

Exercise Sheet #10

Advanced Cryptography 2023

Exercise 1 Linear Cryptanalysis of a Dummy Block Cipher

Consider the following (completely broken) block cipher with 32-bit inputs and 32-bit keys. Let the bits of the message be denoted by m_0, \dots, m_{31} and the bits of the key k_0, \dots, k_{31} . To encrypt, we do the following three operations for 5 rounds:

1. For all rounds, do:
2. We first XOR each bit of the message m_i with k_i . We call the result m'_i .
3. Then, we pass the message into the following 4×4 Sbox. More precisely, for every $i \in \{0, \dots, 7\}$, we take the bits $m'_{4i}, m'_{4i+1}, m'_{4i+2}, m'_{4i+3}$ and pass them through the following 4×4 Sbox (where m'_{4i} is the most significant bit):

input	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
output	E	4	D	1	2	F	B	8	3	A	6	C	5	9	0	7

The output message is denoted by m'' .

4. **Except in the last round**, the message bits are permuted using the following simple scheme (all the indices are modulo 32), for $i \in \{0, \dots, 8\}$: $m'''_{4i} \leftarrow m''_{4i-3}, m'''_{4i+1} \leftarrow m''_{4i-2}, m'''_{4i+2} \leftarrow m''_{4i-4}, m'''_{4i+3} \leftarrow m''_{4i-1}$.

In the last round, we apply another layer of XOR with the key (i.e., step 1) instead.

1. The equivalent for the DDT in linear cryptanalysis is the Linear Approximation Table (LAT). For an $n \times n$ Sbox S , the LAT will be a $2^n \times 2^n$ table. Each line will represent the possible input masks and each column the possible output masks. The value of the table at position (i, j) is the number of messages x such that $x \cdot i = S(x) \cdot j$ **minus** 2^{n-1} , i.e., $|\{x : x \cdot i = S(x) \cdot j\}| - 2^{n-1}$.¹ An interesting property of the LAT is that the sum of any row or of any column is either -2^{n-1} or 2^{n-1} .

As an exercise, compute for the value of the LAT of the SBox for input mask 3 and output mask 9, i.e., compute LAT(3,9).

2. We give now the complete LAT for our Sbox.

¹Note that here, the \cdot notation is not multiplication but a dot product of two vectors. I.e. $x \cdot i = x_1 \times i_1 \oplus x_2 \times i_2 \oplus x_3 \times i_3 \oplus x_4 \times i_4$

	Output mask															
	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0	+8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	-2	-2	0	0	-2	+6	+2	+2	0	0	+2	+2	0	0
2	0	0	-2	-2	0	0	-2	-2	0	0	+2	+2	0	0	-6	+2
3	0	0	0	0	0	0	0	0	+2	-6	-2	-2	+2	+2	-2	-2
4	0	+2	0	-2	-2	-4	-2	0	0	-2	0	+2	+2	-4	+2	0
5	0	-2	-2	0	-2	0	+4	+2	-2	0	-4	+2	0	-2	-2	0
6	0	+2	-2	+4	+2	0	0	+2	0	-2	+2	+4	-2	0	0	-2
7	0	-2	0	+2	+2	-4	+2	0	-2	0	+2	0	+4	+2	0	+2
8	0	0	0	0	0	0	0	0	-2	+2	+2	-2	+2	-2	-2	-6
9	0	0	-2	-2	0	0	-2	-2	-4	0	-2	+2	0	+4	+2	-2
A	0	+4	-2	+2	-4	0	+2	-2	+2	+2	0	0	+2	+2	0	0
B	0	+4	0	-4	+4	0	+4	0	0	0	0	0	0	0	0	0
C	0	-2	+4	-2	-2	0	+2	0	+2	0	+2	+4	0	+2	0	-2
D	0	+2	+2	0	-2	+4	0	+2	-4	-2	+2	0	+2	0	0	+2
E	0	+2	+2	0	-2	-4	0	+2	-2	0	0	-2	-4	+2	-2	0
F	0	-2	-4	-2	-2	0	+2	0	0	-2	+4	-2	-2	0	+2	0

Given the table, how do you obtain the probability that one linear approximation occurs? What is the probability bias (i.e, the difference to 1/2)? What is its Linear Probability (LP)? What are the most interesting linear characteristics?

- Find a deviant property on four rounds that occurs with LP $(9/16)^4 \approx 1/10$. What is the probability that this linear approximation occurs (note that this depends on the key bits which shows why it is more convenient to use LPs)?
- Explain how you recover four bits of the last subkey using this deviant property. How many samples do you need approximatively?
- Show that it is possible to extend the previous attack to recover all the key with a simple shift of your previous attack.

Exercise 2 Feistel Schemes

We consider a Feistel scheme of one round with 64-bit blocks (see Figure 1(a)).

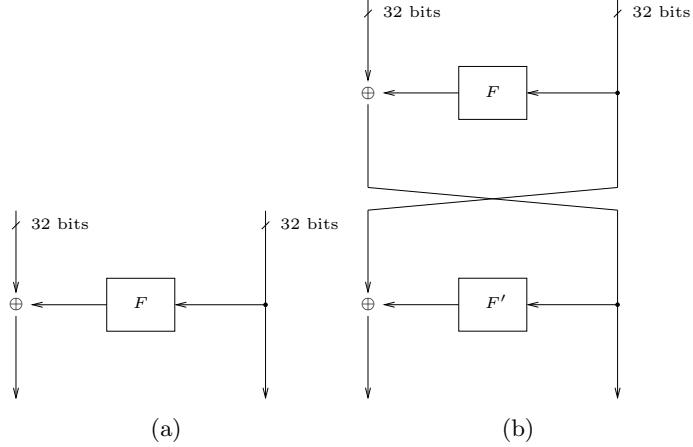


Figure 1: Feistel schemes with one or two rounds

Algorithm 1 is a distinguisher \mathcal{D} which tries to predict whether an oracle \mathcal{O} is a 1-round Feistel scheme or a uniformly random permutation.

Algorithm 1 1-round Feistel distinguisher \mathcal{D}

Input: an oracle \mathcal{O} implementing either a 1-round Feistel scheme $\Psi^{(1)}$ or a random permutation C^*

Output: 0 (if the guess is that \mathcal{O} implements C^*) or 1 (if the guess is that \mathcal{O} implements $\Psi^{(1)}$)

Processing:

- 1: let $P = (x_\ell, x_r)$ be the input plaintext
- 2: submit P to \mathcal{O} and get $C = (y_\ell, y_r)$
- 3: **if** $x_r = y_r$ **then**
- 4: output 1
- 5: **else**
- 6: output 0
- 7: **end if**

1. What is the probability that this distinguisher outputs “1” with a 1-round Feistel scheme, denoted $\Psi^{(1)}$?

2. Same question with the uniformly random permutation over $\{0, 1\}^{64}$, denoted C^* . What is the advantage of \mathcal{D} ?

Reminder: The advantage of a distinguisher is defined as

$$\text{Adv}^{\mathcal{D}} = \left| \Pr[\mathcal{D}^{C^*} \rightarrow 1] - \Pr[\mathcal{D}^{\Psi^{(1)}} \rightarrow 1] \right|.$$

We consider now a 2-round Feistel scheme (see Figure 1(b)).

3. Propose a distinguisher for a 2-round Feistel scheme with a non-negligible advantage.
4. What is the probability that your distinguisher outputs “1” in both cases? What is the advantage of your distinguisher?