

Exercise Sheet #3

Advanced Cryptography 2022

Exercise 1 The Goldwasser-Micali Cryptosystem (midterm 2012)

Consider the group \mathbf{Z}_n^* . We recall that if m is an odd factor of n , then the Jacobi symbol $x \mapsto \left(\frac{x}{m}\right)$ is a group homomorphism from \mathbf{Z}_n^* to $\{-1, +1\}$. I.e., $\left(\frac{xy \bmod n}{m}\right) = \left(\frac{x}{m}\right) \left(\frac{y}{m}\right)$. It further has the property that $\left(\frac{x}{mm'}\right) = \left(\frac{x}{m}\right) \left(\frac{x}{m'}\right)$. We consider that multiplication in \mathbf{Z}_n and the computation of the above Jacobi symbol can each be done in $\mathcal{O}((\log n)^2)$.

Let s be a security parameter. We consider the following public-key cryptosystem.

Key Generation. Generate two different odd prime numbers p and q of bit size s , compute $n = pq$, and find some $z \in \mathbf{Z}_n^*$ such that $\left(\frac{z}{p}\right) = \left(\frac{z}{q}\right) = -1$. The public key is (n, z) and the secret key is p .

Encryption. To encrypt a bit $b \in \{0, 1\}$, pick $r \in_U \mathbf{Z}_n^*$ and compute $c = r^2 z^b \bmod n$. The ciphertext is c .

Decryption. To decrypt c , compute $\left(\frac{c}{p}\right)$ and find b such that it equals $(-1)^b$. The plaintext is b .

This cryptosystem is known as the Goldwasser-Micali cryptosystem.

1. Show that the cryptosystem is correct. I.e., if the key generation gives (n, z) and p , if b is any bit, if the encryption of b with the key (n, z) produces c , then the decryption of c with the key p produces b .
2. Analyze the complexity of the three algorithms in terms of s .
3. Let \mathcal{N} be the set of all n 's which could be generated by the key generation algorithm. Let **Fact** be the problem in which an instance is specified by $n \in \mathcal{N}$ and the solution is the factoring of n .
 - (a) Define the key recovery problem **KR** related to the cryptosystem. For this, specify clearly what is its set of instances and what is the solution of a given instance.
 - (b) Show that the **KR** problem is equivalent to the **Fact** problem. Give the actual Turing reduction in both directions.
4. Let **QR** be the problem in which an instance is specified by a pair (n, c) in which $n \in \mathcal{N}$ and $\left(\frac{c}{n}\right) = 1$. The problem is to decide whether or not c is a quadratic residue in \mathbf{Z}_n^* .

- (a) Define the decryption problem DP related to the cryptosystem. For this, specify clearly what is its set of instances and what is the solution of a given instance.
- (b) Show that the DP problem is equivalent to the QR problem. Give the actual Turing reduction in both directions.

Exercise 2 The CPA-secure PKC from the deterministic PKC (HW 1, 2019)

We define the public key cryptosystem as a set $(\text{Gen}, \mathcal{M}, \text{Enc}, \text{Dec})$ with the message domain \mathcal{M} where Gen , Enc and Dec are defined as follows:

- $\text{Gen}(1^\lambda) = (sk, pk)$ is a probabilistic algorithm which takes the security parameter λ as input, and outputs the secret key sk and the public key pk .
- $\text{Enc}(pk, m) = c$ is an algorithm which takes the public key pk and the message $m \in \mathcal{M}$ as input, and outputs ciphertext c .
- $\text{Dec}(sk, c) = m$ is a deterministic algorithm which takes the secret key sk and the ciphertext c as input, and outputs the message m .

We say that \mathcal{C} is a deterministic PKC if $\mathcal{C}.\text{Enc}$ is a deterministic algorithm, and \mathcal{C} is a probabilistic PKC if $\mathcal{C}.\text{Enc}$ is a probabilistic algorithm.

Definition 1 (IND-CPA security) *Let \mathcal{C} be a public key cryptosystem. Then, we say that the public key cryptosystem \mathcal{C} is IND-CPA secure if*

$$\text{Adv}_{\mathcal{A}, \mathcal{C}}^{\text{IND-CPA}}(\lambda) = \left| \Pr[\text{IND-CPA}_{\mathcal{C}}^{\mathcal{A}}(0, \lambda) = 1] - \Pr[\text{IND-CPA}_{\mathcal{C}}^{\mathcal{A}}(1, \lambda) = 1] \right|$$

is a negligible function in λ for all probabilistic and polynomial time algorithm $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$ where $\text{IND-CPA}_{\mathcal{C}}^{\mathcal{A}}$ is defined as follows:

Game: $\text{IND-CPA}_{\mathcal{C}}^{\mathcal{A}}(b, \lambda)$

```

 $sk, pk \leftarrow \text{Gen}(1^\lambda)$ 
 $m_0, m_1, s_1 \leftarrow \mathcal{A}_1(pk)$  //  $s_1$ : State of  $\mathcal{A}_1$ 
 $c \leftarrow \mathcal{C}.\text{Enc}(pk, m_b)$ 
 $b' \leftarrow \mathcal{A}_2(c, s_1)$ 
return  $b'$ 

```

Question 1. Prove that there is no IND-CPA-secure deterministic PKC.

Let $\mathcal{C}_1 = (\text{Gen}_1, \mathcal{M}_1, \text{Enc}_1, \text{Dec}_1)$ be a deterministic PKC which is secure against chosen plaintext decryption attacks. Then, we define a new PKC $\mathcal{C}_2 = (\text{Gen}_2, \mathcal{M}_2, \text{Enc}_2, \text{Dec}_2)$ with a group $\mathcal{M}_2 = \mathcal{M}_1$ (with additive notation below) as follows:

- $\text{Gen}_2(1^\lambda)$
 1. Compute $(sk, pk) = \text{Gen}_1(1^\lambda)$
 2. Return (sk, pk)
- $\text{Enc}_2(pk, m)$
 1. Pick a random value r in \mathcal{M}_2 of same size as m

2. Compute $c = (c_1, c_2) = (\mathsf{Enc}_1(pk, m + r), \mathsf{Enc}_1(pk, r))$
3. Return c

- $\mathsf{Dec}_2(sk, c)$
 1. Separate c into two ciphertexts (c_1, c_2) encrypted with \mathcal{C}_1
 2. Return $\mathsf{Dec}_1(sk, c_1) - \mathsf{Dec}_1(sk, c_2)$

Question 2. Suppose that the message domain $\mathcal{M}_2 = \{0, 1\}^n$ with \oplus . Show that \mathcal{C}_2 is not IND-CPA-secure, i.e. show there is an adversary \mathcal{A} whose advantage is not negligible.

Hint: Think about the neutral element

Definition 2 (IND-KPA security) Let \mathcal{C} be a public key cryptosystem. Then, we say that the public key cryptosystem \mathcal{C} is IND-KPA secure if

$$\mathsf{Adv}_{\mathcal{A}, \mathcal{C}}^{\mathsf{IND-KPA}}(\lambda) = \left| \Pr \left[\mathsf{IND-KPA}_{\mathcal{C}}^{\mathcal{A}}(0, \lambda) = 1 \right] - \Pr \left[\mathsf{IND-KPA}_{\mathcal{C}}^{\mathcal{A}}(1, \lambda) = 1 \right] \right|$$

is a negligible function in λ for all probabilistic and polynomial time algorithm \mathcal{A} where $\mathsf{IND-KPA}_{\mathcal{C}}^{\mathcal{A}}$ is defined as follows:

Game: $\mathsf{IND-KPA}_{\mathcal{C}}^{\mathcal{A}}(b, \lambda)$
 $sk, pk \leftarrow \mathsf{Gen}(1^\lambda)$
 $m_0, m_1 \xleftarrow{\$} \mathcal{M} \times \mathcal{M}$
 $c \leftarrow \mathcal{C}.\mathsf{Enc}(pk, m_b)$
 $b' \leftarrow \mathcal{A}(pk, m_0, m_1, c)$
return b'

Question 3. Show that if \mathcal{C}_1 is the plain RSA, \mathcal{C}_2 is not IND-KPA-secure when \mathcal{M}_2 is a multiplicative group.