Γg → 1]− Pr[Γ∗ → 1]| = negl(s).

Exercise 2 A Weird Signcryption (Midterm 2019)

We consider the plain RSA cryptosystem (RSA.Gen, RSA.Enc, RSA.Dec) and a digital sig-
nature scheme (DS.Gen, DS.Sign, DS.Ver). We construct a signcryption scheme as follows:

SC.Gen
1: RSA.Gen→ (ek, dk)
2: DS.Gen→ (sk, vk)
3: pubk← (ek, vk)
4: privk← (dk, sk)
5: return (pubk, privk)

SC.Send(pubkB, privkA, pt) //user A sends a message to B
1: parse (ekB, vkB)← pubkB
2: parse (dkA, skA)← privkA
3: ct← RSA.Enc(ekB, pt)
4: σ ← DS.Sign(skA, ct)
5: return (ct, σ)

so that A can send (ct, σ) to B. Once B obtains pt, he can show proof = (vkA, ekB, ct, σ, pt) as
a proof that A sent pt. We call this property non-repudiation.

1. Describe the algorithm using (pubkA, privkB) to receive (ct, σ) and compute pt, as well as
the algorithm to verify the proof.

2. Given (vkA, ct, σ) such that DS.Ver(vkA, ct, σ) is true and given an arbitrary pt, prove that
we can easily find ek such that (vkA, ek, ct, σ, pt) is a valid proof.

3. Propose a fix to this problem so that we have non-repudiation.

2

	PRF Programming (Final 2013)
	A Weird Signcryption (Midterm 2019)

