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0 The Cryptographic Zoo
@ The Menagery

SV 2025 The Cryptographic Zoo EPFL 4/529



Meta-Definition of a Cryptographic Primitive

components
(parameters, participants, algorithms,
protocols)

crypro
primitive

correctness security
(honest execution) (malicious
execution)
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Correctness vs Security

e correctness:
what happens if everyone honestly follow the protocol
operations must be easy to perform

example: Deck(Enck(X)) = X

* security:
what should not happen even if someone is malicious
attacks should be hard to perform
practically: the threat model defines a game in which a
malicious adversary following any polynomially bounded
strategy gets a negligible advantage

example: key recovery under chosen plaintext attack is
hard
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Easy vs Hard

There exist several notions of easiness/hardness. In this course
we mostly follow the polynomial/non-polynomial complexity
one:

® a computational problem with security parameter s is easy
if it can be solved with a probabilistic algorithm of
complexity s®(Y) when s — +o0, i.e. probabilistic
polynomial-time (PPT) algorithm — easy=PPT
(it is hard otherwise)

e example: a system is secure if it is hard to break

Sometimes, we may consider the information theoretic
approach (where adversaries are not limited in terms of
complexity).
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Negligible and Secure

¢ a function f is negligible if
vn f(s)=0(s™") (s — +)

e example: f(s) =2°
e avoid writting non-negligible as it can be confusing
(for some authors, non-negligible # —negligible...)

* a system is secure if every PPT adversary has a negligible
advantage
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Notation: Security Parameter

A cryptographic algorithm A often depens on some security
parameter s (e.g. a key length).
s times
—— )
We denote 15 =11 ---1, the unary representation of s, and
consider 1° as the first input of A:

A(1%,x; 1)

Caution: 1% is often implicit and omitted from notations for
simplicity!

In practice, we consider polynomially bounded algorithms.
Their complexity is bounded by a polynomial in terms of the
length of the inputs, i.e. s + |x|. Since |x| is polynomially
bounded in terms of s, the complexity of A is sO().
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Notation: Probabilistic Algorithms

A probabilistic algorithm .A(input; coins) is an algorithm A fed
with input which sometimes needs to flip a coin to make a
decision. By convention, we prepare “coins”: an infinite
sequence of coin flips. A can read them in sequence whenever
needed.

So, A can also be seen as a deterministic function of both
input and coins. By convenience, we separate input and coins
by a semi-colon: A(input; coins)

Not all coins are used: there is always a minimal prefix r of
coins such that for all sequences s, we have

A(input; r||s) = A(input; coins). We denote this common value
by A(input; r).
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Big Picture
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Symmetric Encryption

encryption : key, nonce, plaintext — ciphertext
decryption : key,nonce, ciphertext — plaintext

Security goal: protect the confidentiality of plaintexts
® may use a honce (must not be reused in encryption)

¢ authenticated encryption: may use associated data as
additional input (to authenticate)

encryption : key,nonce, ad, plaintext — ciphertext
decryption : Kkey,nonce, ad, ciphertext — plaintext
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Using Encryption

® usage:
e share a random key K between the sender and the receiver
o to transmit a message pt, compute ct = Enck(pt) and send
ct over the communication channel
e to receive the message, get ct and compute pt = Deck(ct)
® correctness:
Deck (Enck(pt)) = pt

e security: notion of confidentiality
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Using MAC for Authentication

MAC : key, message — tag

* usage:

Authi(X) = X|MACk(X)
Checkk(X||It) = (X, 1i=mack(x))

e correctness:
Checky (Authx (X)) = (X, 1)

¢ security: notion of authentication and integrity
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Public-Key Cryptography

¢ public-key cryptosystem: encryption

Gen : L& pk, sk
Enc : pk,pt 3 et
Dec : sk,ct— pt

¢ digital signature scheme: authentication + integrity

Gen : L& pk, sk
Sig : sk, X 3 5
Ver : pk,X,o+— 0/1
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Using Public-Key Encryption

® usage:
@ generate a key pair (pk, sk) using Gen
o the receiver keeps sk and publicly reveals pk
o to transmit a message pt, compute ct = Enc(pk, pt) and
send ct over the communication channel
o to receive the message, get ct and compute
pt’" = Dec(sk, ct)
e correctness: pt' = pt

e security: notion of confidentiality
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Non-Deterministic Encryption

pt

P Ct1 Py
/; ctz - pt
Encrypt Decrypt
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Using Signature

® usage:
@ generate a key pair (pk, sk) using Gen
o the sender keeps sk and publicly reveals pk
o to sign a message X, compute o = Sig(sk, X) and send X
with o over the communication channel
o to validate the message, get (X, o) and compute
Ver(pk, X, o)
® correctness: Ver evaluates to 1

e security: unforgeability
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Key Agreement Protocol

* usage: A and B run an interactive protocol which uses no
common secret input and each produce a private output
Ky and Kpg

* correctness:
running A(1%; ra) and B(1°; r,) together leads to Ky = K

e security: secrecy of the output K
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Commitment Scheme

(most common construction)

Definition

A commitment scheme is a tuple (D, Commit) with a message
domain D and one PPT algorithm Commit implementing a
function

Commit: D x Random — {0,1}*
(X,r) —  Commit(X, r)
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Using Commitment

* usage:
e commit to X: pick r and send ¢ = Commit(X, r)
@ open commitment: send X and r; receiver verifies
¢ = Commit(X, r)

e correctness: verification succeeds
¢ security: binding and hiding
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Other Conventional Primitives

(informal)

e pseudorandom number generator (PRNG)
typically: PRNG(state) — (new state, output r)

¢ key derivation function (KDF)
maps some random seed with a bias (e.g. a group element
coming from Diffie-Hellman key agreement) to a (set of)
secret key(s) with no bias

e hash function
maps arbitrary length input to fixed-length output
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Security of PRNG: Indistinguishability

adversary

—>.X

adversary

—>.Y

Adv = Pr[X = 1] — Pr[Y =1]

¢ the goal of the adversary is to have |Adv| large
(possibly: by predicting the next generation)
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Swiss Army Hash Function
* PRNG:

PRNG(state) = truncyequired length (H(state[|1)||H(state||2)]| - - -)
e KDF:
KDF(seed) = truncyequired length (H(seed||1)||H(seed||2)]| - - -)
e Commitment:
Commit(X,r) = H((X,r))

(X, ry: encoding of X and r with non-ambiguous decoding
(example: concatenation, if X has a fixed length)

* Domain expander:

primitivelarge domain(inpm) = primitivelimited domain(H(inpUt))
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A Few Adversarial Models for Hash Functions

(informal)
e adversary objective: depends on the application
¢ first preimage attack: given y, find x such that H(x) = y
e second preimage attack: given x, find x’ # x such that

H(x) = H(x")
e collision attack: find x and x’ such that x’ # x and
H(x) = H(x')
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0 The Cryptographic Zoo

@ The Math Toolbox
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Finite Abelian Group
¢ finite Abelian group: set with an operation which satisfies
closure, associativity, existence of neutral element,
universal invertibility, commutativity, and finite
cardinality
examples: Z,,, Z5, GF(q)*, elliptic curve E, p(K)
e additive or multiplicative notation:
additive a+b 0 —-a a-b na
multiplicative: | ab 1 1/a a/b a&"
e group constructors: spanned subgroup, product group,
power group, quotient by subgroup
e group order: cardinality of the group
e element order: order of the subgroup spanned by the
element = smallest power n such that x"” = 1
e group exponent: smallest power n such that x” = 1 for all
X
e Lagrange property: the element order divides the group
exponent which divides the group order
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Commutative Ring

e commutative ring: set with two operations + and x which
satisfies

o for +: Abelian group

e for x: closure, associativity, existence of neutral
element, commutativity

o distributivity

examples: Z, Z,,, Z[x], Zp[x]

ring constructors: spanned ideal, product ring, power
ring, quotient by ideal

Euclidean ring: ring with Euclidean division (e.g. Z, K[x])
principal ring: ring in which all ideals have a generator
ring is Euclidean = ring is principal

group of units: R* is the set of all invertible elements in R
it is a group for multiplication!
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Irreducibility and Primality in Rings

* inZ:
p prime iff p > 1 and
VabeZ, p=ab=—|al=1or|bl =1
* in K[x]:
P(x) irreducible iff YA(x), B(x) € K[x], P(x)=
A(x)B(x) = deg(A) = 0ordeg(B) =0
(in a principal ring)
every ring element x can be written as x = py - - - pm where

each p; is irreducible and the factorization is unique in the
following sense: if x = g - - - g, Where each g; is irreducible,

then there exists a bijection f: {1,...,m} — {1,...,n} such
that for every i there exists a unit u; such that gy = u;p; (so
m=n)
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Finite Field

finite field: ring with finite cardinality in which all nonzero
elements are invertible

multiplicative group: K* = K — {0}

Galois field: GF(p") = Z,[x]/(P(x)) where p is prime,
P(x) is a monic (i.e., with leading coefficient 1) irreducible
polynomial of degree nin Zy[x|

Galois theorem: the set of all finite field cardinalities is the
set of all integers of form p” for p prime, fields of same
cardinality are isomorphic, and the above construction is
possible for every prime power

useful fields in crypto: Z,, GF(2")
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Facts About the Z, Ring

* x € Z, is invertible iff gcd(x, n) = 1
e Z: is of cardinality ¢(n) and exponent A(n)
e if p1,...,pr are pairwise different prime numbers

Py pr) = (pr— 1Py (pr — 1R
APyt --pp) = lem (A(PY1), - -, A(PE))

with A\(p®) = ¢(p®) except for A\(2%) with a > 3
(for which A\(2%) = S (2%))
e Euler theorem: for x € Z;, we have x#(") mod n = 1
e for x € Z}, we have x*") mod n = 1
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Facts About the Z, Field

given p > 2 prime
* Z; has a generator
* Fermat’s little theorem: for x € Z; we have xP~" mod p =1

* QR(p) is the group of quadratic residues modulo p
it is of order 25

* x € QR(p) iff X"z mod p=1
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Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)
Let m and n be two integers such that gcd(m, n) = 1. We have

e f: Zwn — Znx2Z, is a ring isomorphism
X — (xmod m,x mod n)

e f~'(a,b) = an(n~! mod m) + bm(m~" mod n) (mod mn)

4
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Random Variables

random variable: process X taking random coins r as input
and producing some values in a given set Z
support: set of possible outputs

its probability distribution: function P from a set including
the support to R mapping values x to their
probabilities Pr[X = x]

independent variables: random variables X and Y s.t. for all
X,y

Pri X =xand Y = y] = Pr[X = x] x Pr[Y = y]

examples: random variables using two disjoint
sets of random coins
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Expected Value and Variance

e expected value: given a random variable X with a range
in a vector space over the real numbers, E(X) is a vector

E(X)=>Y _PrinX(r= > xPrX=x]

xesupport

e variance: given a random variable X with a range in R,
V(X) = E (X - E(X))?) = E (X?) = (E(X))?

Boolean random variable: if Pr[X € {0,1}] =1

E(X)=p and V(X)=p(1—p) where p=Pr[X=1]

e linearity: given random variables X, Y and scalars A, u:
EOX +puY) =X E(X)+pE(Y) and V(AX)=X\V(X)

¢ case of independent variables: given independent X, Y:
E(XY)=E(X)E(Y) and V(X+Y)=V(X)+ V(Y)
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Other Properties

E(f(X)) = D_f(X(r))Prlr]
= Y fx)PrX=x]
xesupport

= > yPrf(X)=y]
y
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0 The Cryptographic Zoo

@ The Algorithmic Toolbox
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Arithmetics with Big Numbers

¢: size of the input

addition (O(0)): x,y — x+y

multiplication (O(¢2)): x,y +— x x y
Euclidean division (O(£?)): x,n+ x mod n

extended Euclid Algorithm (O(¢?)): x,y + a, b s.t.
ax + by = ged(x, y)
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Modular Arithmetic

¢: sizeof n
e addition (O()): x,y,n[x,y < n]— (x+ y) mod n
e multiplication (O(£2)): x,y,n [x,y < n] + (x x y) mod n
(Note: asymptotically better algorithm based on FFT, but
not better in practice)

e Euclidean division (O((¢ + log x)?)): x,n — x mod n

e fast exponential (O(¢? log €)): X, e,n [x < n] — x€ mod n
using the square and multiply algorithm

e inversion in Z, (O(£2)): x,n [x < n] + y s.t. xy mod n = 1
(when feasible)
using the extended Euclid algorithm
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Other Algorithms

¢: sizeof n
e square root with factorization of n = p{'" - -- pf" (O(¢3)):
X, Pt P y st y2 = x (mod n)

e primality test (O(k¢3)): n+— 0 or 1
(O(¢3) if nis composite, with Prjwrong answer] < e~(k))
e prime number generation (O(¢4)): § — p (¢ is the size of p)
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Birthday Effect

Given a random hash function with output domain of size N we
can find a collision with complexity O(v/N)
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Generic Attacks

primitive attack complexity parameter n
encryption key recovery 2" key length
hash function preimage attack 2" hash length

collision 22 hash length
MAC key recovery 2" key length
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0 The Cryptographic Zoo

@ The Complexity Theory Toolbox
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Membership Problem

problem defined by a language L (set of words)

instance specified by a word x

the membership problem is to decide whether x € L or not

languages in NP are of form
L={x;3w R(x,w)}
o for some predicate R which can be computed in
polynomial time

e proof of membership specified by a
(polynomialy-bounded-sized) withess w

SV 2025 The Cryptographic Zoo EPFL
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Easy Problems

‘P problems:
class of problems which can be solved by a polynomially
bounded algorithm
* primality:
given an integer, decide if it is prime
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Hard Problems

e N'P-hard problems:
class of problems such that if we can solve them in
polynomial time then we can solve all NP ones

¢ factoring problem:
given an integer generation algorithm, the problem is to
find a non-trivial factor of a number generated by this
algorithm
(not known NP-hard but still hard)

e discrete logarithm problem:
given a group generated by some g in which operations
are computable in polynomial time, given y, find x such
that y = g*
(not known N'P-hard but still hard)
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Non-Polynomial Algorithms

best algorithms so far:

_ _ O((In 3 (Inn n)%)
e NFS factoring (factoring n) e

e ECM factoring (find a small factor p of n) e®(v/Inpininp)
* GNFS (discrete logarithm in Z;): same as NFS

e Index calculus (discrete logarithm in Z;) e®(vnPininp)

SV 2025 The Cryptographic Zoo EPFL 47 /529



Turing Reduction
Oracle: Boolean function which says if a word is in a given

language. The oracle is connected to a query tape
which includes a finite number of non-blank cells.

Oracle Turing machine: Turing machine with distinguished
query state and query tape

Turing reduction: a language L; reduces to a language L, if
there exists a polynomial deterministic oracle
Turing machine which recognizes Ly when
plugged on an oracle L.

y——» € Ll4y? ——yes/no

SV 2025 The Cryptographic Zoo EPFL 48 /529



Turing Reduction

y—» €ly? |———yes/no

¢ solving Lp implies solving L4
e [4is hard = L, is hard

SV 2025 The Cryptographic Zoo
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Conclusion

° a menagery of cryptographic primitives:
encryption, MAC, commitment, key agreement, signature
¢ a math toolbox:
number theory, probability theory
an algorithmic toolbox:
big number calculation, generic algorithms

° a complexity theory toolbox:
hard problem, reduction
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Train Yourself

e variant of collision search: midterm exam 2015-16 ex2
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e Cryptographic Security Models
@ Security Definitions
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Block Cipher

Definition

A block cipher is a tuple ({0, 1}*(%) Ds, Enc, Dec) with a key
domain {0, 1}%(5), a plaintext domain Ds = {0,1}"(%), and two
“efficient” deterministic algorithms Enc and Dec.

It is such that

Decs(K,Encs(K, X)) = X

K(s)
Vs VK € {0,1} VX € Ds { Encs(K, X) € Ds

efficient = polynomially bounded in terms of s
(s is often implicit in notations)
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Symmetric Encryption

Definition

A (nonce-based, variable-length, length-preserving) symmetric
encryption scheme is a tuple ({0, 1}%, D, \V, Enc, Dec) with a key
domain {0, 1}*, a plaintext domain D = {X € {0,1}*;|X| € £}, a
nonce domain A/, and two polynomially bounded deterministic
algorithms Enc and Dec.

It is such that

VK e {071},( vX €D VNGN {DeC(K7Na EnC(KvNaX))l =X

[Enc(K, N, X)| = [X|

N is supposed to be used only once for encryption
random nonce (beware of random repetitions), counter, sent in
clear or synchronized
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Security against Key Recovery

Definition

A symmetric encryption scheme ({0, 1}*, D, \/, Enc, Dec) is secure
against key recovery under chosen plaintext attacks (CPA) if for
any PPT algorithm 4, the advantage Adv is negligible.

Adv = Pr[game returns 1]

Game

1: K& {0, 1}k
2: Used < 0

3: ACEc _, K/
4: return 1x_x

Oracle OEnc(N., X):
5: if N € Used then return 1. > nonce-respecting: cannot reuse N
6: Used < Used U {N}
7: return Enc(K, N, X)
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Adaptive Security against Key Recovery

Definition

A symmetric encryption scheme ({0, 1}*, D, \/, Enc, Dec) is secure
against key recovery under chosen plaintext/ciphertext attacks
(CPCA) if for any PPT algorithm A, the advantage Adv is negligible.

Adv = Pr[game returns 1]

Game

1: K & {0, 1}k

2: Used < 0

3: _AOEnc,ODec K
4: return 14—k

Oracle OEnc(N, X):
5: if N € Used then return |
6: Used < Used U {N} Oracle ODec(N, Y):
7: return Enc(K, N, X) 1: return Dec(K, N, Y)
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Chosen Ciphertext Security: Motivation

e decryption device can be a freely available black box
e decryption device takes action after receiving external info

dec

rypt

retrieve

receive  from
outside world

SV 2025

Y

action

— send out

Cryptographic Security Models EPFL 63 /529



CPCA Security is Stronger than CPA Security

¢ assume we have CPCA security
¢ to prove CPA security, consider a CPA adversary A

e we define a CPCA adversary B = A
(same adversary who just never use decryption queries)

e 3 and A have the same advantage
e since the one of B is negligible, the one of Ais aswell [

CPA-breaking = CPCA-breaking
CPCA-secure — CPA-secure
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Not Good Enough Security
Theorem
We define
* Enc(K,N,X)=X
e Dec(K,N,Y)=Y
* k=s

This makes a correct symmetric encryption scheme which is
KR-CPCA secure.

Proof. (details on next slide)

e correctness is trivial

e take A playing the CPCA game

e reduce to B not using the oracle with same advantage
simulate A
simulate ODec(N,Y) =Y
simulate OEnc by simulating Enc(K, N, X) = X

¢ the advantage of B must be 2—°

SV 2025 Cryptographic Security Models EPFL
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Not Good Enough Security — Proof

My: la:
1: K& {0,134 1. K& {0, 13k
2: Used + 0 2: Used + 0
3: _AOEnc,ODec —~ K’ 3: AOEnc,ODec S K’
4: return 1,_ 4: return 1x_yx
Oracle OEnc(N, X): - Oracle OEnc(N, X):
5: if N € Used then return L 5: if N € Used then return L
6: Used + Used U {N} 6: Used «+ Used U {N}
7: return Enc(K, N, X) 7: return X
Oracle ODec(N, Y): Oracle ODec(N, Y):
8: return Dec(K, N, Y) 8: return Y
1
e K and K’ independent Ms: s
. k
® K is uniform — 1D K< {0,1}
, x 2. B— K’
* PriIK=K'1=2 3: return 14_x

Prlly = 1] = Pr[la = 1] = Pr[[3 = 1] =27k
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Security against Decryption

Definition
A symmetric encryption scheme ({0, 1}*, D, N, Enc, Dec) is secure

against decryption under CPA resp. CPCA if for any PPT algorithm
A, the advantage Adv is negligible.

Adv = Pr[game returns 1]

Game Oracle OEnc(N, X):

1: K& {0, 1}k 1: if N € Used then return L
2: X &, No SN 2: Used + Used U {N}

3: Yy EnC(K7 N07X0) 3: return EI’]C(I‘(7 N, X)

4: Used < {No} Oracle ODec(N, Y):

5: ACENCODeC(Np Yp) — X 4: if (N, Y) = (No, Yo) then re-
6: return 1x_x, turn L

5: return Dec(K, N, Y)
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Decryption Security is Stronger than Key

Recovery Security
e (CPA-security only for simplicity)
* we take a scheme without nonce (for the moment)
® assume we have decryption security and
(#N) ™" = negl(s)
* to prove key-recovery security, consider a key recovery
adversary A
¢ we define a decryption adversary B as follows
B(No, Yo) :
1: run A — &
(if A queries Ny then abort) > happens with Pr < #%/
2: compute X = Dec(x, Ny, , Yo)
3: return X
* Pr[Bwins] > Pr[A wins] — 7
¢ we know that Pr[B wins] = negl(s) (due to assumption)
¢ hence, Pr[.A wins| = negl(s) O
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Detail

¢ queried nonces by A: Ny,..., Ny
union bound:

Prlabort] = Pr[No = Ny Vv ---No = Ng]
Pr[NO - N1] —+ - PI’[NO = Nq]

IN

PF[NO = N,] = #%
Pr[B wins] + Pr[abort] > Pr[.A wins]
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Note: No Decryption Security over Small Domains

e Consider
A(No, Yo) :
1. pick X & D
2: return X
* The advantage is 5

e Therefore, if we have decryption security, then ﬁ = negl
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Not Good Enough Security

e some parts of the plaintext may be more private than
others

how about a cipher letting half of the plaintext in clear and

strongly encrypting the other half?
it would be secure against decryption

Enc(K,N,X) = Ency(K, N, lefthalf(X))|righthalf(X)
Dec(K,N.,Y) = Decy(K,N,lefthalf(Y))|righthalf(Y)

({0,1}%, D, N/, Ency, Decy) Dec-secure
)
({0,1}%, D%, NV, Enc, Dec) Dec-secure
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The Ideal Cipher

e the ideal block cipher: (Perm({0,1}"),{0,1}", Enc, Dec)
Enc(M, X) = N(X) Dec(M, Y) =N~'(Y)

¢ the “ideal cipher”: taking K random is equivalent to picking
a random length-preserving permutation Ny for every N

Enc(K,N,X) = MNn(X)
Dec(K,N,Y) = Ny (Y)

e security would mean that we cannot tell the real cipher and
the ideal one apart from a black-box usage
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Security against Distinguisher (Real or Ideal)

Definition
A symmetric encryption scheme ({0, 1}*, D, N, Enc, Dec) is secure

against distinguishers under CPA resp. CPCA if for any PPT
algorithm A, the advantage Adv is negligible.

Adv = Pr[l'y returns 1] — Pr[lp returns 1]

Game Iy Oracle OEnc(N, X):
- K& {0,1}% 1: if N € Used then return |
2: for every N, pick a length- 2: Used < Used U {N}
preserving permutation My 3¢ if b= 0 then return My(X)

over D 4: return Enc(K, N, X)
3: U%%?Cngc Oracle ODec(N, Y):
4: AOEncODec _, 7 5. if b= 0 then return 1,'(Y)
5: return z 6: return Dec(K, N, Y)
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Distinguisher Security is Stronger than Decryption

Security
® assume we have distinguisher security and ﬁ = negl
® to prove decryption security, consider a decryption
adversary A
e we define a distinguisher B as follows

B: s 5 ODec'(N, YY) :
1: Xo & D, Ng & N 1: if (N, Y) = (No, Yo) then
2: Yp < OEnc(Np, Xp) return L
3: run 2: return ODec(N, Y)

ACEnc, ODec’(N07 Yo) = X
4: return 1y _x
Prr% — 1] = Pr[rDeC(A real cipher) — 1] = Adv4
Pr[r5 — 1] = Pr[rPe¢( A4, ideal cipher) — 1]
Pr[rDec(A, ideal cipher) — 1] = negl (see next slide)
Advi = negl
hence, Adv4 = neg| U
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Detail in the Ideal Cipher Case

(no nonce for simplicity, CPA for simplicity)

PrlATO(N(X)) = X]

PrA")(Yy=n~"(Y)]  (where Y is random)

(wonder if Y is answered to any query by the oracle or not)

PrAC)(Y) = n*‘(v) Y not answered] + Pr[A"()(Y) = N~1(Y), Y answered]

< PrlATO(Y) = 0~1(Y), Y not answered] + Pr[Y answered]
= PrlA"0)(Y) = N~'(Y)|Y not answered] Pr[Y not answered] + Pr[Y answered]
< PrlA"O(Y) = 0~ '(Y)|Y not answered] + Pr[Y answered]
1
< D + Pr[Y answered]
1 q
+ Pr Y answered to ith fresh query
#D—q ,\:/1
1 q
< + Pr[Y answered to ith fresh query]
#D—q Z [

i=1

1 = g+1
= < < |
#-q L= = #p-q = "9
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Security Notions

key recovery

decryption

distinguisher

CPA | weakest security

CPCA

strongest security

e if we can recover the key, we can decrypt
e if we can decrypt, we can tell ciphers aparts
e if we can break without chosen ciphertext, we can also

break with
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Note: Another Distinguisher Style

Game I'":
1: pick b € {0,1}
22runly — 2z

r 1
Adv" = Pr[l" = 1] -1

3: return 1,_,

Adv"’

SV 2025

1
I —_— —
Pr[l" — 1] 5

Pr[r'—>1/\b:1]+Pr[F’—>1/\b:0]—%
Pr(b =1]Pr[l1 — 1] + Pr[b = 0] Pr[ly — O] — %
1 1 1
%Advr
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MAC

(most common construction)

Definition

A message authentication code is a tuple

({0,1}%, D, {0,1}7,MAC) with a key domain {0, 1}, a
message domain D C {0, 1}*, an output domain {0,1}", and
one polynomially bounded deterministic algorithm MAC
implementing a function

MAC: {0,1}xD — {0,1}7
(K,X) — MACKk(X)
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Using MAC for Authentication

* usage:

Authx(X) = X|[MACk(X)
Checkk(X||It) = (X, 1i=mack(x))

e correctness:
Checky (Authx (X)) = (X, 1)

e security: notion of authentication and integrity
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Security against Key Recovery

Definition
A message authentication code ({0,1}*,D,{0,1}7, MAC) is
secure against key recovery under chosen message
attacks if for any PPT algorithm A, the advantage Adv is
negligible.

Adv = Pr[game returns 1]

Game Oracle OMac(X):
1. K& {0, 1}k 4: return MAC(K, X)
2. AOMac _, g
3: return 14—y
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Security against Forgery

Definition

A message authentication code ({0,1}*,D,{0,1}7,MAC) is
secure against forgery under chosen message attacks if for
any PPT algorithm A, the advantage Adv is negligible.

Adv = Pr[game returns 1]

Game Oracle OMac(X):
1. K& {0, 1}k 6: Queried < Queried U {X}
2: Queried « 0 7: return MAC(K, X)
3: AMac _, (X 1)
4: if X € Queried then

return O
5: return 1yacik x)—t
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Existential vs Universal

¢ universal forgery:
adversary is
able to forge a valid MAC/signature for an arbitrary message

Game Oracle OMac(X):
1. K& {0, 1}k 1: if X = X, then return L
2 Xy & D 2: return MAC(K, X)

3: AOMac(xo) — t
4: return Tyac(k, xo)=t
¢ existential forgery:
adversary is able to forge a valid MAC/signature for a new
message of his choice (previous slide)
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Security against Distinguisher (PRF)
Definition
A message authentication code ({0,1}*,D,{0,1}7,F) is a
pseudorandom function (PRF) if for any PPT algorithm A4, the
advantage Adv is negligible.

Adv = Pr[l'y returns 1] — Pr[l'g returns 1]

Game I'p Oracle O(X):

1. K & 0,11 1:if b = 0 then return
2: pick F* : D — {0,1}" F*(X)

3 A0 s 2: return F(K, X)

4: return z

Note: when talking about MAC, security usually refers to
unforgeability. Otherwise, we talk about PRF.

(for comparison of these notions: see midterm exam 2016—17
ex2)
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Security Relations

(Exercise: prove it like what was done for encryption!)
e EF-secure — UF-secure — key recovery-secure
e (PRFA277 = negl) = EF-secure
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Key Agreement Protocol

°® components:
e domain parameters: security parameter s, domain for K
o two characters: Alice and Bob
@ one protocol (two probabilistic algorithms): A and B with no
common secret input; A — Ka, B— Kpg
¢ functionality:
running A(1%; ra) and B(1%; rp) together lead to the same
output K4 = Kg = K on both sides

e security: (against passive attacks)
— next slide
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Security of Key Agreement Protocol

A(1%; ry) «— B(1%; 1)
should protect against passive attacks:
* key recovery: (next slide)
¢ key distinguisher: (next slide)
active attacks:

* man-in-the-middle: A «— E gives Ky and E <— B gives Kp
(always possible, unavoidable)

® more devastating: A «— E «— B making K4 = Kg known by E
(should be avoided)
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Security against Passive Attacks
transcript = exchanges in A(1%; ra) <> B(1°; rp)
¢ key recovery: Adv = Pr[Game returns 1]
Game

@2

5.

: pick ra, 1y

execute A(15;ry) < B(15;1p)
get transcript and K

run A(1°, transcript) 35Kk
return 1, _x:

¢ key distinguisher:
Adv = Pr[l'{ returns 1] — Pr[[g returns 1]

Game Iy

6.

A

. pick ra, rp

execute A(1°; ra) <> B(1°; 1p)

get transcript and Kj

pick Ky of same length as Kj at random
run A(1°, transcript, Kp) 3z

return z
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PKC

Definition

A public-key cryptosystem is a tuple (Gen, M, Enc, Dec) with
a plaintext domain M and three polynomially bounded
algorithms Gen, Enc, and Dec. The algorithm Dec is
deterministic and outputs either something in M or an error L.
It is such that

Vpt € M rP; [Dec(sk, Enc(pk, pt; re)) = pt] = 1
g-le

where (pk, sk) = Gen(1%; ry).
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Threat Models

Adversary capability:
e CPA: encrypt chosen plaintexts (always: enc key is public)
e CCA: access to a decryption oracle
Adversary goal:
¢ Key recovery (KR): recover the secret key
e Decryption (OW): decrypt a random ciphertext

¢ Information recovery: infer a given bit of information on
the plaintext given a random ciphertext

¢ Distinguishability (IND): recognize whether a ciphertext
encrypts pt, or pt; for some pt, and pt; of her choice
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Hard Core Bit

Definition
Let R be a predicate over a domain M. We say that R is a
hard-core bit for a PKC (Gen, M, Enc, Dec) if for any PPT

adversary A, the advantage Adv is negligible.

Adv = 2 Pr[game returns 1] — 1

Game

1:

Gen > (pk, sk)
pt & M
ctd Enc(pk, pt)

A(pk, ct) 3z
return 1Z:R(pt)
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Security against Distinguisher (Left or Right)

Definition

A PKC (Gen, M, Enc, Dec) is secure under chosen plaintext
attacks (IND-CPA-secure) if for any interactive PPT process
(A4, A2), the advantage Adv is negligible.

Adv = Pr[l'{ returns 1] — Pr[l returns 1]

Game 'y
1. Gen > (pk, sk)
$
2: As(pk) = (pto, pty, st)
3: if |pty| # |pty| then return
0
4 ctd Enc(pk, ptp)
5: Ap(st,ct) 3z
6: return z
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Remark: Two Styles of Interactive Adversaries

Two algorithms with state

variable

Game Iy

1:

2:
3:

Gen (pk, sk)

A1 (pk) 2 (pto, pty. st)

if |pty| # |pty| then return
0

ct & Enc(pk, ptp)
As(st,ct) 3 2

return z

Deterministic algorithm with
variable number of inputs

Game I'p

1:

o

pick p at random
Gen > (pk, sk)

A(pk; p) — (pto, pty)
if |pty| # |pty| then return
0

5. ct & Enc(pk, ptp)

14

A(pk,ct; p) = z
return z
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Problem with Deterministic Cryptosystems

e IND-CPA is a modern notion of security
e problem: if Enc is deterministic, then PKC is insecure!

e example: plain RSA not IND-CPA secure (since
deterministic)

e modern PKC are probabilistic

e example: EIGamal cryptosystem (and variants) is IND-CPA
secure
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Comments on Semantic Security

e Semantic security ~ all bits are hard core bits
e Semantic security < IND-CPA security
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Chosen Ciphertext Security

e Adversary in “lunch time” attack: CCA1
Adversary can submit chosen ciphertexts before choosing
pt, and pt;.
— IND-CCA1

e CCA (aka CCA2) Adversary: he can submit chosen
ciphertexts even after (except ct)
— IND-CCA
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Adaptive Security against Distinguisher

Definition

A PKC (Gen, M, Enc, Dec) is secure under chosen
ciphertext attacks (IND-CCA-secure) if for any interactive PPT
process (Aj,.A2), the advantage Adv is negligible.

Adv = Pr[l'{ returns 1] — Pr[lo returns 1]

Game 'y Oracle ODec(ct):
1: Gen > (pk, sk) 7: return Dec(sk, ct)
2: AT (pk) 3, (pto, pt;,st)  Oracle ODecy(ct):
3: if |pty| # |pty| then return  8: if ct = ct* then return L
0 9: return Dec(sk, ct)
4ot & Enc(pk, ptp)
5: A3 °%2(st, ct*) 3z
6: return z

V,
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Non-Malleability

Definition (Malleability (intuitively))

There is an R, a samplable distribution D, and an adversary
who given ct = Enc(pt) for some unknown random pt (sampled
following D) can forge ct’ such that R(pt, Dec(ct’)) “in a
nontrivial way”.

Example: in a regular stream cipher, if R(a, b) = 14445 and D
is any distribution, an adversary can compute
Dec(ct’) = Dec(ct) @ 4 so it is malleable

Theorem

IND-CCA security and non-malleability under chosen ciphertext
attacks are equivalent.
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Plaintext Awareness

“For every A, there exists £ such that if .A can forge a valid
ciphertext ct, then £ with the same view gives its decryption.”

There exist several flavors of PA-security
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Security Notions

key recovery

decryption

distinguisher

CPA

weakest security

CCA

strongest security

e if we can recover the key, we can decrypt
e if we can decrypt, we can tell ciphers apart

e if we can break without chosen ciphertext, we can also
break with

SV 2025
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Signature Scheme

Definition

A digital signature scheme is a tuple (Gen, D, Sig, Ver) with a
message domain D C {0, 1}* and three PPT algorithms Gen,
Sig, and Ver. The algorithm Ver is deterministic and outputs 0
(reject) or 1 (accept). It is such that

VX €D Pr[Ver(pk, X, Sig(sk, X; rs)) = 1] =1

rgvrS

where (pk, sk) = Gen(1%; ry).

(could also define signature schemes with message recovery)
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Threat Models

¢ Total break: an adversary can recover the secret key

e Universal forgery: an adversary can forge the signature
of any or a random message

¢ Existential forgery: an adversary can forge a valid
message-signature pair
(same as for MAC)
Adversary model: may intercept signatures (known message

attack), may access to a signing oracle (chosen message
attack), ...
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EF-CMA Security

Definition

A digital signature scheme (Gen, D, Sig, Ver) is secure against
existential forgery under chosen message attacks
(EF-CMA) if for any PPT A, the advantage Adv is negligible.

Adv = Pr[game returns 1]

Game Oracle OSig(X):
1: Gen > (pk, sk) 6: o + Sig(sk, X)
2: Queries < () 7: Queries < Queries U {X}
3: A%S9(pk) — (X, 0) 8: return o
4: if X € Queries then
return 0

5: return 1y ok x.0)
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(Strong) EF-CMA Security

Definition
A digital signature scheme (Gen, D, Sig, Ver) is strongly
secure against existential forgery under chosen message
attacks (strong EF-CMA) if for any PPT A, the advantage Adv
is negligible.

Adv = Pr[game returns 1]

Game Oracle OSig(X):
1. Gen > (pk, sk) 6: o < Sig(sk, X)
2: Queries < 7: Queries «
3: A9S9(pk) — (X, 0) Queries U {(X,0)}
4: if (X, o) € Queries then 8: return o
return 0

5: return 1yer ok x o)
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Security Models

Universal Forgery (UF): X is selected at random by the game

No Message Attack (OMA): no OSig available

Known Message Attack (KMA): input to OSig is random

adversary power

OMA | KMA | CMA
Kest
total break | "1°a%%
UF
EF (default)
i i
strong EF S el

Note: stronger security means security against weaker

SV 2025

attacks...
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Exercise

write formal definitions for the security notions of other
primitives and prove implications between them
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9 Cryptographic Security Models

@ The Game Proof Methodology
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Methodology

e security properties are defined by a game
security parameter, different steps, rules, outcome

e assumptions: game runs in polynomial time
¢ adversary: strategy for the player of the game

¢ advantage: difference of the outcome of the adversary
and of a trivial one

e security means that every adversary has negligible
advantage
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Proof Methodology

build a sequence of games and adversary compilers so that the
first game is the one from the security definition and the last
one is a trivial one and such that the difference between the
advantages are negligible

game adversary
A
4 4 Pr[l1(A) = 1] = Pr[l2(C2(A)) = 1] < ez

G

“ Gl
1

{ PrMr—1(Cn1(A)) = 1] = Pr[[n(Cn(A)) = 1] < &n

G4

€2 + -+ +¢ep = negl and Pr[l,(Cn(A)) = 1] = negl
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Transition Tool 1: Indistinguishability

e consider a game (X, A) in which we use ar.v. X
e consider X and Y with indistinguishable distributions

e since X and Y are indistinguishable and I'(-, A) is
computable in polynomial time,

Prr(X,A) = 1] — Pr[r(Y, A) = 1] = negl
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Transition Tool 2: Difference Lemma

e consider agame I’ r(A):
e F:a(“failure”) eventin 1: T(A) — z (check if F
e (I becomes “simpler” holds)

when —F holds) 2: return 1,1,

define I’ like I' with —=F as
an extra winning condition

Lemma

| Pr[l(A) — 1] — Pr[["(A) — 1]| < Pr[F]

Proof.
Pr[F(A) — 1] — Pr[l"(A) — 1]
= Pr[[(A) = 1,F]+Pr[l'(A) = 1,=F] — Pr[["(A) — 1,=F]
= Pr[l[(A) =1, F]
< Pr[F]

SV 2025 Cryptographic Security Models EPFL Dw 1529



Transition Tool 3: Bridging Step

e consider a game I'

e consider a game variant " and a compiler C such that
I'(A) and I"(C(.A)) produce the same distribution

Pr[l(A) — 1] = Pr[["(C(A)) — 1]

I is a kind of rewriting of I
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Transition Tool 3: Bridging Step Examples

e case 0: permute two operations which are independent

e case 1: move operations between I' and .4 without
affecting '(A)

e case 2: replace a random oracle by a “gnome” performing
the lazy sampling technique:

O(x): > uses an associative array T
if T(x) is defined then
y < T(x)
: else
pick y at random
T(x)«<y
: end if
return y

N a2
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Double Bridge

bridge I's(A) to [';(C(A))

. o(C(A)): r(C(A)): .
P e 102 o 12y 2 oige [ (1)
N 2: C(A)(z) = b 720 CA)(z) = b D
2: return b 3: return v/ 3: return b’ 2: return b
bridge
o "= T,
1 distinguisher between ~y and ~¢ (tool 1)
bridge
ry o=
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IND$-CPA: Real-or-Random IND-CPA Game

Adversary Game Iy
public key generate keys
select pt, Plo pt; = random
o ct = Enc(pt,)
select z z return z
Game 'y A works in two steps: A4, Ao
1: Gen & (pk, sk) a state variable st is kept
2: Aq1(pk) 3, (pto, st)
3 pick pty st [plo] = 1P| Agy = Pr[ry — 1] = Prrg — 1]
4 ct & Enc(pk, ptp)
5: Ap(st,ct) LN
6: return z
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Equivalence with IND-CPA Game — i

IND-CPA secure — IND$-CPA secure:

an adversary A playing the IND$-CPA game with advantage ¢
can be transformed into an adversary A’ playing the IND-CPA
game with advantage ¢

SV 2025

A/
A
pk
Pl
—— pty =random
t
PR
LN
Adv 4
AT e

IND-CPA game (b)

Pk select pk

pt07pt1
=

ct

+——— ct=Enc(pty)

= Pr[z:1]—blir()[Z:1]:AdvA:s
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Equivalence with IND-CPA Game — i (bis)

Mp: A playing IND$-CPA

. A’ playing IND-CPA

Mp(A) and I, (A’) are identical (bridge)

actually, there is a double-bridge and IND-CPA security

bridge
o = T

1 indistinguishable due to IND-CPA security
r

bridge
ry °=
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Equivalence with IND-CPA Game — i (ter)

Pr

Pr

IND$-CPA,(A)

[ Gen — (pk, sk)

As(pk) — (plo, st)
pick pt;

Enc(pk, pty) — ct
Ap(st,ct) = z
return z

Gen — (pk, sk)
As(pK) — (pto. st)
pick pt;

Enc(pk, pt;) — ct
Ap(st,ct) = z
return z

SV 2025

—1

— 1

bridge

bridge

IND-CPA,(A)

[ Gen — (pk, sk)

As(pk) — (plo. st)
pick pt;

Enc(pk, ptg) — ct
Ap(st,ct) — z
return z

Gen — (pk, sk)
As(pK) — (pto. st)
pick pt;

Enc(pk, pt;) — ct
Ap(st,ct) = z

return z

Cryptographic Security Models

2 (IND-CPA)

—1

—1
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Equivalence with IND-CPA Game — i
IND$-CPA secure — IND-CPA secure:

an adversary A playing the IND-CPA game with advantage ¢
can be transformed into an adversary A’ playing the
real-or-random game with advantage 5

A

A/
pk

pt()vpt‘l
=2

ct

IND$-CPA challenger (b)

Pk select pk
t) =pt

flip g | 2%
pt; = random

2 ot= Enc(pt})

SV 2025

298, winitb=z® 8
&
AdV.A’_"'_E
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Equivalence with IND-CPA Game — ii (bis)

IND$-CPA,_+(A")

[T Gen — (pk,sk) ] T

G k, sk
Ai(pk) — (pto. pty ., st) en — (pk, sk)

pick 3 Ai(pk) — (pto, Py, St)
Pty - pts pick pty ,
Pr| | pickpt] _,q| ‘bridee || Enc(pk,pt;) —ct S| o=

Enc(pk, pt;) — ct Aa(st o) = 2

pick 3
Ax(st,ct) —» z )
z’ziéﬁ)‘J3 Z+ 285
ot z, . return z/
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Equivalence with IND-CPA Game — ii (ter)

Pr

IND$-CPA,_o(A)

[T Gen — (pk, sk)
A1(pk) — (pto. Pty st)
pick 3

pty < pts

pick pt]

Enc(pk, pty) — ct
Ag(st,ct) = z
Z—zpp

L L return 2/

1

1
5 Pr

= 5 — 5AdV4(IND-CPA)

2

SV 2025

[[ Gen — (pk, sk)

Ai(pk) = (pto, pty, st)
(B=0)

Enc(pk, pty) — ct

Ao (st,ct) — z

L L return z

+

[[ Gen — (pk, sk)

Ai(pk) — (pto, pty, st)
(B=1)

Enc(pk, pt;) — ct
As(st,ct) = z

L L return z¢ 1

Pr{IND-CPAG(A) — 1] + % Pr{IND-CPA; (A) — 0]

Cryptographic Security Models

—1

—1
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e Cryptographic Security Models

@ RSA Security
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Plain RSA Encryption

| Adversary |
Message Message
< Encrypt Decrypt T mod N
|
K
Public key e, N '?UTIEE’E“;:%L'ON | TSecret key o, N

SV 2025
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Plain RSA Signature

| Adversary |
Message .
S >
< ign Extract 7 mod N
| |
A AUTHENTICATION .
i ‘ *Pubhc key e, N

INTEGRITY

Secretkey d, N |

Generator
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RSA Problems

(implicit: Gen is the RSA key generation algorithm)

RSA Problem

Given (N, e) generated by Gen
and a random residue y,
compute x such that

y = x¢ mod N:

Game

. Gen(15) 3 (N, e)

: pick x € Zy

y =x°mod N

AN, e,y) > z

return 1,_,

a s 0N =

RSA Factoring

Factor N generated by Gen:

Game
1. Gen(1%) & N
$
2: A(N) > (p, q)
3: return 14, g N N=pg

RSA assumption: the RSA problém is hard
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Bit Security of Plain RSA

Isb(x): least significant bit of x (1 iff x mod N is odd)
Isbdec(y): least significant bit of the decryption of y

Theorem

If the RSA problem is hard, Isb(y) is a hard core bit:
recovering it is as hard as decrypting y.

(even approximations...)
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Reducing Decryption to Isbdec

Key trick: Isb(2/*"x mod N) = ith bit of the binary expansion of

x/N...

wewrittea=AN<x < IN=0p

startwith k =0and /=0

increment / and find the bit 3 s.t. k replaced by 2k +
endupwitha<x<bwithb—a<1

SV 2025

1:a+0,b—N
2: fori=0to |log, N| do
3. iflsbdec(2(+")ey mod N) = 1 then

4: a<—(a+b)/2
5: else

6: b+ (a+b)/2
7: end if

8: end for

9: yield | &

Cryptographic Security Models EPFL
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Not All Bits are Hard in Plain RSA

jacdec(y): Jacobi symbol of the decryption of y
jac(x): Jacobi symbol (x/N)

sty - (Z532%) = () = Gi) - (3

which is easy to compute even without the factorization of N

Reminder: x — (x/N) is an easy-to-compute homomorphism
from Z}, to {—1,+1}.
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RSA Security

(seen in the previous lecture)

e key recovery is equivalent to factoring N
given N generated by Gen, factor N

e the decryption problem is the RSA problem
given (N, e) generated by Gen (e is coprime with ¢(N))
and y € Zy random, compute x such that x® mod N = y
(not known to be equivalent to factoring)

e not IND-CPA secure (deterministic)

* no OW-CCA security: Dec(y - u® mod N)/u = Dec(y)
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Strong RSA Problem

(implicit: Gen is the RSA key generation algorithm)

Strong RSA Problem
Given N generated by Gen and a random residue y, compute x
and e > 1 such that y = x® mod N:
Game
1: Gen(15) & N
2: picky € Zy
3. AN, y) > (x, )
4: return 1,e g N—y e>1

Strong RSA assumption: the strong RSA problem is hard
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RSA-OAEP

message

}
seed @ -
Y
»MGF >
b +—IMGF«
@0 @askedSeecD ( maskedDB ))
Y
Enc
ciphertext
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Security of RSA-OAEP

e Security results are far beyond this lecture

* They exist for the IND-CCA notion (in the random oracle
model, under the RSA assumption)

e |ts significance was controversial
(The original proof was wrong.)
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9 Cryptographic Security Models

@ Rabin Cryptosystem
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Plain Rabin Encryption

| Adversary |
\ \
M M
&» Encrypt > Decrypt %
x2 mod N Y /Y mod
Public k N+ AUTHENTICATION [y
ublic key INTEGRITY | Secretkey p, q
Generator

A

Y

p, g prime
N = pq

EPFL 133/529
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Ensuring Non-Ambiguity in the Decryption

Adversary

—Redundancyp Encryption7|£|—y> Decryption——»

X

e we add redundancy in the plaintext so that valid plaintexts
are sparse

e we make sure that no other square root has valid
redundancy

e we take the only expected square root with valid
redundancy

* we reject ciphertexts which fail to decrypt
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Rabin Security

(implicit: N is the product of two different large primes)

OW-CPA (Rabin Decryption) KR-CPA (Rabin Key Recovery)

Given N generated by Gen and | Factor N generated by Gen:
a random quadratic residue, Game
compute a square root: 1: Gen(15) LY,
CED 2. AN) % (p,q)
: Gen(1%) % N 3: return 11 p<n N=pg
2: pick x € Zy
3: ¥y =x®>mod N
4 AN, y) > z
5: return 1,4

decryption problem <= factorization problem
key recovery problem <= factorization problem
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Factoring Hard — OW-CPA Security

Game OW-CPA

1: Gen(15) & N
2: pick x € Zy
3.y« x2mod N
4: AN, y) > 2
5: return 1,

e=Prix € Z}] = =1 — negl

| PrOW-CPA — 1] — Pl -
1]| < e (difference lemma)

when z2 = y, x is indep. uni-
form in SQRT(y) (4 elements)
Prir > 122 =y] =1

Pr[Fact — 1|22 = y] =

Pr[ll — 1]

_Pr[r—>1 22 =y]

1 Pr[Fact — 1,22 = y]

< 5 Pr[Fact — 1] = negl

l\)\—‘l\)

Game I'

1 Gen(19) LN
1 pick x € Zj,
Ty <+ x2mod N
T A(N,y) 3z
»return 1;—x

ar wN=

1

Game Fact
1: Gen(19) 5N
$
2: B(N) 2 (p, q)
3: return 14 ooy N=pg
B(N):
: pick x € Zy,
Dy X2 mod N
A(N,y) i> z
p + gcd(z — x, N)
. if p € {1, N} then abort

:q«< N/p
10 return (p, q)
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A KR-CCA Attack against Rabin

Game KR-CCA ODec(y):
1: Gen(15) > sk, N 11: compute a square root of
5. BODeC(N) 3, (P, q) y in Zy using sk
3: return 1, 4)_s« 12: return result

B(N):

pick x € Zy,

¥y < x> mod N
ODec(y) — z

p < gcd(z — x, N)

if p € {1, N} then abort
g« N/p

return (p, q)

O oeNOR
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Paradoxical Security Result

Rabin cryptosystem is PROVABLY as secure (OW-CPA) as
the factorization is hard

the security proof yields a CHOSEN CIPHERTEXT
ATTACK (KR-CCA)

the attack does not hold when adding the redundancy
the security proof does no longer hold with the redundancy
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9 Cryptographic Security Models

@ Diffie-Hellman Security
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The Diffie-Hellman Key Agreement Protocol

Assume a group (£, an elliptic curve, ...) generated by some g

Alice Bob

pick x at random, X + g* S, S

Y pick y at random, Y «+ ¢
K<+ Y* K+ XY
(K=gv)

resists passive adversaries
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CDH vs DL Problems

implicit: Setup — (group, g, 9)
e group: parameters to perform group operations
e q: integer (order of the group)
e g: group element (generator)

CDH (Computational DL (Discrete Logarithm)
Diffie-Hellman)

Adv = Pr[game returns 1] Adv = Pr[game returns 1]

Game Game
1: Setup(1°) EN pp >qg,g9 1: Setup(1°) LN pp >q,9
2: pick x,y € Zg4 2: pick x € Zg4
3 X+—g5Y+¢g 3 X<+ g¥
4 Alpp, X, Y) > K 4 Alpp. X) > z
5: return 1x_ g0 5: return 1x_g-
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CDH is the Key Recovery Problem in DH

Game CDH

SANE -

: Setup(19) EN pp
pick x,y € Z4
X—g5Yg
A(pp. X, Y) % K
return 1x_ g0

SV 2025

>q,9

Game KR with DH

1: Setup(15) pp  ©q.g
2: execute A(pp) < B(pp)

3:
4
5

get transcript and output K

. run A(pp, transcript) 3 K
: return 14_g
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CDH Hard — DL Hard

r Game DL 1 ;
1: Setup(19) %0 bagg 1: Setup(1°) > pp g, g
2: pick x € Z4 2: pick x,y € Zq4
Pr 3: X « g¥ < Pr| 3: X« g*
. . $
4: App,X) % z 4: A(pp,X) % z
L 5: return 1x_gz | 5: return 1xy_g2
]
[ Game CDH 7
1: Setup(1°) i>pp >q,g
2: pickx,y€Z ] s
3 S)“_g)}(/ Yigy 1: Setup(1%) > pp  >gq,g
. ’ $ 2: pick x,y € Zq
b, | 4 Blep, X, Y) = K _ || B XYy
r 5: return Tk—gvv — r . $
y 4: A(pp,X) % z
B(pp, X, Y): 5: K+ Y?
6: A(pp, X) > z 6: return 1y_gy
7: K+ Y?
L 8: return K J
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Decisional DH Problem
DDH (Decisional Diffie-Hellman)
Adv = Pr[l'y — 1] = Pr[lg — 1]
Game I'p
Setup(1%) 2 pp > 3,9
pick x,y € Z4
if b= 0 then
pick z € Z,
else
Z < Xy mod q
end if
X—g,Y¢g2Z+ 9
Alpp, X, Y, Z2) % ¢
return c

O ©F o Lo Ol ol o o

—_

DDH is the key distinguiher problem with DH
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DDH is the Key Distinguisher Problem in DH

Game DDH, Game KD with $DH
1. Setup(15) 2 pp  vg,g 1 Setup(1®)=pp  >gq.g
2: pick x,y € Zg 2: execute A(pp) > B(pp)
3: Z+ b=07?random : xy 3: get transcript and Kj
4 X—g Yo, Z«g? 4: set Ky at random
. $
5: Alpp, X, Y,2) % ¢ 5: A(pp, transcript, Ky) = z
6: return c 6: return z
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DDH Hard — CDH Hard

Game CDH Game DDH
1: Setup(1%) 3, pp >qg,g9 1: Setup(19) 3, pp >q,9g
2: pick x,y € Z4 2: pick x,y € Z4
3 X—g5Y+¢g 3: Z+ b=07random : xy
4 A(pp, X, V) 3 K 4 Xeg\Yeg Zeg
5: return 1x_gx 5. B(pp, X, Y,2) 3¢
6: return ¢
B(pp, X, Y, Z):

7. Alpp, X, Y) > K
8: return 1,_-
Adv(A) = Adv(B) + —

next slide: 15 = neg|
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DDH Hard — Large Group

B'(pp, X, Y, 2): o Prlly —1]=1{

1: pick x at random

2. if X = g* then ° Prllg = 1]=15%

3. ifZ=Y*then q

4: return 1

5 else ° Adv(B) = g (1 - 16) =

6: return 0 ;—q

7: end if

8: else e if DDH is hard,

o: return 0 Adv(B’) = negl, so
10: end if }7 = negl
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e Cryptographic Security Models

@ ElGamal Security
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Plain EIGamal Encryption

re Z;; random

Message
= Encrypt
Public key y*

%>> J—

Adversary |

UTHENTICATION

Decrypt

Message
vu—X

domain parameter:

group spanned by g
order is q (prime)

(assume m € (g))

SV 2025

INTEGRITY

w
\

Cryptographic Security Models

K
1 Secret key x

Generator

<>
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ElGamal Security: EIGamal Problems

OW-CPA Security
Given (g, y) generated by Gen }
and u, v € (g), compute m KR-CPA Security
such that there exists r such Given (g, y) generated by Gen,
that u=g"and v = my": compute x such that y = g*:
Game . Game

1: Setup(1°) = pp 1: Setup(1°) % pp

$

2: Gen(pp) = (,X) 2: Gen(pp) = (¥, X)

3: pick min group; 3: A(pp.y) LN

4: Enc(ppaya m) — (U, V) 4: return 1x:Z

5: AP,y u,v) > z

6: return 1,_,

decryption problem <= computational Diffie-Hellman problem
key recovery problem <= discrete logarithm problem
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ElGamal KR-CPA Secure — DL Hard

Game DL Game KR- CPA
1: Setup(1°) 3, pp >g,q9 1. Setup(19) 3, pp >g,q
2: pick x € Z,4 2: pick x € Z4
3 X« g* 3y« g~
$ $
4 A(pp, X) = z 4: B(pp,y) = z
5: return 1x_g- 5: return 1,_g-
B(pp, y): .
6: A(pp,y) = z
7: return z

Pr{KR-CPA(B) — 1] = Pr[DL(A) — 1]
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ElGamal OW-CPA Secure — CDH Hard

Game CDH Game OW- CPA
1: Setup(1%) 3, pp >g,q9 1. Setup(19) 3 pp > 9,9
2: pick x,y € Zq4 2: pick x € Zg, y + 9"
3 X«—g5Y+¢g 3: pick m € (g)
4: A(pp, X, Y) LN 4: pickr e Zg, u<+g',
5: return 1x_gy v my’

5: B(pp, y, U, v) 2 z
6: return 1,,—,
(

B(pp,y,u,v):
7. A(pp, v, u) > K
8: return v/K

Pr{OW-CPA(B) — 1] = Pr[DL(A) — 1]
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CDH Hard — ElGamal OW-CPA Secure

Game OW- CPA Game CDH
1: Setup(15) 3, pp >g,q 1: Setup(19) EN pp > 9,9
2: pick x € Zg, y + 9" 2: pick x,y € Z4
3: pick me (g) T X+—g5Y+—¢g
4: pickr e Zg, u+ g, 4 B(pp, X, Y) > K
v my’ ; 5: return 1x_gy
5. A(pp,y,u,v) = z .
6: return 1,,—, B(Ipp,.X, Y):
6: pick v € (g)

7:

A(pp, X, Y, v) 5 2

8: returnv/z

Pr[OW-CPA(B) — 1] = Pr[DL(A) — 1]
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ElGamal Encryption Security

e key recovery is equivalent to the discrete logarithm
problem

e decryption is equivalent to the CDH problem

¢ IND-CPA security equivalent to the hardness of the DDH
problem
(to be seen next)
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Plain EIGamal Encryption is not OW-CCA Secure

e if (u, v) is the encryption of m then (u, vw) is the
encryption of mw
e OW-CCA attack:
A(pp, y, u, v):
1: pick w at random in the group
2: ODec(u,vw) — m’ >m = (vw)/u* = mw
3: return m=m'/w
m is the decryption of (u, v)!
e consequence: not IND-CCA either
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Semantic Security of EIGamal Encryption

Theorem

If the DDH problem is hard over the group generated by Gen,
then the EIGamal cryptosystem is IND-CPA secure.
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IND$-CPA Security of EIGamal Encryption

(IND$-CPA security)

e given g, get y, choose xp, get (u, v), decide if (u, v) was
generated by

reyZgu=g9",v=xy or reyZgxicy(9 u=9,v=xy"

° (setv' =v/xp)
given g, get y, get (u, V'), decide if (u, v') was generated by

reyZgu=9-,vV =y or reyZgyxicy(g u=g.,v=="y"

® given g, get y, get (u, V'), decide if (u, v') was generated by

r

reyZgu=g9-,v =y or reyZiu=g",v ey (g

this is equivalent to the decisional Diffie-Hellman problem in (g)
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IND-CPA Proof with Game Methodology

take a group with a generator g of order g
(to ease notations, we write “g” instead of “group, g”)

key generation: pick x €y Z4, sety = g*
message space: pt € (g)

encryption: Ency(pt; r) = (9", pt.y")
decryption: Decy(u,v) = vu™*

IND-CPA game I%:

1:

run key generation and get y

run -A1 (q7 g, .y) = (pth pt1 ) St)

pick r ey Zq, and (u, v) = Ency(pty; r)
run Ax(st,u,v) = b’

return bt/
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Transitions — i

game 5:

1: run key generation and get y

2: run A4 (gv y) = (pt07 pty, St)

3:r ey Zg (uv) <+ DDH assumption in the group

Ency (pty: 1)
4: run Ax(st,u,v) = b
5: return v’/
1 bridge

game I'{: game I'§:

1: pick x, y + g¥ 1: pick x, y + g¥

2: pickr,u<+ g’ 2: pickr,u<+ g’

3. v« g¥ >erase x,r BPH  3: pick vy > erase X, r
4: run Ai(g,y) = (Pt pty, st) 4: run Ai(g,y) = (pto, pty, st)
5. v=ptyw 5: v=ptyw

6: run Ax(st,u,v) = b’ 6: run Ax(st,u,v) = b’

7: return b’ 7: return b’
SV 2025 Cryptographic Security Models EPFL
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Transitions — ii

game I'5:
1: pick x, y «+ g¥
2: pickr,u<+ g’
3: pick vy ‘ '
4: run A1(g,y) = (pty, pty, st) messages are in the group!
5: v=nptyvg
6: run A (st,u,v) = b’
7: return b/
1 bridge
game 3: qame
1: pick x, y + g~ me [}: i
2: pickr, u<+ g ;: p!ckx,y<_gr
3: run A1(g,y):(pto7pt1’st) igj 3 p'CkJLfl, U%gi t t t
4: pick vp i runk 1(9,¥) = (pto, pty, st)
S v = ptyV > erase v - pickv
6: run .ng(s(t) u,v)="b 0 5: run Ap(st,u,v) = b’
7: return b’ 6: return b’
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Transitions — iii

final step: Fg and Fl are identical!
bridge DDH bridge domain
0 0 ~ 0 P 0 me
e —~ IF = T; M3 =
bridge DDH bridge domain
1 1 ~ 1 1 =

so, Pr[I = 1] — Pr[} = 1] < 2Advppn = negl
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Observation

e DDH must be hard for security
® messages must be group elements
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Practical Problems with EIGamal Encryption

¢ the DDH problem is not always hard

example of bad groups: (g) = Z,, Z;;,
¢ we should take g of large prime order q
* but then how to embed pt in (g)?

e example: in the case of a subgroup of Z; with p >> q, group
elements are scarce — hard to embed pt in (g)

e example: in the case of a subgroup of Z; with p = 2q + 1,
one residue out of two is a group element
—1 is not a group element (since (—1)9 # 1)
we could take map(pt) = +pt mod p € {(g) for 1 <pt < q

e example: elliptic curves
— technical to embed pt in (g)
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Conclusion

* key recovery
RSA, Rabin: key recovery < factoring pq
ElGamal: key recovery <= discrete logarithm
¢ ciphertext decryption
RSA: decryption <= RSA problem
Rabin: decryption <= factoring pq
ElGamal: decryption <= CDH problem
¢ hard core bit
Isb in RSA <= RSA problem
¢ semantic security (IND-CPA)
ElGamal IND-CPA <= DDH problem
¢ adaptive security (IND-CCA)
none
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Train Yourself

e security of encryption: final exam 2011-12 ex3

® security proofs:
final exam 2010—11 ex4 (security reduction)
final exam 2011-12 ex2 (MAC revisited)
final exam 2014—-15 ex1 (security of Davies-Meyer)
e DH:
midterm exam 2010-11 ex2 (easy DDH from bilinear mappings)
final exam 2011-12 ex1 (easy DDH cases)
midterm exam 2014—-15 ex1 (hard log and easy DH world)
final exam 2015—16 ex2 (fixed vs random g in DH problems)
midterm exam 2016-17 ex1 (solving DDH with small subgroups)
midterm exam 2017-18 ex2 (gap DH problem)
midterm exam 2019-20 ex2 (OW-CPA vs IND-CPA)
midterm exam 2022-23 ex1 (squares in exponent)
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Train Yourself

ElGamal:

final exam 2009-10 ex2 (message mapping)

final exam 2012—-13 ex1

midterm exam 2016—17 ex3 (issue from weird distribution)

BLS signature: final exam 2012—-13 ex2

PRF: final exam 2015—16 ex3 (equivalent PRF notions)

PRP vs left-or-right security: final exam 2016—17 ex3

IND-CPA implies collision-resistance: final exam 2017-18 ex1
IND-CCA and NM-CCA are equivalent: final exam 2017-18 ex2
MAC vs PRF: midterm exam 2016-17 ex2

key agreement:
final exam 2019-20 ex1
midterm exam 2021-22 ex1

contact tracing: midterm exam 2019-20 ex2
equivalent IND notions: midterm exam 2018-19 ex1
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Train Yourself

e security of signature with setup: midterm exam 2023-24 ex1

e find-then-guess security for symmetric encryption: midterm
exam 2023—-24 ex2
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© Cryptanalysis (Public-Key)
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e Cryptanalysis (Public-Key)
@ RSA
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Plain RSA Encryption

| Adversary |
Message Message
< Encrypt Decrypt T mod N
|
K
Public key e, N '?UTIEE’E“CT;:%L'ON | TSecret key o, N

SV 2025 Cryptanalysis (Public-Key)
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Plain RSA Signature

| Adversary |
Message .
S >
< ign Extract 7 mod N
| |
A AUTHENTICATION .
i ‘ *Pubhc key e, N

INTEGRITY

Secretkey d, N |

Generator

Cryptanalysis (Public-Key) EPFL 172 /529
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RSA Engineering

¢ Implementation issues (from plain RSA to real life
standards)
o Problems with broadcast encryption
@ Problems with low exponents
o Problems with side channels
¢ Side channel attacks

o Power analysis

o Single/differential fault analysis

e Timing attack, electromagnetic fields, sound

@ Side channel from protocols: formatting issues

* Relevance of the mathematical model
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Broadcast Encryption with Low Exponent

Sending the same message x to at least e participants with the
same encryption exponent e and different moduli Ny, ..., Ne.

¢ The ith participant receives y; = x€ mod N;
e The attacker intercepts e values yq, ..., Ve

e The attacker computes y = x€ mod N where
N = N; x ... x Ng by CRT (assume moduli are coprime)

e We have y = x¢
® The attacker deduces x = ¢y
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Example with e = 3

Broadcast plaintext x to 3
N:.3 receivers using e = 3:

Let y; = x3 mod N,

We have CRT(y1, 2, ¥3) =
N, 3 x3 mod (N1 N2N3) = x3

So we can compute x3 then
extact a cubic root and get x

N3, 3

'
S
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Attack on Low Exponents

e Attack on low e: Coppersmith algorithm to find roots less
than N+ of a polynomial of degree e.
Example: decryption attack when e = 3 and we know % of
the plaintext bits (e.g. RSA.Enc(pattern||x) with 1024-bit
modulus when x is a 256-bit symmetric key and pattern is
a constant pattern).

e Attack on low d: Wiener key recovery attack for d < v'N
(e.g. N of 1024 bits and d of less than 256 bits).
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Simple Power Analysis (SPA)

Computing x = y mod N is performed by a device with
external power supply by using the square-and-multiply
algorithm.

* The power usage tells what kind of operation is performed

e Some cryptoprocessors have faster square than multiply
algorithms

e The power usage tells when a square and a multiply is
performed

® The attacker deduces d
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Square-and-Multiply Algorithm (Left to Right)

Input: y, d, N, three integers of at most ¢
bits

Output: x = y? mod N

Complexity: O(#?)

1: @« 1

2. fori=¢—1to0do

3:  a<+ a&modN

4: if d; = 1 then

5: a<axymodN
6: end if

7: end for

8 X<« a
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SPA

/

7
power

\ \ \ \
1 \ 1 I 0 1 0 |
SQ MUL | SQ MUL | SQ | SQ | SQ

RERELY

\S

time

—/

secret key is 1100... (from right to left or left to right)
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Countermeasures

e hardware
flatten power usage

¢ software
always do a multiplication
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Differential Fault Attack (DFA)

Computing x = ¥ mod N is performed by a device using CRT
accelaration.

* The attacker picks x and sends y = x® mod N to the device

The attacker agressively (but mildly) stresses the device

The device eventually makes computation errors

e Error may occur during the CRT accelaration

The device computes x’ and outputs it

The attacker computes gcd(x — x’, N)
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DFA

pick x and submit y = x® mod N to normally obtain x

y9 mod p

xmod N=y

CRT

y9 mod N = x

y9 mod q

y9 mod p

x¢mod N =y CRT —x’' = x (mod p)

[\ )N
VARV

random
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Countermeasures

e hardware
sensors

e software
verify the result
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PKCS#1v1.5 Encryption (Reminder) (OBSOLETE)

random message

@002( PS )ol( ¥ ))

Enc

ciphertext
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Yet Another Side Channel Attack (PKCS#1v1.5)

Bleichenbacher’s attack against PKCS#1v1.5 encryption:
e Attacker intercepts y = x€ mod N and aims at recovering x

e Attacker plays with the server by sending fake ciphertexts
y’ of the form
y' = s° mod N

e Most of the time, y’ does not decrypt well and the server
issues an error message.

e If the server accepts, then (y')9 mod N starts with 00 02,
hence

2 x 256572 < sx mod N < 3 x 256K2

¢ By using this oracle 14 500 times, Attacker can reconstruct
X with probability 50% [Bardou et al., CRYPTO’12]
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Countermeasures

¢ hide (well) errors
e use the IND-CCA secure variant of RSA
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Other Side Channel Attacks

Simple fault analysis
Differential fault analysis
Timing attack
Electromagnetic fields

Noisy machines

Cache attacks

Branch prediction algorithm

Power LED

Dynamic frequency scaling (CPU throttling)

SV 2025 Cryptanalysis (Public-Key) EPFL 187 /529



e Cryptanalysis (Public-Key)

@ Diffie-Hellman
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CDH vs DL Problems (Reminder)

(implicit: relative to Setup)

CDH (Computational DL (Discrete Logarithm)
Diffie-Hellman)

Adv = Pr[game returns 1] Adv = Prigame returns 1]

Game Game

1: Setup(1%) % (pp)  >q.g 1 Setup(1%) > (pp) > a.g
2: pick x,y € Z4 2: pick x € Z4

3 X«—g5Y+¢g 3 X« g¥

4 Alpp. X, Y) S K 4 Alpp, X) > z

5: return 1x_ g0 5: return 1x_g-
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Easy Discrete Logarithm Cases

The DH and DL problems are relative to a group selection

® an easy group case: G=2Z,forany n
If g generates G then the “exponential” of x is

X = (xg) mod n so the “logarithm” of X is x = % mod n

* B-smooth order: G of order n = p{"" x --- x p;” with p;
primeandp; < --- < p, < B
Use the Pohlig-Hellman algorithm

Hardness example: subgroup of Z; of large prime order q
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Pohlig-Hellman Algorithm

* Inagroup of order n = p{" x - x p;

¢ Pohlig-Hellman algorithm to compute discrete logarithm in
O((a1+/P1 + - - -+ ar/pr) T) where T is the complexity of
one group operation

e thisis O(v/BT log n) if nis B-smooth
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Pohlig-Hellman Algorithm

Input: g, X in a group G and the factorization #G = n=p{" ... p;"
such that p; is prime, p; # pj, and o; > 0,for1 <i<j<r
Output: the logarithm of X in base g
Complexity: O(a1/p1 + - - - + ar\/Pr) group operations
1: fori=1,...,rdo
2 g « gVP’
3 g// — g/P,?‘"i
4: X'« X"/P"
5: Xi< 0
6.
7
8

1

forj=0toa;—1do
X" )(/P,fl"_/_1
compute the discrete logarithm u of X” in the subgroup of
order p; which is spanned by g” (next slide)

9: X' X' /g"P
10: Xj < X + u.p
11: end for
12: end for

13: reconstruct and yield x such that x = x; (mod p;*)
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Baby Step - Giant Step Algorithm

Input: g and X in a group G, B an upper bound for #G
Output: the logarithm of X in base g
Complexity: O(+/B) group operations
Precomputation &
1: let ¢ = [/B] be the size of a “giant step”
2. fori=0,...,./—1do

3. set T{g"} « i ' =Xg®
4: end for
Algorithm =t
5. forj=0,...,/—1do
6: compute z = Xg~/
7: if T{z} exists then
8: i+ T{z}
9: yield x = i/ + j and stop >we get Xg~/ = g"
10: end if
11: end for
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Pollard Rho Discrete Logarithm Algorithm

Input: g and X in a group G of
order n

Output: the logarithm of X in
base g

Complexity: O(v/n) group
operations

1: pick a random function

h:G— {1,2,3}

. repeat
a< f(a)
b + f(f(b))
until a; = by
return
(a2 — bo)/(as — b3) mod n

fail if not possible

NoOa ko

SV 2025

: d,b+ (1,0,00€ GxZ,xZ,

>

Cryptanalysis (Public-Key)

® G is multiplicatively denoted

* f(Z,a,p) is defined to be

(Z x g,a+ 1 mod n, 3) if h(Z) =1
(Z x X,a,8+ 1 mod n) if h(Z) =2
(Z2,2a: mod 0,23 mod n)  if h(Z) =3

e vectors (Z, «, 8) are all such
that Z = g>X#

e we could have taken another
random function f with this

property

EPFL 194 /529



Decisional DH Problem (Reminder)
(implicit: relative to Gen)

Hardness of DDHP (Decisional Diffie-Hellman Problem)
Adv = Pr[l'y — 1] — Pr[l[p — 1]
Game 'y
Setup(1°) > (pp) >q.9
pick x,y € Z4
if b = 0 then
pick z € Z4
else
Z < Xy mod q
end if
X+—gY+—¢gZ+ g
A(pp. X, Y.Z) % ¢
return c

DDH is the key distinguiher problem with DH
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Easy Case: Z,
The DDH problem is relative to some Setup may be easy
Z;, with p prime:
Setup(19)
1: pick p prime of size f(s)
2: pick a random generator g of Z;,
3: return (p,p—1,9)
then let A(pp, X, Y,Z) =1 iff
(loggZ mod 2) = (logg X mod2) x (logy Y mod2)
I Il Il

wi(f) () ()

we have (5) = —1 iff the logarithm is odd, and
log Z = (log X)(log Y') in the DH case, so
1

PriA(ee. X.Y.2) = 1]=5 . PrlA(pp.X,Y.Z) > 1] =1

thus Adv(A) = J
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Reminder on the Legendre Symbol

e for an odd prime p

* QRp: set of elements from Z; which have a square root

(quadratic residues)

0 ifx¢z;
 (5) =4 +1 itxeQRp
1 ifx€Z;—QR,

. (g) = x"2 (mod p)
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Easy Case: Group of Order with Smooth Factor

The DDH problem is relative to some Setup may be easy

G of order n such that % is smooth:
let A(pp, X, Y,Z) =1 iff

loggw Z% = (loggw X*) x (loggw Y")

we have Adv(A) =1-%
Indeed,

w

PriAlpp, X, Y, 2Z) = 1] = —

. PrlAlpp, X, Y, 2) = 1] =1
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Hard Cases

The DDH problem relative to some Setup is believed to be hard
* large subgroup of prime order of Z, (p prime)

prime subgroup of Z;, with p prime:

Setup(19)

1: pick g prime of size 2s

2: pick p of size f(s) such that g|p — 1

3: start again until p is prime

4: pick a random g in Zj, of order g

5: return (p,q,9)
¢ large subgroup of prime order of a “regular” elliptic curve
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Some Failure Cases

check the previous course
e attacks based on DL precomputation on a fixed group
¢ problems when not checking group membership
e problems with subgroups
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e Cryptanalysis (Public-Key)

@ ElGamal
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ElGamal Signature

kez, 0<s<p—1
r=g* mod p 0<r<p
s— H(Mk)—Xf mod p — 1 \ Adversary | yrs = gHM) (mod p)
Message
Message . M
M Sign M,r,s M,r,s Ver
\ ok?
A AUTHENTICATION A .
ki + $ Public ki
Secret key x | T INTEGRITY | ublic key y
Generator | |
y =g modp ‘ |
p prime
g generator of Z;;
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ElGamal Signature Security

® key recovery is equivalent to the discrete logarithm
problem
e results from EUROCRYPT 1994
o existential forgery is hard on average over the random
choice of the public parameters in the random oracle model
(covered in final chapter) provided that the discrete
logarithm is hard
o universal forgery attack on a specific parameter choice
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Security if we Miss the Second Inequality Check

(If we miss the first inequality check: no strong-forgery
resistance...)

If we do not check that 0 < r < p, we have a universal forgery
attack:
® pick r,_1,8 € Z;;;_1 at random

HM) - Tp—1

esetrp,=g9"s s modp

® pick r such that r mod p=r, and r mod (p — 1) = ry_1
using the Chinese Remainder Theorem

e issue (r, s) as a signature for M
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Bleichenbacher Attack (Setup Assumptions)

e Assume that p — 1 = bw with an integer b which is
smooth. Example: b = 2 which works for every odd prime
p.

* Assume that we know some relation g'/! mod p = cw.
Example: if we have g = b (note that the complexity of the
exponentiation is decreased if g is small) and p = 1
(mod 4), the relation holds for t = 252 and ¢ = 1:

gy
= (P1) " =-aCL =g (moup)

since g% is a square root of 1 which is not 1 (otherwise g

would not be a generator) and (—1)% = 1 due to the
assumption on p mod 4.
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Attack (Universal Forgery)

o We first take r = cw.

e We find z such that y° = g~ (mod p). This is nothing
but the discrete logarithm of y*¢ mod p in base g"¢ mod p
which spans a group of order factor of b. Thus the
Pohlig-Hellman algorithm works, thanks to the assumption
on b.

e We take s = t(H(M) — cwz) mod (p — 1).
* Yield the signature (r, s).

We only have to prove that the signature is valid. First we check
that 0 < r < p. Next we have

yrrs = yCW(CW)t(H(M)—cwz) = ycng(M)—cwz = gH(M) (mod ,0).

Therefore the signature is valid.
— use subgroups of prime order.
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Conclusion

¢ insecurity cases

e particular cases for parameters (short exponents...)
@ groups with smooth order
@ side channels
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Train Yourself

e RSA:
midterm exam 2008—-09 ex1 ex3
midterm exam 2009-10 ex2 (Wiener attack)
midterm exam 2010-11 ex1
midterm exam 2012-13 ex3 (broadcast encryption)
midterm exam 2015-16 ex1 (secret modulus recovery)
midterm exam 2021-22 ex2 (redundant RSA)

threshold implementation: midterm exam 2017-18 ex1

dedicated cryptanalysis: midterm exam 2013-14 ex1
¢ predicate encryption: midterm exam 2013-14 ex2
OW-VCA security and Regev: final exam 2020-21 ex1

Goldwasser-Micali PKC: midterms exam 2018—19 ex2

® a weird signcryption: midterms exam 2018-19 ex3
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o The Power of Interaction
@ Interactive Proofs
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Motivation

foundations: study the theory, models, and primitives for
interactive proofs
this allows

® to make access control

® to make signature schemes

* to make encryption

¢ to give a methodology to analyze security
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Definitions

Z is an alphabet (a set of letters)

Z* is the set of finite sequences of Z elements, including
the empty sequence L

L is a language (subset of Z*)
x is a word (element of Z*)
* w is a withess (element of Z*)

* R(x,w) is a relation on x and w (either true or false)
L={xeZ"3weZ® R(x,w)}

Problem: given x € Z*, provethat x € L
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NP Class

Definition (AP Language)
A language L over the alphabet Z belongs to the class NP if
there exists a relation R and a polynomial P such that
* R(x,w) can be evaluated in polynomial time (with respect
to the length of x and w)
o [ ={xeZIweZ* R(x,w),|w|<P(|x|)}

= language of statements which can be proven by a proof with
polynomial size
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co-NP Class

Definition (co-A"P Language)
A language L over the alphabet Z belongs to the class co-NP if
Z* — L e NP, i.e. there exist a relation R such that for any
polynomial P,
* R(x,w) can be evaluated in polynomial time (with respect
to the length of x and w)
o [={xeZ"VweZ* |w|<P(x|)= -R(x,w)}
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P Class

Definition (P Language)
A language L over the alphabet Z belongs to the class P if
there exists a polynomial time deterministic algorithm .4 such
that

L={x e Z"; A(x) — accept}

= language of statements which are checked in polynomial time
NP <= membership can be decided in non-deterministic
polynomial time
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P vs NP Problem

clearly:

b|g open question:

P=NP or PANP ?
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NP vs co-NP Problem

NP =co-NP or NP #co-NP ?

SV 2025 The Power of Interaction EPFL 225 /529



Karp-Reduction

Definition (Karp Reduction)

Given two languages L and L, over an alphabet Z, we say that
Ly (Karp-)reduces to L, if there exists a function f which can
be computed by a polynomial-time algorithm such that

VxeZ* xely <= f(x)els

The Karp reduction is stronger than the Turing reduction
(=~ Turing reduction restricted to a single oracle access)
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NP-Hardness

Definition (NP-Hardness)

A language L over the alphabet Z is NP-hard if for all L' € NP,
L' (Karp-)reduces to L.
It is NP-complete if it further belongs to A/P.
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NP-Hardness

Example: SAT, the set of Boolean terms r such that there exists
an assignment of all variables in r which satisfies the term.

Theorem (Cook 1971)
SAT is NP-complete. J

Proof intuition.

if L' € NP, there exists a relation R for L’

for each x, the size of the potential withess is bounded so
we can write r(x) = R(x,-) as a Boolean term holding on
variables corresponding to w

(a Boolean term has AND, OR, NOT gates and variables)

for each x, w is a witness for x iff this it defines an
assignment satisfying r(x)

for each x, x € L' iff r(x) is satisfiable

the x — r(x) is polynomially bounded O
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Consequence

SATeP <— P=NP
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Interactive Machines
“a Turing machine with an extra communication tape”

Definition
We say that A is an polynomial/deterministic/probabilistic
interactive machine if it is a
polynomial/deterministic/probabilistic algorithm mapping an
input x and a list my, ..., m, of incoming messages to an
outgoing message A(x, my,..., Mp; r).
® Messages can end by a special termination symbol. In this
case we call it a terminal message.
e A shall be such that if m, is a terminal message then
A(x,my,...,mp;r)is aterminal message.
e (x,my,...,mp;r)is called a partial view of A. It is a final
view if the last message is a terminal one.

An interactive machine is an algorithm computing a
next-message from a partial view.
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Interactive System

Given two interactive machines A and B, an input x, random
tapes ra and rg, we call A the initiator and define

° exp = (A(rA) TN B(rB)) the experiment consisting in

defining

a = A(x,by,...,bi_1;ra)

b = B(x,ai,...,arB)
fori=1,...,nas.t. an, is the first terminal message a; and
j=1,...,ngs.t. by, is the first terminal message b;

Out4(exp) = an,

Outg(exp) = bn,

View 4(exp) = (X, b1, ..., bn,—1;ra)
Views(exp) = (X, a1, ..., ang: IB)
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Interactive System

A B
coins: ry (input x) coins: rp
ay = A(X; ra) a
o by = B(x, ai; rs)
a = A(x, by; ra) %
a,,A
A(X, b1,. . .,bnA_1;fA)
bn
5 B(x,ai,...,an,: s)
View(exp) = (X,b1,...,bn,—1;1a)
Viewg(exp) = (x,ay,a2,...,ans IB)
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Example: Coin Flipping Game

* game:
given a bit x, A and C flip a coin together and A wins if it is
X
¢ coin flipping:
@ A commits to a random bit a
@ C flips a bit b and sends it

© Aopensa
© thefinal bitisa® b
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Example: Coin Flipping Game

Adversary Challenger
coins: ry (input x) coins: rg
parse ra = a||r parse rg = b||r’
with a € {0, 1} with b € {0,1}
¢ = commit(a; r) c
b
al|r (final) y=ao b
check ¢ = commit(a; r)
you win (final) if OK and x — y
you lose (final) otherwise

(x,c,alr b|r')
{ youwin ifx=aob

Viewe (A(alr) % c(b]|r))

Oute (A(a||r) LI C(bur’)) and ¢ = commit(a; r)

you lose otherwise
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Interactive Proof

Definition
Given a language L over an alphabet Z, an interactive proof
system for L is a pair (P, V) of interactive machines such that
there exist a polynomial P, 8 suchthat0 < 5 < 1 and

e termination: for any x, the total complexity of V' (until

termination) in P & V(r) is bounded by P(|x|)

¢ perfect completeness: for any x € L then

Pr [Outy <P(rp) & V(rv)> = accept] =1

Ip,ry

¢ 3-soundness: for any x ¢ L and any algorithm P* then

Pr [Outv (P*(rp) & V(rv)> = accept} <pB

e,y

v
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Notes

e we assume no bound on the prover P (powerful prover)
w.l.0.g. it can be assumed deterministic

the verifier V is polynomially bounded
e variants consider imperfect completeness
B is the maximal probability that V can be fooled
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Example: Proof of some P Language

language: set of x such that .A(x) = accept where Ais a
deterministic and polynomially bounded Turing
machine

Prover Verifier

X
(final)

accept (final)

if A(x) = accept
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Example: Proof of some NP Language

language: set of x such that there is some w such that
R(x,w) is true where R is a deterministic and
polynomially bounded Turing machine

Prover Verifier

X
w (final)

find w
accept (final)

if R(x,w)
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Example: Goldwasser-Micali-Rackoff 1985

A co-NP Case

reminder: QR(n) is the set of all squares modulo n

language: set of pairs (n, v) such that v € Z}; and v ¢ QR(n)

Prover Verifier
(n,v)
pick r € Z, e € {0,1}
solve y = x2 mod n 4 y =ver> mod n
0 if solvable f (final)
f= X
1 otherwise

accept (final)

if e=f and gcd(v, n) =1

Termination: Verifier runs in polynomial time with respect to the size
of (n,v)
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Example: GMR85 Completeness

completeness:

Prover Verifier
(n,v)
pick r, e=0or 1
solve y = x2 mod n Y y =ver?> mod n
0 if solvable f
f= { 1 otherwise check e = f, gcd(v,n) =1

® assume that P and V follow the protocol and (n,v) € L
* ver?2 = x2 is solvable iff e = 0

* we always have e = f, so V always accept
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Example: GMR85 Soundness

-soundness with 8 =

n|—=

Prover Verifier

pick r,e=0or1
y =ver? mod n
check e = f, gcd(v, n) = 1

assume that V follows the protocol and (n,v) ¢ L

e we can write v = s2 mod nthen y = (sr)2 mod n

if r ey Z, then sér €y Z}, whatever e

* y and e are independent thus e and f are independent
Prlaccept] = }
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Sequential Composition

Given an interactive proof system (P, V) for L which is complete
and -sound we define a new proof system (P’,)’) as follows:

e P’ resp V' simulates P resp V but have no terminal
message until n iterations are made

e after an iteration completes, they restart the entire protocol
with fresh random coins

e )" accepts all iterations accepted
the new interactive proof system is complete and 3’-sound with

5/ negth 5[7
so —0

Conclusion: by sequential composition we can tune 5 as close
to 0 as we want
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Soundness Result for Sequential Composition

Theorem

Consider an interactive proof system (P, V) which is $-sound.
Given n, we construct the interactive proof system (P’,)")
making n sequential iterations of (P, V) then accepting if all
iterations lead to an acceptance result (see previous slide).
This new interactive proof system is 3'-sound where

B/:Bn
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Technical Lemma

Lemma

Assume that no adversary can succeed one protocol session
with probability higher than .

Then, for each adversary A repeating the protocol n times and
any | C {1,...,n}, we have

Pr | /\ A succeeds iteration i| < g#!
i€l

Theorem follows with / = {1,..., n}.
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Proof of Lemma
e proceed by induction on i such that / C {1,...,i}:
o trivial for i = 0 (/ empty)
e assume this is true for i — 1 and prove it for i

SV 2025

let/IC{1,...,i}

if |C{1,...,i— 1}, theresultis proven

otherwise, let I = I' U {i}

consider an adversary B who plays with A and simulate j — 1

honest verifiers at random

if A passes each iteration i s.t. i € I' then proceed
otherwise, reset A and restart

play a challenge session with A in the ith iteration

if B halts, since he passes with probability at most 3, we
have

Pr | A succeeds iteration i

/\ A succeeds iteration j} <B
jer

by induction, we prove (if 5 does not halt as well) that

Pr {/\A succeeds iteration i} < g
iel
L]
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Tricky Things with Parallel Composition

¢ OK for parallel composition of proofs
¢ not OK if we consider computational soundness

e WARNING: parallel composition does not always work in
protocols
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Example: DD Protocol

Bellare-Impagliazzo-Naor 1997

Prover Verifier
pick r,e=0or 1

pick r', € =0 or 1 4 y = commit(e; r)
y' = commit(¢/; r') 4

r.e

r'e

check y’ = commit(¢e’; r')
if e

accept (final)

e commitment perfectly hiding and computationally binding

e for any (polynomial) prover, probability of acceptance is
negligibly close to J
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Parallel Composition of DD

Prover Verifier
pick r1, r2, 1,62 =0 or 1
pick r{, r;, €, €, =0or 1 PR AL E— y; = commit(e;; r;)
’ Y Y1z
y; = commit(e};r/) ———
r,r,e,6
r{,rz’,e{,eé / H / /
check y; = commit(e;; rf)

accept (final .
Pt (final) if 1 # €} and e; # €,

* we would expect that for any prover, the probability to pass is
< 1 +negl...
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Example: DD Protocol

® a prover can win 2 parallel repetitions with probability %
(instead of 1)

Prover Verifier
pick r1, 12, e,62 =0 or 1
Lo e y; = commit(ej; r;)
YiYs
setyij =y Yo=y1 —————
r,eq,rn,eo

2,62, ,61 check
—_—

win iff e; # eo
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7P Class

Definition (ZP Language)

A language L over the alphabet Z belongs to the class ZP if
there exists an interactive proof system for L.
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Example: a Proof System for any NP Language

Theorem

NP CIP

Proof. Let L be a language in the NP class: define R.

Prover Verifier
X
find w w (final)
accept (final) if R(X, W) — 1
e we have perfect completeness
e we have perfect soundness (5 = 0) O
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PSPACE Class

Definition (PSP.ACE Language)

A language L over the alphabet Z belongs to the class
PSPACE if there exists an algorithm .4 working with a
polynomially bounded memory such that

L= {x e Z*; A(x) — accept}

We have NP C PSPACE because A can do an exhaustive
search on the witness and check it with limited space.

Theorem (Shamir 1992)
IP =PSPACE. J

SV 2025 The Power of Interaction EPFL 252 /529



Complexity Classes

p

SV 2025 The Power of Interaction EPFL 253 /529



0 The Power of Interaction

@ Zero-Knowledge
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Zero-Knowledge Interactive Proof

Definition (ZKIP)

An interactive proof system (P, V) is x-zero-knowledge if for
any ppt interactive machine V* there exists a ppt algorithm S

such that for any x € L Viewy- (P(rp) & V*(rv)) and S(x; r)
produce *-indistinguishable distributions.

YV* ppt 3Sppt Vx Viewy-(x) ~ Outgs(x)

Several x-indistinguishability notions:
e x=perfect: x-identical means identical
e x=statistical: x-identical means the statistical distance is
negligible in terms of |x|

¢ x=computational: x-identical means any ppt distinguisher
has an advantage which is negligible in terms of | x|

SV 2025 The Power of Interaction EPFL 255/529



Zero-Knowledge Levels

Vx  Viewy-(x) <~ Outg(x)

Viewy«(x): what comes from interacting with powerful prover
Outs(x): what comes from from powerless simulator

e Perfect. No matter the complexity of the distinguisher, the
advantage is null.

Vx Vv Pr[Viewy-(x) = v] = Pr[Outs(x) = v]

¢ Statistical. No matter the complexity of the distinguisher,
the advantage is negligible.

Vx VD | Pr[D(Viewy«(x))] — Pr[D(Outs(x))]| = negl(|x|)

e Computational. With a distinguisher of ppt complexity, the
advantage is negligible.

Vx VD ppt | Pr[D(Viewy-(x))]—Pr[D(Outs(x))]| = negl(|x]|)
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Example: Goldwasser-Micali-Rackoff 1989

language: set of pairs (n, v) such that v is a quadratic
residue modulo n

Prover Verifier
(n,v)
find sst v =% mod n
pickreZi, x=rPmodn —*——
«—= — e=0ort
y=srmodn —>— check y2 = vex (mod n)
and ged(x,n) =1
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GMR89 - Completeness

completeness:

Prover (n,v) Verifier
find sst v = ?
pick r, x = r? X
° e=0,1
y = s°r 4 check y? = vex

if Prover and Verifier follow the protocol, then it always
succeeds
Pr[P < V accept] = 1
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GMR89 - Soundness

j-soundness with 3 = 1:
Prover (n,v) Verifier

° e=0,1
Y check y? = vex

if Verifier follows the protocol and accepts with probability > % then v
is a quadratic residue

1 . .
Pr[P* + V accept] > 5=V quadratic residue

¢ |f the protocol succeeds with probability > % there must be at
least one rp for which the probability (over e) that the verifier
accepts is > 3

¢ there is one x for which the verifier accepts y, to challenge e

* y2=xandy? =vxsov=(yi/yo)? visaquadratic residue
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GMR89 - Zero-Knowledge

Prover (n,v) Verifier
find sst v =s? mod n

pick r, x = r? X

e

Y

y =s°r
Zero-Knowledge: if Prover follows the protocol, we can make a

Simulator which generates random views (n, v, x, y; ry) with the same
distribution: for all (n, v) € L,

W 35 (View(P <% V")) = distribution (S(n, v))

® pick ey € {0,1} at random
® pick x = y?v—® with y random
(distribution of x like in P and independent from eg)
® run V*(n, v, x; ry) with random ry
e if V* yields e # ey, try again, otherwise, output (n, v, x, y; ry)

to do: the distribution is the same + S is polynomially bounded
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Black-Box Zero-Knowledge

Definition (Black-Box ZK)

An interactive proof system (P, V) is x-black-box
zero-knowledge if there exists a ppt oracle machine S such
that any ppt interactive machine V* and any x € L,

Viewy - <77(rp) & V*(fv))

and SV (x; r) produce *-identical distributions.

SY" means that algorithm S can use the algorithm V* as a
subroutine and select all its inputs

regular ZK: VV* 3§ Vx Viewy-(x) ~ Outs(x)
BB ZK: IS YV* Vx  Viewy«(x) ~ Outs(x)
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Example

In the GMR89 protocol the simulator was black-box!
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Example: Goldreich-Micali-Wigderson 1986

language: set of graphs (V, E) such that there exists a
mapping ¢ : V — {1,2,3} such that for each

(u,v) € E then ¢(u) # p(v)

Prover Verifier
(V,E)
find
repeat #E times
pick m € S3
r,foreachue V
cu = m(p(u))
Ry, = commit(cy, ru) A
LY pick (u,v) € E
if (u,v) e E GO lulv check Ry, Ry

check ¢, # ¢y
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Graph Coloring

e agraphis apair (V,E)suchthat EC V x V

V is a set of vertices

E is a set of edges

an edge (u, v) € E is said to go from vertex u to vertex v
afunction ¢ : V — {1,2,...,n}is acoloring of (V,E)inn
colors if for any (u, v) € E we have p(u) # ¢(v)

graph 2-colorability can be decided in linear time

graph 3-colorability is an NP-complete problem
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GMW86 - Completeness

completeness:

Prover ® (V,E) Verifier
pick m € S, r (#E times)
cy = m(p(u))
R, = commit(cy, r,) A
=k pick (u,v) € E
Gl ly check

if Prover and Verifier follow the protocol, then it always
succeeds
Pr[P < V accept] = 1
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GMWS86 - Soundness (sketch)

2-soundness with 3 = £ for #E > 5:

(V,E) Verifier
(#E times)
R
=i pick (u,v) € E
Gl check

Pr[P* «+ V accept] < 2 <= graph non-colorable

e if there is no possible ¢ then at least one edge is incorrect
so each iteration may fail with probability at least #
(assume the commitment to be perfectly binding!)

e all iterations pass with probability at most

(1-4e)" <o
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GMW86 - Zero-Knowledge (sketch)

Prover ® (V,E)
pick w € Ss, r (#E times)
cu = m(p(u))

R, = commit(cy, r,)
u,v

Cu,Cv,lu,lv

Zero-Knowledge: if Prover follows the protocol, we can make a
Simulator which generate random views with the same
distribution

3S wV* distribution (View(P LE v*)) — distribution (sv*(v, E))

e guess (u, v), make cy, ¢y, ry, r, such that it works and
make random commitments for the other vertices

® run V* on the constructed R

e if V* yields e # (u, v), rewind it and try again, otherwise,
output cy,y , ry, Iy
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Some Further Technicalities

e assuming that the commitment is computationally hiding
and perfectly binding
@ soundness works
(prover can open commitment on at most one color)
o zero-knowledge is computational
(cannot distinguish simulated commitments from real ones)

® assuming that the commitment is perfectly hiding and
computationally binding

e zero-knowledge is perfect (distributions are equal)
@ soundness is only true in a weaker form
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Consequence: NP has Zero-Knowledge Proofs

Theorem (Goldreich-Micali-Wigderson 1986)

Assuming that a computationally hiding and perfectly binding
commitment exists, for all language L € N'P there exists a
computational zero-knowledge interactive proof.
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Proof of Knowledge
Definition
Given a language L € N'P over an alphabet Z defined by a relation
R, an interactive proof of knowledge for L is a pair (P, V) of

interactive machines such that there exist a polynomial P and 3 such
that0 < 8 < 1 and

® termination: [as for interactive proof systems]

¢ perfect completeness: [as for interactive proof systems]

e p-soundness: there exists an oracle algorithm & called
extractor verifying what follows. For any P* we let

e(x) = Pr [Outv (P*(rp) & V(rv)) = accept}

Ie,rvy

If e(x) > B then £7" (x) outputs w such that R(x, w) holds with
complexity at most P(|x|)/(e(x) — B).

EP" means that £ can use P* as a subroutine and select its inputs
(note: access to P* counts as 1 in the complexity)
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Typical Prover

the typical provers that we have seen so far:
@ P finds w such that R(x, w) by exhaustive search
©@ 7P runs an algorithm based on x and w

typically: second step is polynomial

equivalent definition
e P uses w as a private input
e P is a polynomially bounded algorithm

this is closer to practical use as we want P to prove efficiently
that he knows w
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0 The Power of Interaction

@ Zero-Knowledge Construction from ¥ Protocol
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Motivation

Y -protocols make the design of ZK proofs of knowledge easier
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> Protocol
Definition |
Given a language L € AP over an alphabet Z defined by a relation

R, a X-protocol for L is a pair of interactive machines P(x, w) and
V(x) such that

® YV is polynomially bounded

¢ 3-move: P starts with a message a, V answers with a challenge
e €y E, P terminates with a response z, V accepts (always for
x € L) or reject only depending on (x, a, e, 2)

® special soundness: there exists a polynomially bounded
algorithm £ called extractor such that for any x, if (x, a, z; r) and
(x,a,z’;r") are two accepting views for V such that e # ¢ where
e=V(x,ar)and ¢ =V(x,a;r')then £(x, a, e, z,€,2') yields w
such that R(x, w)

e special HVZK: there exists a polynomially bounded algorithm &
called simulator such that for any x € L and e, the transcript
(a, e, z) of the interaction P(rp) & V(ry) conditioned to e has
same distribution as S(x, e; r). (Prpv[a, Z|x, €] = Prs[a, z|x, €])
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> Protocol

Prover Verifier
w X

a<« P(x,w;rp)
pick e ey E
check V(x, a, e, z)

z<+ P(x,w,e; rp)

e ws.t R(x,w)

e £st.e#£¢€,V(x,a e z),and V(x,a, €, Zz')implies
R(x,E(x,a, e z €,2"))

e Ss.t. ahonest (g, e,z) and S(x, e) generate the same
distribution
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Specifying a > Protocol
To fully define a X-protocol we need
e arelation R defining the language
e afunction for a = P(x, w; rp)
® a samplable domain E for e
e afunction for z = P(x, w, e; rp)
¢ a verification relation V(x, a, e, z)
e afunction £(x,a,e,z,€,2)
¢ afunction S(x, e; r)
Properties to satisfy:
Q@ AR, P,V,E& S and sampling are polynomially computable in
| x|
Q V(x,w) e RVrpVee E V(x,a,e,2)
Q VxVe, & € EvVa,z,Z
(e#£¢€,V(x,ae2),V(x,a¢€,7)) =
R(x,&(x,a, e z,€,2))
Q V(x,w) e RVeec E distrib,,(a, e, z) = distrib,(S(x, e; r))
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Example: Goldreich-Micali-Wigderson 1986
e relation R((Gy, G1), ¢): ¢ invertible and o(Gy) = Gy
L P(Go, G4 , O I'P), e domain, P(Go, Gi , 0, 6, I’p),
V(Go, Gy , H, e, O’)

Prover Verifier
p st p(Go) = Gy (Go, Gy)
pick 7 invertible pick e € {0, 1}
H = (Go) A
e
oc=mop ° z : U(Ge);H
©

G~ °G

\/1

TOW

* &(Gy, Gy, H,e,00,€,00) = 01‘1 oag (6 # € so

{e,€'} ={0,1})
* S(Gy, Gy, e; r): pick o invertible then set H = o(Ge)
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Graph Isomorphism

e agraphisapair (V,E)suchthat EC V x V
V is a set of vertices
E is a set of egdes
an edge (u, v) € E is said to go from vertex u to vertex v
e given a permutation = of V, n(V,E) = (V, F) where F is
the set of all (w(u), w(v)) for (u,v) € E
¢ the graphs G and G’ on the same vertex set V are
isomorphic if there exists a permutation = over V such
that 7(G) = G
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Check List

Q@ AR, P, V,E& S and sampling are polynomially computable in
|Go, G|
© perfect completeness: quite clear
e V(GO, G1 ) 90) €R \V/H) 00,01
(V(GO> G17H70700)a V(G()7 G17H7 1701)) —
R(Go, G1,£(Go, Gy, H,0,00,1,04))
Q V(Go, Gi,¢) € RVe distrib,,(H, e,0) =
distrib(S(Go, Gy, €))

@ since H is a function of Gy, Gy, e, o, it is enough to show
that ¥(Go, G1, ¢) € RVe, 0 = mo ¢ ¢ is uniformly
distributed in Sy if m €y Sy

o thisis true
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ZK Trick

An easy way to prove special HVZK for V of form
Vx,a,e,z V(x,aez)<— a=f(x,e 2)

(most of X-protocols are like this)
¢ define
S(x, e r):
1: pick z
2: seta=f(x,e,2)
e use z well distributed, i.e. such that:

Vx, e, zPr[Viewy — z|x, €] = Pr[S — z|x, €]
e conclude:

Vx,a,e,z Pr[Viewy — a,z|x,e] = Pr[S — a, z|x, €]
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A Malicious Prover

S: as on previous slide
pP* Verifier
piCk eguess EU E

S(x, eguess) — (a, €guess 2)
if @ # eguess: fail!

pick e ey E
check V(x, a, e, z)

P* succeeds with probability 1/#E
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Y Protocols are Proof of Knowledge — i

Theorem

A X protocol (P, V) for L defined by R is an interactive proof of
knowledge for L, with 5-soundness for 5 = 1/#E.

Proof. Termination and completeness come from the definition.
Extractor (sketch):

® pick rp, ry, ry, and run P*(rp) & V(ry) and P*(rp) & V(ry)

e we have same g, if e # € and the two runs accept then
E(x,a,e z €, 7)yields w

e extraction works iff both runs accept and e # €
® problem: prove that it works within O (m) attempts
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Y Protocols are Proof of Knowledge — ii

run 1 run 2

P*(rp) & V(ry) makes (a,e,z) P*(rp) & V(r],) makes (a, €, 2')

and the acceptance bit b and the acceptance bit b’
® Prlb=1]=¢(x) e Prib/ =1] =¢(x)
® Pr[b=1]|rp] = e(x, rp) e Pr[b/ =1|rp] = <(x,rp)
© E(e(x,rp)) = &(x) * E(e(x,rp)) = e(x)

extraction works iff bb’ = 1, and e # €'

if rp is fixed, b resp b’ only depends on ry resp r;,

if rp is fixed, b and b’ are iid

Pr[bb’ =1 ’I’P] = €(X, I’/:>)2

Pribb' =1, e # €'|rp] = Pr[bb’ = 1|rp] — Pr[bb' = 1,e =
e|rp]

Pribb' =1,e = €'|rp] = Pr[b=1,e = €|rp] and

Prio=1,e=¢rp] = > PriV(x,:rv) = e’ =e(x,1p)B
e st b=1
from rp
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Y Protocols are Proof of Knowledge — iii

e Pribt =1,e=¢€|rp] =e(x,rp)B

o Pribb’ =1, # €|rp] = (X, 1) (=(, p) — )

¢ by applying the Jensen Inequality on Z = ¢(x, rp), we
obtain Pr[bbt/ =1, e # €] > e(x)(e(x) — B)
(Jensen Inequality: E(f(Z)) > f(E(Z)) if f is convex)

e the expected number of iterations until the extractor works
is lower than the inverse of this

e fore(x) > 3, since 5 > 0 is constant then 1/¢(x) = O(1)
so the extractor works with complexity O <P°';') 5 ) O

SV 2025 The Power of Interaction EPFL 284 /529



Parallel Composition

Theorem
If (P,V) is a X-protocol on set E, what follows is a ¥ -protocol
on E!.
e P(n,v,s;rp), , P(n,v,s,e;rp), V(n,v,x,e,y)
Prover Verifier
w st R(x, w) X
pick ry,..., rs pick (e1,...,6t) €
ai=P(x,w;r) L
e1,...,6t
Z1 4,2t

zi="P(x,w,e;n)
e £(x,a,e,z,€,7):
find i s.t. e; # €] then do Eug(X, i €/, Z;, €], Z})
o S(X,€1,...,€1M,...,N):
set (a;, ;,2)) = So(X, €3 1)
convenient to improve the soundness threshold!
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Honest Verifier Zero-Knowledge

Definition (HVZK)

An interactive proof system (P, V) is =-honest verifier
zero-knowledge if there exists a ppt algorithm S such that

View, (P(rp) & V(rv))

and S(x, r) produce x-identical distributions. )

“ZK only when the verifier is honest”
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> Protocols are HVZK

Theorem

A X protocol (P, V) for L defined by R is honest verifier
zero-knowledge.

Proof. We construct a simulator for the honest V as follows:

1: pick ap, set e = V(x, ap; rv) > V(.,.; ry) is constant
2: pick r, compute (a, e, z) = S(x, e;r)
3: yield (x, a, z; ry) as the view > note: V(x,a,ry) = e

* Pr[x,a, z, ry] = Pr[x, a, z|ry] Pr[ry] (Bayes)
Prix, a, z|ry] = Pr[x, a, z|e, ry] (e is a function of ry)

Pr[x, a, z|e, ry] = Pr[x, a, z|e] (only e depends on ry)
Prlview] = Pr[x, a, z|e] Pr[ry] = Pr|a, z|x, €] Pr[x] Pr[ry]
Prpovla, z|x, €] = Prs|a, z|x, €] due to special HVZK

O
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Zero-Knowledge on Small Challenge Set
Theorem

A X -protocol with a challenge set E with polynomially bounded size is
zero-knowledge.

Proof. Simulator:

pick eguess € E > a guess for e
run S(X, eguess) — (&, €guess, Z2)

get e* = V*(a; p) for p random

if 8 # eguess: try again > this trial failed
output (a, z; p)

AR A

* (, eguess; ) has same distribution as (a,e,z) in P &V
® same as

1: run P & V where V selects a random e
2: if e # V*(a; p) for p random: try again
3: output (a, z; p)

e Pr[-try again] = 1/#E so it terminates with polynomial time
e final (&, z; p) has same distribution as for P & V*
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Y Protocols are Not Always ZK

For a malicious V* who sets e = H(x, a):
* assume that e is large (#E super-polynomial)
e assume that H “looks like random” (to be formalized later)
assume that finding a witness for x is hard
then simulating the proof with V* is hard
— not ZK
(Fiat-Shamir result to be seen later)
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Summary about Composition

parallel composition | sequential composition
proof systems it works it works
Y -protocols it works it does not work<—__
ZK proofs it may not work it works N

e proof systems: soundness amplifies well
e > -protocols: a sequential repetition is no longer a >-protocol

e ZK proofs: counterexample

¥ -protocols are fully ZK' if E is small (polynomial size) but not
fully ZK if E is large!

we don’t obtain a ¥-protocol
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Example: Fiat-Shamir 1986 Simplified
~GMR89
e relation R(v, s): s?v =1
® P(v,s;rp), domain for e, P(v,s,e;rp), V(v,x,e,y)

Prover Verifier
ssts?v =1 v
pick r pick ee {0.1}
2 X
X=r
e
,
y = rs® Y y2ve = x

hd S(V,X, eayea elaye’) = y1/y0 (e¢ e/ SO {67 e/} = {071})

<Y1>2 AV x
T v = =1
Yo yavo o x

e S(v, e): pick y then set x = y?v®
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Example: Fiat-Shamir 1986

e relation R((n,v),s): svmod n=1, v,s € Z},

e P(n,v,s;rp), ,P(n,v,s,e;rp), V(n,v,x,e,y)
Prover Verifier
ssts?vmod n=1 (n,v)
pick r € Zj, pick e €

X = r2mod n X

e

Y

?
y=rs®modn y?v® mod n = x

?
v,y € Zj
° g(na V,X, € Ye, e/7ye’) :}’1/}’0 mod n (67é € so
{ev e,} = {0’1})
2 2,1
<y1> =YV X _y (mod n)
Yo
e S(v,e): pick y € Z} then set x = y?v® mod n
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Check List

Q AR, P,V, & S and sampling are polynomially computable in
linstance|

© perfect completeness: quite clear

© special soundness: in previous slide

Q V(instance, s) € RVe distrib.,(x,e,y) =
distrib(S(instance, e))

@ since x is a function of instance, e, y, it is enough to show
that ¥(instance, s) € R Ve, y = rs€ mod n is uniformly
distributed in Z}; if r €y Z},

o this is true since (instance, s) € R implies that s € Z},
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Example: Schnorr 1989 Simplified
e relation R(y, x): g¥ = y in a group (g)
e P(y,x;rp), domain for e, P(y, x, e;rp), V(y,r,e,s)

Prover Verifier
xstg*=y y
pick k pick e (can be large)
r=gk d
e
s=ex+k o ry® = g°
° £(y,r.esé,s) =5
o ry€ o
gs S — r}}//e/ — ye e

we extract (e — €')-th roots and get g% =y
® S(y,e): pick sthensetr=gSy—°
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Example: Schnorr 1989
® pp defines g, g, and a group (g) of prime order g
e relation R((pp, y), x): 9¥ =y, q prime > 2!, g of order q

* P(pPp, Y, X; Ip), , P(pp, y, X, € rp), V(pp.y.r.e.s)
Prover Verifier
xstgh=y (PP, Y)
pick k € Z, pick e €
r=gk ! q prime > 2!

e

g of order g7, y é (9)
rye L g°

e &(pp,y,r,e,8,€,8) = ngi mod q we have gcd(e — €',q) = 1
and g, y of order g

S

S=ex+ kmodqg

/

sy Iye

gS s _ rye, :ye—e

we extract (e — €')-th roots and get go—+ = y
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Example: Schnorr 1989 Generalized

® group homomorphism ¢ : Zg" — G", prime q
e relation R((¢, ¥),%): p(X) = Y
o P(Y,X;rp), domain for e, P(Y, X, e rp), V(Y. R, e,5)

Prover Verifier
Xstp(X)=Y Y
pick k € 27 pick e € Z,
2 - A
R = ¢(k)
e
§=—ex+k s R+ eY £ o(5)

e example: proof of discrete log equality gf = y; and g5 = y»

e example: proof of representation g;" g;*g3° = y
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Check List

Q@ R, P, V, &, S and sampling are polynomially computable in
linstance|

© perfect completeness: quite clear

© special soundness: in previous slide
© V(instance, x) € RVe distrib,.(r,e,s) =
distrib(S(instance, e))

@ since ris a function of instance and e, s, it is enough to
show that V(instance, x) € R Ve, s =ex+ k mod q is
uniformly distributed in Z, it k €y Z,

o this is true

SV 2025 The Power of Interaction EPFL 297 / 529



Problem with a Malicious Verifier

Prover Verifier

w st R(x, w) X
pick rp
a="P(x,w;rp)

take e = f(x, a)

z="P(x,w,e;rp) » V(x,a,e2)?

e at the end, get (a, z) such that V(x, a, f(x, a), z)
e can be easily simulated if E is small but not when it is large
e not ZK if E is large
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Strengthening by Commitment

Prover Verifier
w st R(x, w) X
pick rp pick e € E
Commit(e;r) .
pick r

a="P(x,w;rp)
verify Commit(e; r) <
z="P(x,w,e;rp)

V(x,a, e, z)?

e now x-ZK if commitment is x-binding (next slide)
e caveat: problem with soundness...
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Proving the ZK Property

Prover Verifier
w st R(x, w) X
pick rp
Commit(e;r)

a="P(x,w;rp)
verify Commit(e; r)
z="P(x,w,e;rp)

e run V* once on ry and send him a dummy gy to make him
open the commitment

e given e, generate a (a, e, ) triplet

e rewind V* and run it again on ry with a

¢ if e has changed, break the commitment!
e otherwise, yield the final view (x, a, z; ry)
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Strengthening by Commitment — Caveat

Prover Verifier
w st R(x, w) X
pick rp picke e E
Commit(e;r) .
pick r

a

a="P(x,w;rp)
verify Commit(e; r)
z="P(x,w,e;rp)

er

z

V(x,a, e, z)?

® x-ZK (commitment x-binding)

¢ problem: extractor no longer works
(our extractor would break the binding property)

e could work using a trapdoor to break the binding property
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Pedersen Commitment 1991

e setup: generate two large primes pand g s.t. q/(p — 1), an
element g € Z; of order g, 7 € Z3, and h = g" mod p

Domain parameters: (p, g, g, h)
e commit: Commit(X; r) = gXh" mod p
¢ unconditionally hiding
e computationally binding
e trapdoor
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Pedersen Commitment — i

h=g modp  Commit(X;r)=gXh mod p

¢ unconditionally hiding: given c in the subgroup spanned by g,
any X has a related r such that Commit(X;r) = ¢
Vx  Prlg¥h =c|X =x] = %

so ¢ and X are statistically independent (perfect secrecy)
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Pedersen Commitment — ii

h=g modp  Commit(X;r) = gXh mod p

e computationally binding: commiting to X and opening to
X' # X leads to solving g¥h" = gX'h” (mod p) hence
)f'_’rf( mod q
This is equivalent to solving the discrete logarithm problem with
the domain parameters

T =

Game Bind Game DL
1: Setup(1%) > (p, g, g, h) i: Setup(1%) 5 (p. g, g)
2: A(p.q.9.h) > (x,r,x', ") 2: pick 7 € Zg, h ¢ g"
3: return 3: B(p,q.g.h) > z

1><7'5X’,Commit(x;r):Commit(x';r/) 4: return 1,,:gZ
B(p.q,9,h):

$
5. A(p,q,9,h) = (x,r,.x',r)
. X =X
6: z <+ =7 mod q
7: return z
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Pedersen Commitment — iii

h=g modp  Commit(X;r) = gXh mod p

e trapdoor: using 7 we can open a commitment Commit(Xy; o)
on an arbitrary X:

X=X

Commit (X; o+ Xo = X> = gXhot= = g% h0 = Commit(Xo; o)
T
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Strengthened Protocol

Prover Verifier
w st R(x, w) X
pick rp pick e € E
pick 7
h=g" modp h
Commity(e;r) pick r
a=P(x,w;rp) 2
verify Commit(e; r) &
z="P(x,w,e;rp) 27 V(x,a e z)?
h= 9" mod p
* now computational ZK (based on the hardness of discrete
logarithm)
e sound
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Proving Soundness

Prover Verifier
X
pick e € E
h
‘ Commity(e;r) piCk r
a
e,r
il V(x,a, e, z)?
hi 9" mod p

® run P* once on rp and simulate V with commitment ¢
get 7 at the end

rewind P* and run it again on rp with same ¢

open c on € (using 7) as in the standard extraction
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o The Power of Interaction

@ Setup Models
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ZK from X -Protocol Again

Prover
w st R(x, w)
pick rp
pick 7

h=g™ modp

a="P(x,w;rp)
verify Commit(e; r)
z=P(x,w,e;rp)

h

Commity(e;r)

7

Verifier

pick e € E

pick r

V(x,a,e z)?
?
h=9g" mod p

Why not setting up h once for all as a common reference
string and give 7 to the extractor?
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Common Reference String Model

CRS in Theory CRS in Practice
e setup: generate a pair e use a generator for crs only
(crs, ) made of a common and a seed to convince that
reference string crs and a it has been generated
trapdoor 7 without being able to
e add crs as an input to P, V compute the trapdoor

® add 7 as an input to the
extractor and the simulator
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ZK from X -Protocol Again

Prover

w st R(x, w)
pick rp
pick 7

h= g™ modp

a="P(x,w;rp)
ct g¢h" mod p
z=P(x,w,e;rp)

SV 2025

Verifier
X
pick e € E
h pick r
¢ c=g°h" modp
a
e,r
il V(x,a e, z)?
h= g™ mod p

need for Pedersen commitment looks artificial
it only helps proving security

it costs more computation

why not using ¢ = H(el|r)?
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Random Oracle H (Lazy Sampling)

e setup: erase a table 7
e query H(u):
o look for some (u, v) pairin T
o if there is none, pick v at random and insert (u,v) in T
@ answer by v
¢ a participant cannot predict the value of H(u) before a
query u is made
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Random Oracle Model

ROM in Theory ROM in Practice
e setup: setup the random e use hash function at the
oracle H place of H
e provide P and V access to
oracle H

e allow the extractor to
simulate oracle H for P*

¢ allow the simulator to
simulate oracle H for V*
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Example

Prover
w st R(x, w)
pick rp

a="P(x,w;rp)
¢ < Helr)
z="P(x,w,e;rp)

er

Verifier
pick e € E

pick r
c = H(elr)

V(x,a,e, z)?

e soundness: keep same c in both runs but cheat on the

input e

e ZK: from the query by V* to H see if ¢ is the commitment
of some e (if not V* is unlikely to be able to open it)
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Other Setup Models

common reference string
e random oracle

public key setup for all participants
key registration to a public directory
secure token, trusted agent
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o The Power of Interaction

@ A Building Block for Making Cryptographic Primitives
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Constructions

* non-interactive zero-knowledge proofs (NIZK) from
Y -protocol

¢ signature from X-protocol
trapdoor commitment from X-protocol
hash function from X-protocol (in exercise)
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The Fiat-Shamir Paradigm 1986

NIZK from X-Protocol

(making the X verifier malicious by selecting e adaptively...)

Prover
w st R(x, w)

a,z
—

Verifier

V(x,a, H(x||a), z)?

replace V(x, a; ry) by a random oracle H(x|a)
the final view is a non-interactive proof

* a random oracle “looks like” a honest verifier
— “kind of” zero-knowledge

a simulator for the final view becomes a cheating prover

— cannot be zero-knowledge and sound at the same time
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Fiat-Shamir Signature

Signature from X-Protocol

public key: x
secret key: (x, w)
e signature:
@ pick rp, set a = P(x,w; rp)
© replace V(x, a; ry) by e = H(message||x||a)
©Q setz="P(x,w,e;rp)
© signature is the pair (a, z)
verification: V(x, a, H(message||x||a), z)
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Fiat-Shamir Signature

pick rp
a="P(x,w;rp)
z = P(x, w, H(m||x||a); rp) | Adversary |

Message

m Sign m, a, z

\
AUTHENTICATION
\

V(x,a, H(m||x|a), z)?

m, a, z

Message
Verify m

ok?

*Public key x

INTEGRITY

Secret key x, w |

Generator ‘
J \

Y

R(x, w)
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Full Fiat-Shamir Signature

Prover Verifier
ssts?v mod n=1 (n,v)
pick r; € Z}, pick e; € {0,1}
Xj = r,? mod n XXt
€1,.-,6t
Vs Yt

5
yi = ris® mod n y,-2vef mod n = X;

domain parameter: n

® public key: v

e secret key: s such that s°v mod n = 1

e signature: pick 7, set x; = r? mod n, é = H(message||X),
yi = ris® mod n
signature is (X, y)

e verification: y2v® mod n= Xxy,..., y2v® mod n = x; with

€ = H(message||X)
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Schnorr Signature

Prover Verifier
xstg¥=y (G,9.9,¥)
pick k € Z, pick e € {1,...,2!}
r=gk !
e
s=ex+kmodq S rye L gs

domain parameter: G, q,g
public key: y
secret key: x such that g¥ = y

* signature: pick k, set r = gk, e = H(messagel||r),
s=ex+ kmodq
signature is (e, s) (equivalent to (r, s) by r = y—¢g°)
e verification: e = H(message|ly €g°) (equivalent to
ryH(messageHr) _ gs )
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Schnorr Signature

k

r - g — Sy —¢€
e = H(m,r) | | S 9y
s = ex+kmodg Adversary e = H(m,r)
\ \ Message
Message ) . m
— Sign mes =5 Verify
——
\ | ok?
A AUTHENTICATION Q )
Secret ke ‘ ‘ Public ke
Y T INTEGRITY | vy
Generator | \
J \ \ \
Y
Y SN
y=9g" — — eey{t,..., 2t}
s—exthkmodgq —5 5 pelgs
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The Security of a Fiat-Shamir Signature in ROM

Theorem

Given a relation R s.t. it is hard to find witnesses and a

Y -protocol for its language s.t. 1/#E = neg|, the signature
scheme obtained by the Fiat-Shamir construction using a
random oracle is EF-CMA-secure (existentially unforgeable
under chosen message attacks).

(to be seen in another chapter)
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Trapdoor Commitment

Commitment on e € E based on a X-protocol such that finding
a witness is hard

e Setup— (x, w): take a parameter (crs) x € L such that
nobody knows a witness (trapdoor) w s.t. (x,w) € R

e Commit(x, e) — (&, z): to commit to e € E, pick r and let
(a,e,z) =S(x,e;r)
commit value is a
opening key is (e, z)

® Open(x,a,e, z) — 0/1: check V(x, a, e, z) holds

e perfectly hiding (distribution of a independent from e)

e computationally binding (otherwise extract w)

e trapdoor w: make (using P) a commit value a which can
open to any e
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Conclusion

e interaction opens new computational powers (PSPACE
instead of P)

e zero-knowledge proof feasible
® nice building block for cryptographic primitives
e theoretical crypto foundation
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Train Yourself

¥ -protocol:

final exam 2008—09 ex2 (cubic residues)

final exam 2009-10 ex1 (chameleon hash)

final exam 2010-11 ex1

final exam 2015—16 ex1 (in a group of exponent 2)
final exam 2020-21 ex3 (MPC-in-the-head)

final exam 2021-22 ex1 (DLEQ)

midterm exam 2022-23 ex2 (DLEQ)

OR proof: final exam 2010-11 ex1

GQ: final exam 2008—09 ex3

setup: final exam 2009-10 ex3

ZKPoK and composition:

final exam 2013—14 ex1 (security interference)

final exam 2016—-17 ex2 (ZKPoK from %)

weak Fiat-Shamir: final exam 2014—15 ex2

Unruh transform: final exam 2017-18 ex3
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e Cryptanalysis (Conventional)
@ Block Ciphers
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Block Cipher

plaintext block ———

C

—— ciphertext block

|

secret key

plaintext block «—————

Cf1

«—— ciphertext block
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Example: DES

lX K
IP
Y K1

< %

Feistel . |schedule
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DES — Feistel Scheme

W(Ff, Fhe Ffo)

K,

_K3

—
- F |«
< F |«
—
< F |«

£
i

Y
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Distinguishing Attack on Ciphers

Indinstinguishability from an ideal scheme is another security
model

distinguishert————— Q or 1

e C: permutation (block cipher) defined by a random key

e C*: uniformly distributed random permutation (ideal
scheme)

e Advantage: Pr[output = 1|C] — Pr[output = 1|C*]

SV 2025 Cryptanalysis (Conventional) EPFL 342/529



Perfect Cipher

Definition
Given a message block space {0, 1}/, a key K is a uniformly

distributed integer between 1 and 2¢1, and Cy is the Kth
permutation of {0, 1}°.

Reminder (Stirling Formula)
n! ~v2rnn"e "

Number of bits to represent K: log,(2/!) ~ ¢2°...

Example for £ = 64: log,(2°!) ~ 1180591620717 411 303 424
bits

(1048576 Petabytes)
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e Cryptanalysis (Conventional)

@ Differential Cryptanalysis
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History

invented by Eli Biham and Adi Shamir (Biham’s PhD
Thesis)

1990: broke DES-like ciphers

1992: theoretical attack against DES requiring 247 chosen
plaintexts (not realistic enough to be called an attack)
1993: breakdown if the design of DES is slightly modified

1994: Coppersmith claimed that DES was designed to
optimally resist it
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Chosen Plaintext Key Recovery Attack

R S
| |
| Enc ~—K |
I
Plaintext yCiphertext

attacker )

K
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Step 1: Cipher Decomposition

find an appropriate decomposition of following form

Ki

Q
o
=
(0]
A

Ko

A

post-enc

|

Y
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Step 2: Deviant Property

find a deviant property of following form

Pr[AZ = b|AX = 4] large

Difference: AZ =2 ¢ Z
e trick: look at difference propagation
¢ use heuristic approximations
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Step 3: Differential Computation

isolate (little) information about Y, Y’, K> to filter out pairs s.t.
AZ+b

we use a predicate R(x, (Y, Y’)) (assuming AZ = b):

“AZ is consistent with x and 7(Y, Y’)”
AX

l

core

A

AZ

Y

A

post-enc

|

(Y, Y
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Step 4: Implementation

Precomputation:

1: initialize  SubCandidate, to
empty set for all u

2: for all u and all x such
that R(k,u), insert &k in
SubCandidate,

Collection phase:
3: collect npairs ((x,y), (x®a, y’))
of plaintext-ciphertext pairs

SV 2025

Cryptanalysis (Conventional)

Analysis phase:

1: initialize counters m, to 0

2: for each pair do

3: compute u = w(y,y’)

4 for all k € SubCandidate,
increment m,,

5: end for

6: sort all possible « in decreasing
order of m,,

Search phase:
7: for each sorted «, exhaustively
look for K
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Differential Probability

Definition
Given a function f from {0, 1}? to {0,1}9 and given a € {0,1}P
and b € {0,1}9, we define

DP/(a, b) = PrA(X & a) = f(X) & b]

where X € {0, 1}P.

1 ifb=0

* Property: DP'(0, b) :{ 0 otherwise

* Property: foralla, Y DP(ab) =1
be{0,1}9

* Property: 2°.DP/(a, b) is even
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Differential Circuit — i: Duplicate Gate

computation circuit differential circuit
X AX =a
Y 4 AY=a AZ=a
X=Y=27 AX=a— AY=AZ=a
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Differential Circuit — ii: XOR Gate

computation circuit differential circuit
X Y AX=a AY=b

4 AZ=adb

Z=XoY (AX =a,AY = b) = AZ = adb
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Differential Circuit — iii: Linear Circuit

computation circuit differential circuit
X AX =a
¥
M M
\ Y
Y AY=Mxa
Y=MxX AX=a—AY=Mxa
SV 2025
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Addition and Duplicate Gates

XOR Gate Duplicate Gate

L

X

-
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Differential Circuit — iv: XOR to Constant Gate

computation circuit differential circuit
X AX =a
%«K @r AK =0
Y AY =a
Y=XoK AX=a= AY =a
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Differential Circuit — v: Non-Linear Circuit

computation circuit differential circuit
X AX =a
¥
S
\*/ AY =0b
Y = S(X) Pr[AY = b|AX = a] =p
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Differential Characteristic

computation circuit differential circuit
X AX =a
¥
Ck,
} AZ=0Db
Z=Cl(X) Pr[AZ = b|AX = a] = DP%(a, b)
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DES (Reminder) — i

32 blts 48 bits 32 bits

K

_K2
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DES (Reminder) — ii

48 bits

round key
32 bits 32 bits
output «— P [« S [——d<+— E [ex—input

E: expansion (duplicate one bit out of two)

@: bitwise XOR with a round key

S: substitution boxes (eight 6-to-4 bits mappings)
P: permutation of bits
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DES (Reminder) — iii

r round key 48 bits

P,

S;

Sp

S3

Sy

output 32 bits

Ss

|1 /\ M-
suq ze 1ndul

Se

S7

Sg }
S ® E

1}
e
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Differential Cryptanalysis of 8R-DES

0x0A000000 — r 00 10 00 00 00 00 00 00(octal)

e— 1 DPS2(010, 0xA) = 1
o

3

red sub-characteristic:
DPF (0x04000000, 0x40080000) = 1

0000800%%0
000000%70%0
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Other Sub-Characteristic

0x00100000 — r 00 00 12 50 00 00 00 0O0(octal)
S :
¥
S, ;
blue sub-characteristic: »
DP* (0x00540000, 0x04000000) =
% S; f— DPS3 (012, 0x1) = 19
2 =
Q 84 — S DPS4 (050, 0x0) = 18
8 <7
S Ss 3
o o
o o
Se
S7 ]
I
l' 1
Ss —

10 . 16
p=1-1.-10.16.9...1

SV 2025 Cryptanalysis (Conventional) EPFL 363 /529



Differential Characteristic

0x04000000 0x00540000, 0x04000000

p:% Round #53 p:%

0x405c0000,
Round #1>

0%04000000 0x00540000 0x04000000 S 0x405c0000
5 N
Round #: P = 555 Round #65 P = 1
128 S
o

bo
I
—
)
g
3
**

Round #44> i p = 128 Round #8%5

0x00540000 0x04000000

a = 0x405c0000 0x04000000 b = 0x04000000 0x405c0000
DPcore(a b) ~ 2—13.4
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Ciphertext Pair Analysis (Predicate R)

Theorem
It the characteristic is satisfied (i.e., AZ = b), then

(P_1 (AyL @ 04000000)) = Si(ki ® E(yr)i) ® Si(ki ® E(yR)i)

i

fori=2,5,6,7,8

so, we can let
R = (k27 k57 k67 k77 k8)
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Proof —i

0x04000000 0x405c0000
— e —
Y B g E|
Round #6> Ple—2-S}« <
8 D
L | s L el

|

Dt
NP

A
U
A
9]
A

A

[& m]

Round #8H~¢——

YL

* Ay, = 04000000 @ P(AB @ Aa), ABj=0fori=256,7,8
* 50, (P~1(Ay, & 04000000)), = Aq; for i =2,5,6,7,8
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Proof —ii

Let u = E(yg), U = E(yR), v = P~1(Ay, & 04000000),
Aa=Skaou)s Skao )

u=E(yr)

%))
A
A

S |« < u = E(y,’q)

If (x,y) and (x’, y’) satisfy the characteristic, then v; = Aq; for
i=2,5,6,7,8. O
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Listing Key Candidates

e If (x,y) and (X', y’) satisfy the characteristic, then
v =P (y. @y ®04000000)

tells the output XOR of S; in the last round for
i=25,6,7,8.

e List of 6-bit key values given u, U, and v
Define

SubCandidate; ,, ./, = {r € {0,1}%v = Sj(u®r)®S;(1/®r)}
° If u= E(yg) and U = E(yp), then

H SubCandidate; ;i v,
i€{2,5,6,7,8}

tells the list of all potential x = (ko, ks, ke, k7, kg) possible
candidates.
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Implementation

Precomputation:
1: initialize SubCandidate; ,, ,,, to empty set for i =2,5,6,7,8,
w, ' €{0,1}¥% and v € {0,1}4
2: fori=2,5,6,7,8, forall u,u',r € {0,1}%, insert r in
SubCandidate,,#,#/ysi(#@,)@sf(#/@,)

Collection phase:
3: collect n pairs ((x,y), (x @ a,y’)) of plaintext-ciphertext pairs

Analysis phase:
4: initialize 23° counters m,, to 0

: for each pair do
compute u = E(yg) and u’ = E(yg) and

v =P (y. &y ®04000000)

7 for all kK = kokskgk7ks such that k; SubCandidate,;u,.,ul_/,.,,, for
i=2,5,6,7,8,increment m,

8: end for

9: sort all possible 30-bit subkeys « in decreasing order of m,,

[

Search phase:

10: for each sorted ko kskgk7 ks, look for the remaining 26 bits
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Reminder

o E(Xi+- -+ Xn)=EX)+ -+ E(Xp)

o V(Xi+---+Xp)=V(X1)+ -+ V(Xn) when Xq,..., X,
are independent

e V(X)=E(X)(1 — E(X)) when X is Boolean (support in
{0,1})

e informally, for X, ..., X, iid Boolean of exp. value p we

have
Xi+ -+ Xn &~ np £ /np(1 — p)
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Complexity Analysis (Heuristic)

e The right 30-bit subkey candidate is suggested once per
iteration with probability p; = DP = 2134

Signal = npy + v/np4

e Each iteration suggests 4° key candidates randomly, so
every candidate is suggested once per iteration with
probability p, = 2-20

Noise = npo + /np»

e We need n such that \/npy < n(p1 — p2) =~ np;

1
n>>ﬁ
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Probability Density of Good and Bad Counters

y= d Pr[counter < x|

dx
n=3/p
2 good k— |
bad k-

1.5

1
0.5

0

npz2 npy — /Npx np1
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e Cryptanalysis (Conventional)

@ Linear Cryptanalysis
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History

1977 DES: an unpopular standard with secret rationales
1987 FEAL: a Japanese version

1990 Biham-Shamir: differential cryptanalysis
1990 Gilbert et al.
1993 Matsui: linear cryptanalysis

1994 Matsui: application to DES (requires 2*3 known
plaintexts)

SV 2025 Cryptanalysis (Conventional) EPFL 374 /529



From Chosen to Known Plaintext Key Recovery

‘ source ’

R
| |
| Enc %K |
I
Plaintexty yCiphertext

attacker )

K
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Step 1: Cipher Decomposition

find an appropriate decomposition of following form

Kj

Q
o
=
(0]
A

Ko

A

post-enc

|

Y

(could use pre-encryption as well)
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Step 2: Deviant Property

’
Pr [ X @"‘@)(j,zzh@"'@zl's]—é large

X, ®---®X, canbewritten a1 Xi®---@aXp=a-X
Z,&---®Z, canbewritten biZi& - -@&bgZg=b-Z
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Step 3: Projection

(a-X)®(b-2Z)=P(k,n(X,Y))

a-X
h(K;
l— K
b-Z
post-enc  |«Z
Y

(could use pre-encryption as well)
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Step 4: Implementation

Collection phase: Analysis phase:

1: for all possible u = 7(X, Y) do 1: for all possible x do

2: initialize a counter n, to zero  2: compute

3: end for

4: collect n Plaintext-Ciphertext my = Z ny

pairs (X, Y) us.t. P(r,u)=0

5: for each (X, Y) do

6:  compute u= (X, Y) 3: end for

7 increment n,, 4: sort all x in decreasing order of
8: end for im. — 3|

Search phase:

5: for each sorted x exhaustively
look for K

6: note: h(Ky) is likely to be
1m,i<n/2
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Making Linear Characteristics
[Biham,Eurocrypt 94]

Goal: compute b- Z = (a- X) @ something biased
e Put a mask (b) at the end and perform the computation in
a reverse way.
e Go through substitution boxes as for the differential
cryptanalysis.
e Compute the product of all biases.
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Dual Circuit — i: XOR Gate

computation circuit mask circuit
X Y mask = amask = a
Z mask = a
Z=XayY a-Z=(a-X)®e(ay)
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Dual Circuit — ii: Duplicate Gate

computation circuit mask circuit
X mask =a® b
Y Z mask = amask = b
X=Y=27 (a-Y)e(b-Z)=(a®b)- X
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Dual Circuit — iii: Linear Circuit

computation circuit mask circuit
X mask = ‘M x a
\
M M
¥ \
Y mask = a
Y=MxX a-Y=("Mxa)-X
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Addition and Duplicate Gates

XOR Gate Duplicate Gate

L

X

-
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Dual Circuit — iv: XOR to Constant Gate

computation circuit mask circuit
X mask = a
Gf<— K GS<—mask = a
Y mask = a
Y=XaK a-Y=(a X)e(a-K)
N——
constant
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Dual Circuit — v: Non-Linear Circuit

computation circuit mask circuit

X mask = a

4

s (2

\

Y mask = b

Y = S(X) b-Y=a X& B
biased
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Linear Characteristic

computation circuit mask circuit

X mask = a

¥
C;(1

Y

7 mask = b

n
Z = Ci,,(X) (a-X)& (b-2) = bit(Ki) &P B,

i=1
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Piling-up Lemma

Lemma (Piling up Lemma)

For any Boolean variable B we define

LP(B) = (2Pr[B=0] — 1)2. Let By, ..., By be n independent
random variables. We have

LP(By @ ...® By) = LP(By) x ... x LP(Bp).

Proof. Note that
2
* LP(B) = (E((-1)))",
o (—1)F = (1) x (-1)%,
e E(XxY)=E(X)x E(Y)when X and Y are independent.
L]
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Linear Probability
Definition
Given a function f from {0, 1} to {0,1}9 and given a € {0,1}P

and b € {0,1}9, we define

LP(a,b) = (2. Prla- X = b- f(X)] — 1)2
X

where X € {0, 1}F.

X = a1X169~~€Bapo
Y

a-
b- = b1Y1@"‘@bqu

note: LP'(a, b) = LP((a- X) @ (b- f(X)))
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Link Between DPs and LPs

Theorem
Given a function f from {0,1}° to {0, 1}9 we have

LP'(a,8) = (2Pr[a-X =3 f(X)] - 1)?
DP(a,b) = Pr[f(X®a)® f(X) = b]
= 279 (~1)**®>PLP!(q, §)
a,B

Proof. First observe that LP'(«, 8) = (E ((—1 )(‘X'X)@(B'f(x))))2 -
E ((_1 )(a'(XGBY))GB(ﬁ-(f(X)EBf(Y)))) then

a,f a,p

Z(q)aﬂ@b'ﬁLPf(a,B) = E(Z(_1)(ov(a@X@Y))@(ﬂ-(b@f(x)@f(Y))))

= 2PYIE (1xay=af(X)@f(v)=b)
29DP/(a, b)

O

SV 2025 Cryptanalysis (Conventional) EPFL 390/529



Link Between DPs and LPs

Theorem
Given a function f from {0,1}" to {0, 1}9 we have

Pl(a,b) = Pr[f(X® a)a f(X) = b]

P'(a,8) = (2Prfa-X=p3-f(X)]—1)
= 27P) (—1)*®> DP'(a,b)

Proof.

D (1) IDP @ b) = 279} 0 (~1)T () TP o

a,b a,b o',B’

= QQZZ (a@a)@b (505 P! (o/ B')

o’ B ab
= 2" ) Macap=slP'(a’ 5
o', B!
2PLP(a, B)
O
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Application to DES8

0x00008000 P 0x40000000
s (LPS1(020.0)=(%)7)
20 00 00 00 00 00 00 00
£ 0%20000000
0x01040080 r 0x0000€000

2
® (oo () 00 00 00 00 42 00 00 00

0x00011000

E

SV 2025 Cryptanalysis (Conventional) EPFL 392/529



Other Sub-Characteristics

0x01040080 P 0x0000e000

s (LPSS (020,e)=( 33 )2)

00 00 00 00 20 00 00 00
0x00008000

E
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Linear Characteristic

0x01040080 0x21040080

Round #41

0x01040080,
Round #3 >

0
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Projection

l |

0x01040080 0x00011000

LPcore(a’ b) ~ 2—16

0x21040080 = by bg = 0x00008000

(a-X)®(b.-Z1)®(bp-ZR)

YR

® 4 = 0x01040080 08011000, b = 0x215¢0080 00008000, Kk = (K3)1

* Txy) = ( v=_(a -x)® (b yr}® (br-yL) )
¢ Project(k, (u,v)) = v@ (bg - P(Si(r @ u)||ox0000000))

SV 2025 Cryptanalysis (Conventional) EPFL 395/529



Attack

Collection phase:

1:

w

14

. collect

initialize 27 counters n, , to zero
for all possible 6-bit values u
and all possible bits v.

n plaintext-ciphertext

(x, y) pairs,

: for each (x, y) pair do

set u to the 6 leading bits of
the expansion E(yg) of ygin the
round function
« (ax)®(bLyr)S(br-yL)
increment ny

: end for

SV 2025

Cryptanalysis (Conventional) EPFL

Analysis phase:
1: for all possible x do

m, -
Z Ny bg-(P(Si(uek)|]0...0))

u
3: end for
4: sort all k in decreasing order of

|mf€_g|1

Search phase:
5: do an exhaustive search by us-

ing the sorted list for .
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Analysis

Theorem

Forn~ L1—F,, the correct value « is first in the sorted list with high
probability.

Example: for 8-round DES, LP = 26
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e Cryptanalysis (Conventional)

@ Hypothesis Testing in Cryptography
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Indistinguishability

Generato
samples

adversary———— bit

Problem: say whether all samples follow distribution Py or they
all follow distribution P;
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Advantage

Definition

Two samplable distributions Py and P; are

(g, ¢)-indistinguishable if for any algorithm .4 taking q iid
random variables Xy, ..., Xq following P we have

’AdVA(Po, P1)‘ <e

where

AdV_A(Po,P1) = PI’[.A—) 1|P: P1] = PI’[.A — 1|P: Po]

A notion of distance between Py and P;:

distanceq(Po, P1) = max |PrlA—1|P = Py] = PrlA — 1|P = P]|
Istinguisher
limited to q
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Applications

¢ pseudorandom number generator
break a PRNG = distinguish from an ideal RNG

¢ block cipher and stream cipher cryptanalysis
distinguish biased bits in known plaintext-ciphertexts

e semantic security of public-key cryptography
distinguish between the encryption of two known plaintexts

e commitment, zero-knowledge, etc
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Hypothesis Testing

Problem

Given a source producing random variables, decide upon
several hypotheses.

Example:
¢ jid random variables following either
Hypothesis Hy: variables follow distribution Py
Hypothesis H;: variables follow distribution P4
¢ jid random variables following either
Hypothesis Hy: variables follow distribution Py

Hypothesis H;: variables follow distribution in
{P1, ey Pn}
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Two Approaches

* Frequentist approach
Consider two types of errors
type l error: o = Pr[A — 1|Py]
type Il error: § = Pr[A — 0|P;]
e Bayesian approach
Assign cost to error type (or prior probability to hypotheses)

Pe = Pr[A — 1|Py]mo + Pr[A — 0| P1]m

typical case for crypto: mo = 71 = 3

Advy, = Pr[A— 1|Py] —Pr[A — 1|Pg]
Advy = (1-8)—a = 1-2P,
1—Advy = a+p = 2P,
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Problems for this Lecture

e What is the best way to distinguish two distributions?

e How many samples do we need to distinguish two
distributions with significant advantage?
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Best Advantage
Caseq =1
e let A be an arbitrary distinguisher
¢ w.l.o.g. we can assume it is deterministic (we assume no
computational bound)
— let A='(1) be the set of values x such that A — 1 when

X=x

e we have
Adva= Y (Pi(x)—Po(x))
xeA-1(1)
e clearly
Adva< > (Pi(x) = Po(x))
X;Po(x)<Py(x)
® we have
> (P —P0) =5 Z 1P1(x) = Po(x)|

X;Po(x)<Pi(x)
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Statistical Distance

Definition (= L; distance)

Given two real functions fy and f; over a discrete set Z we
define the statistical distance d(fy, f) by

d(fo. i) = Z |[f1(X) = fo(x)]

XEZ

Theorem

Given two distributions Py and P, all distinguishers using a
single sample verify

Adv 4 < d(Py, P1)
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Best Distinguisher (Single Sample)

input: x * R is the likelihood ratio
P

tR=26 Adv.1 = d(Po, Py)

2: if R <1 then

3: b+ 1

4 else * caveat: § = +o0

5 b0 e remark: 3 never occurs
6: end if
output: b
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General Case

trick: consider X = (Xj, ..., Xy) as a random variable with
distribution either Py'? or P>

PoOFP1
(X1,...,Xq)

distinguishert———— Q0 or 1

The best possible advantage is obtained by the likelihood ratio

test:
Prp?q[)ﬂ’ s Xg] 1
<

output 1 <—
P PrP1®q[X1,...,Xq] -
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Best Distinguisher (Multiple Samples)

input: xq,...,Xq

P X P, P, ax

with gx = #{i; x; = x}
if R <1 then
b+ 1
. else
b+~0
6: end if
output: b

AN e A
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Example i: Biased Coin

output 1

head tail
Py = uniform Py = 1 2
b
s(1+¢) 3(1—¢)
Xy | Xo R outcome
T e |
2|2 (1717)2 0
1] 2 (H;ﬁ 0
= ! <1

(14+e)(1—e)% —
< Qqilog(1+e)+ qlog(1—¢c)>0 <= @ < g

SV 2025
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Example ii: Biased Dice

1 2 3 4 5 6
Py = uniform Py = ol ) Lol
Pre d dve de doe b
X | Xo outcome
1|2 5% s 1
(5+¢)x3
1.1
578
1 3 (%-&-a xgé—l—a) 1
[
1% g | °
output 1 <= (1+65)‘41+q31(1—6a)‘74*"5 <M1= u+<g+ag
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Example iii: Uniform over Different Supports

Py = uniform Py = (

Nad— —
A=<= N
Bl=<— W

B=<— BN
O <« O
N~ —

X{ | Xo R | outcome
il 1

1] 2 jii 1

118|583 1

2|5 14 0
%XO

output1 <= g5 =0
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Example iv: Normal of Same Standard Deviation

Po=N(uo) Pr=N.o) p<p

We have
(x) 1 o (X—/g)z
o = —— 20
SOM, \/ﬂ
and
R SDiu’vo'(x)
‘PM’,U(X)
SO ,
R<i1ex>H z H
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Example v: Sum of i.i.d. Bernoulli Variables

Py : sum of ninstances of Ber(pp)

with pg ~ p1 and pg < p4
we approximate Py to N'(up, op) with

o ="npPp  op=/NPp(1 — Pp)

and og = o1

o)
Po + P

R§1<:>{2
n

SV 2025 Cryptanalysis (Conventional) EPFL
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Problem

Advy = d(P; 9, P{9)

> Brixal--- Brixq] - IF;OF[X1] o ,'ior[xq]

X1,...,Xq€Z

N =

not very informative about the dependence in terms of g
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Easy Bound

“for g < 1/d(Py, P1) the advantage must be <« 1”

Theorem
For any q:
d(Py9, PP < g x d(Po, Py)
Proof.
/ /
ad — bt = (a— b)2 Zb +(a/—b’)a;b

so |ag — bb/| < |a— b|ZEE + & — b/| 2L thus (next slide)

1
> Z [P1(x1)Q1(Xx2) — Po(x1)Qo(x2)| < d(Po, P1) + d(Qo, Q1)
X1,X2
and we get d(Py @ Qu, P1 ® Q1) < d(Po, P1) + d(Qp, @1)
apply with @y = P2(9™") and iterate O
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Detail

SO

IN

SV 2025

ad — bb/| < |a _b‘a’+b +id b,’a+b
’

> > P1(x1) Q1 (x2) — Po(x1)Qo(x2)|

X1,X2

1 Qi (x2) + Qo(x:
5;“’1()(1 P0X1|Z 1(%) 5 )

%Z |Q1(x2) — Qo(x2)] %: Fala) er Fola)

fz IPy(x1) — Py x1)|+1 > 1Qi(x2) — Qo(x2)]

X1,X2 X1 X2

d(Po, P1) + d(Qo, Q4)

Cryptanalysis (Conventional) EPFL
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Definitions

e Kullback-Leibler divergence

D (PollP1)= > Po(x)log ﬁg;
xeSupp(Po)

always non-negative, 0 iff Py = P4
infinite iff Supp(Po) < Supp(P1)
WARNING: log are in basis 2!
¢ Neyman divergence

_ 2
DN(P0||P1): Z (PO(X) P1(X))

xeSu P1 (X)
pp(Po)USupp(Py)

always non-negative, 0 iff Py = P4
infinite iff Supp(Po) Z Supp(P1)
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Better Bound

“for g < 1/Dn(Po||P1) the advantage must be < 1”

Theorem
For any q:

d(P5Y, P{9) < 1/ 2Dn(Poll P1)
Proof.

o d(Py9, PYY) < \/ 3Dk (P P{9) (Pinsker Inequality)

o Dk (PY9)|PP9) = gDk (Pol|Py) (additivity of KL)
* Dy (Pol|Py) < Dn(Pol|Py) [Dai-Hoang-Tessaro
Crypto 2017] O
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Uniform Case

“for g < W the advantage must be < 1"

Theorem
If U is uniform over a support of cardinality N, for any q:

d(P®9, U®9) < \/2gN - d(P, U)

Proof.
o d(P®9,U%9) < /2DN(P||U) (previous result)
* Dn(P|IU) = N||P — U||3 (definition of Dy)

* [[P—Ulz2<2d(P,U)
(for x; positive, 3" x2 < (3 x,)?) O
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e Cryptanalysis (Conventional)

@ Decorrelation
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Uniform Distribution

X —————» C +—>»Y
random K

For any x, the random variables Y is uniformly distributed.
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Pairwise Independence

X{ ————» C —Y;
random K
X ———— C — Y2

If X1 # xo, Yy and Yo are nearly independent.
PriYi = y1and Y2 = o] = grgi—yy for y1 # y2

SV 2025 Cryptanalysis (Conventional) EPFL
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n-wise Independence

Definition

For any pairwise different x1, . .., x,, the random variables

Yi = Ck(x;), i =1,...,n, defined by a random K are uniform
and nearly independent if for any yj, ..., y, of pairwise different
values we have

Y= ol = 1
oI =Yl = i T 27—t 1)

PriYi=y1,..

* The perfect cipher is nearly n-wise independent
¢ The view from the adversary is ((x1,¥1),- .-, (Xn, ¥n))

¢ Real ciphers should look like n-wise independent so that
adversaries limited to n samples get no information
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Goal of Block Cipher Designs

Goal

A block cipher which is used n times should have a behavior
which is hard to distinguish from the behavior of the perfect
cipher

— uniform distribution and almost n-wise independence
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Distinguisher for Random Functions

adversary——— bit

e the adversary can send chosen queries x;

e function F was selected either from one distribution (null
hypothesis) or another (alternate hypothesis)

e adversary must guess which distribution was used

SV 2025 Cryptanalysis (Conventional) EPFL
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Examples of Distinguishing problem

e F:A— Ais ablock cipher C or the perfect cipher C*

Hypothesis Hy: F = C* (uniformly distributes
permutation)

Hypothesis Hi: F = Ck with K uniformly distributed

e : A— BisaPRF or atruly random function F*
Hypothesis Hy: F = F* (uniformly distributes function)
Hypothesis Hi: F = Fy with K uniformly distributed

e f:A— Ais arandom function F* or a random
permutation C*

Hypothesis Hy: F = F* (uniformly distributes function)
Hypothesis H;: F = C* (uniformly distributes
permutation)
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Decorrelation

A simple example for F : A — B defined by K:
e A={0,1,2} and B={0,1}

* F(x)=(KX?+K.[X3*| + x + 1) mod 2 for K uniformly
distributed in {1,2, 3,4}

K| F(0) F(1) F(2
0
1
1
1

A wWODN =
O o T G
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First Order of Decorrelation

| y=0 y=1
x=0| 1/4 3/4
x=1| 3/4 1/4
x=2| 1/4 3/4

1/4 3/4 12 1/2
F'=1| 34 1/4 | , [F]'=| 12 172
1/4 3/4 172 1/2

1st order of decorrelation of F = distance between [F]' and
[F]!

SV 2025 Cryptanalysis (Conventional) EPFL
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Second Order of Decorrelation

U,02) =(0,0)  (1,02) =(0,1)  (r1.y2) =(1,0)  (r1,52) = (1,1
(%1, %) = (0,0) 174 0 0 3/4
(x1,x) =(1,0) 0 3/4 1/4 0
(x1,X%2) = (2,0) 0 1/4 1/4 1/2
(x1,%2) = (0,1) 0 1/4 3/4 0
(x1, %) = (1,1) 3/4 0 0 1/4
(x1,x2) = (2,1) 1/4 0 1/2 1/4
(x1,x2) = (0,2) 0 1/4 1/4 1/2
(x1,x%)=(1,2) 1/4 1/2 0 1/4
(x1,x) =(2,2) 1/4 0 0 3/4
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Matrices

174 0 0 3/4 172 0 0 12
0 34 14 0 174 /4 1/4 1/4
0 1/4 1/4 12 14 1/4 1/4 1/4
0 1/4 34 0 174 1/4 1/4 1/4
[FP=| 34 o o 14 | ,[FP=| 12 0o o0 12
174 0 12 1/4 174 /4 1/4 1/4
0 14 1/4 12 174 /4 1/4 1/4
14 12 0 1/4 14 1/4 1/4 1/4
174 0 0 3/4 12 0 0 12

2nd order of decorrelation of F = distance between [F]? and
[F*]2
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Definition
Definition
Given a random function F from a set A to a set B and an

integer g, we define the real matrix [F]9 as a A9 x B9-type
matrix for which the ((xy,...,Xq), (V1,...,Yg))-entry is

[F]?thxq)’m,m’yq) = Pr[F(x1) = y1,..., F(Xq) = ¥ql-

e A random function F aimed at being compared to a
canonical ideal random function F*.

e E.g. Fis ablock cipher, and F* is a uniformly distributed
random permutation.

e Given a distance D on the vector space of A9 x B9-type
real matrices, we define the g-wise decorrelation bias of F
by

Dec’(F) = D([F]9,[F"]9).
note: various distances will define different decorrelation

notions
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Reminder on Matrix Norms

Definition
Over a vector space V, a norm is a mapping from V to R
such that
Q |x| =0ifand onlyif x =0
Q ||\x|| = |\| x |||/ forany XA € R
Q IIx+yl < Ixl+lyl
If V is a matrix space, a matrix norm is a norm such that

Q IIxyll < x|l < |yl
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From a Vector Norm to a Matrix Norm

Assume that we have norms over RP and RY. Given a
p x g-matrix M, we define

Mx
[l|M|]| = max IMx|| = max |IMx|| = max IMx|
xeRT || x||
HXH<1 \|x|| 1 X0
Theorem
|| - || is @ matrix norm satisfying ||Mx|| < ||[M]]| x ||x||. J
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Infinity Norm

Definition
Given a vector V and a matrix M, we define

IVl = max|Viowl
row
(ee) -
VA [Vl
= maX E |Mrow,co|umn-
row
column
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Example

For

[FIE — [F)? =

we have

Dec?(F)

SV 2025

-0.25 0 0
-0.25 0.5 0
-0.25 0 0
-0.25 0 0.5
0.25 0 0
0 -0.25 0.25
-0.25 0 0
0 0.25 -0.25
-0.25 0 0

IITF1 = [F 121 ]oo
max(0.5,1,0.5,1,0.5,0.5,0.5,0.5,0.5)

1
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Non-Adaptive Distinguisher

Theorem

Given two random functions F and G, the best non adaptive
distinguisher between F and G which is limited to q queries is
such that

AW(F, G) = 3IIIF1? ~ (61l

Proof. W.l.0.g. the best non-adaptive distinguisher is
deterministic and asks the same question x = (xy, ..., Xq).

e the response Y = (Vj,..., Yy) defines a random variable

¢ the problem reduces to solving a simple hypothesis testing
problem
® best advantage is the statistical distance (half the L1 norm)

® we maximize over x O
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Non-Adaptive Distinguisher and Decorrelation

Corollary

BestAdvg ™ (F, F*) = 3 |II[F1° — [F*)%llloe = 5Dec,_(F)
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A-Norm
Definition
Given a matrix M, we define

[Mlla = max ) - max | M, 040
34 Yq

Theorem

Given two random functions F and G, the best adaptive
distinguisher between F and G which is limited to q queries is
such that

AdV(F, G) = %H[F]q ~ (G

Corollary

BestAdvy(F, F*) = S|II[F17 - [F]%[la = 5Decf,(F)
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Multiplicativity of Decorrelation

Theorem

If Cy and C, are two independent random permutations over a
set A,
Dec9(C o Cy) < Dec?(Cy)Dec?(Cy)

when Dec is defined from a matrix norm.

SO,

2BestAdvg(Cy0Cr, C*) < (2BestAdvy(Cy, C*))x (2BestAdvy(Ca, C*))

Corollary
If Cy,..., C; are iid random permutations,

BestAdv,(Cr o -+ o Cy, C*) < = (2BestAdv,(Cy, C*))’

N —
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Proof

e Because of the independence between C; and C,, we

have
[C2 0 C4]7 = [C4]7 x [Co]?

e C*o Cq, Coo C* and C* have exactly the same distribution,
SO

[Ci]9 % [CT]7 = [C" e G4]7 =[C]7
[CTx[Ce]? = [CeoCT]7 =[C]7

e We obtain
([C1]9 — [C*9) x ([C2]? — [C*]9) = [C2 0 C1]9 — [C*] thus

I[C2 0 C1]7 = [CT17]| < [I[C1]7 = [C1°] x [I[C2]7 — [C™7]

O
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1-Round Feistel Scheme is no Good (BestAdv > 1)

\U(FK1) Xr=Yr
X Xr s0, we can make a distinguisher
l T K with advantage 1 — 2~ z:
De—] F | 1: pick x random
l 2: gety = C(x)
Yi Yyr 3: output 1y,
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2-Round Feistel Scheme is no Good (BestAdv > 1)

V(Ff, Ffe)
% % Xr=X =X DYr=X DY,
l T K so, we can make a distinguisher
. 4
G <] F | with advantage 1 — 27 2:
1: pick x, x’ random s.t. X, = X;
2: gety = C(x) and y' = C(x')
; K> 3: output 1y, —xay,
D<— F |«
YIl Yyr
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Feistel Scheme

W(FK, Fhe Ffo)

b <— F |«
D <+-— F [«
P <— F |«
I I

goal:

FKi FKe FKs uniformly
distributed

I3
V(FK Fke FKs) “almost
perfect”

note: not good if the adversary can
make chosen plaintext and cipher-
text queries

(see midterm exam 2016—17 ex4)
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Luby-Rackoff Theorem

Theorem (Luby-Rackoff 1986)

Let F{, F5, F3 be three independent random functions on
{0,1}2 with uniform distribution. We have

BestAdv,(V(F{, F3,F3),F*) < q
BestAdvq(V(F}, F5, F3),C*) < @@

where F* (resp. C*) is a uniformly distributed random function
(resp. permutation).

for the class of distinguishers limited to g queries to the oracle
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A Convenient Combinatorial Lemma

Lemma

Let g be an integer. Let F : My — Moy be a random function.
We let X be the subset of M7 of all (xi, ..., xq) with pairwise
different entries. We let F* : My — Moy be a uniformly
distributed random function. We assume there exists a subset
Yy C Mg and two positive numbers €1 and e such that

. #ﬁi’g > 1 — e /-> this is [F*]7,
sVxeX Vyed [FI},> #%MZU — €2).
Then we have BestAdvgy(F, F*) < €1 + €.

‘it [F]}, ~ [F*]§, for aimost all y’s, then BestAdvg(F, F*) is
small”’
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Proof of the Luby-Rackoff Theorem — i
Following the Feistel scheme, we let

XiZ(Z,Q»Z,j) Z/ZZZP@F1*(Z/1) }’i:(ziazfo’)

* Event E: 2z} = z! @ F(2?) Z,Ql z
and z} = zZ @ F}(z?) for &
i=1,...,q.

e Event E2: all z%s are
pairwise different
(depends on F; only).
[ ) y =
{(y1,.--,yq);\7i<j Z}”#Zf’}-
We have [F] , = Pr[E]

SV 2025 Cryptanalysis (Conventional) EPFL

447 / 529



Proof of the Luby-Rackoff Theorem — ii

* We have ]
V| > (1 - q(qz_ )2—ﬁ> 2lq

thus we can let e; = @2‘5.
e For y € Y and any x (with pairwise different entries), we
need to consider [F]] ,. We have

[F]3, = Pr[E] > Pr[E A E?] = Pr[E|E?] Pr[E?].
For computing Pr[E|E?] we know that z3s are pairwise

different, as for the z2s. Hence Pr[E|E?] = 249, Itis then

straightforward that Pr[E2] > 1 — 99%)2-2 which is set to
1 — eo.
¢ We thus obtain from the Lemm? that
BestAdvy(F, F*) < g(q—1)27=.
It remains to show BestAdv,(F*, C*) < q2*§ (next
slide). O
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Random Permutation vs Random Function

Theorem

Let F (resp. C) be a uniformly distributed random function (resp.
permutation) over {0,1}‘. We have BestAdv,(F, C) < %¢-12~¢,

So, BestAdv,(F, C) < min(q227¢,1) < min(q2~2,1).

Proof. Let A be a distinguisher limited to g queries.

We assume w.l.0.g. that .4 never repeats a query.

Let x; be the ith query.

Conditioned to the event E : no F(x;) collide, the distribution of
(F(x1),...,F(xq))|E and (C(x1), ..., C(xq)) are identical. So,

PrlA" = 1]-Pr[A® = 1] < Pr[A" = 1|E]-Pr[A® = 1]4Pr[~E] = Pr[-E]
Then, Pr[—\E] < Z7§f<ff PI’[F(X,') = (X)] q 1) 2 ¢ O

Pr[A|=Pr[A, E]-+Pr[A,~E]<Pr[A| E] Pr[E]+Pr[~E] <Pr[A| E]+Pr[-E]
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Proof of Lemma — i

* We use the characterization of Decﬁ’.”a in term of best
adaptive distinguisher. We let A be a distinguisher
between F and F* limited to g oracle calls with maximum

advantage.
e W.l.o.g. the behavior of A is deterministically defined by the
oracle responses y = (y1, ..., Yq)- We let x; denotes the jth

query defined by y and x = (x4, ..., Xq) be defined by y.
We let A be the set of all y for which 4 accepts. We have

AdvA(F, F*) = Pr[A(F*)]-PrlA(F)] = Y (IF1%, — [FI3,) -
yEA

Since [F*]3, — [FI%, < e2[F*]1, in Y, we have

Adva(F,F*) <Y elF18, + Y [F3,.
yEA yeA
yey YEY
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Proof of Lemma — i

AdvA(F, F*) < el F13, + Y [F1i,.
yeA yeA
yey Yey

® The first sum is upper bounded by es:

M IFRy <D IFI, =1
y

yEA
yey

® For the second sum, we recall that all x;s are pairwise
different, so

* 1 #MF — Y|
Z[F]va Z#MQSZ#MZZ #Mq < €

yéy yéy i
S0 Adv4(F, F*) < e + e. L]
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Extension to Feistel Schemes

Theorem

Let F1, F>, F3 be 3 independent random functions on {0, 1}3 such that
BestAdv,(F;, F*) < e. We have

BestAdvq(V(Fi, Fz. F3), C*) < ¢P.27% + 3¢

where C* is a uniformly distributed random permutation.

Proof.
BestAdv,(V(Fi,F2,F3),C*)
< BestAdvg(W(Fy,Fa,F3),W(Fi,Fa,Fy))+BestAdvy(W(Fi,Fa,Fy ), W(F1,F3  F))+
BestAdvq(W(F,Fy 3 ) W(F; ,Fy Fy))+BestAdvg(W(Fy ,Fy ,F5),C™)
< BestAdvg(Fs,Fy) + BestAdvg(Fa,Fy ) + BestAdvy(Fi Fy') + BestAdve(V(F;  F5 F5),C™)

<e <e <e

qu-fg [LA]
]
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Iterating

Theorem

Let Fy,..., F3, be 3r independent random functions on {0, 1}5
such that BestAdvq(F;, F*) < e. We have

* 1 2 5t i
BestAdvg(V(Fi,. ..., Fa), C*) < 3 (2q 275+ 65)

where C* is a uniformly distributed random permutation.
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Provable Security on Feistel Schemes

r
BestAdvg(V(Fi, ..., Fs), C*) < (2q2.2—% + 65)

N =

® 50, if g« 24 the best advantage is negligible
e problem: this bound is not so good
example for ¢ = 64 and r = 5 (=~DES):
q 20 24 28 212 216
T
% (2q2.2’§> 0-156 o-116 o-76 0-36 o4
e This theory may not be so useful when considering attacks
with a large number g of queries.
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Link with Differential and Linear Probabilities

advantage of the differential distinguisher with g = 2

Theorem E (DPC*(a, b)>

Given a random C on {0,1}"\and a, b # 0 we hav

E(0Po(ab)) < s+ SlICE - [CPlllx
E(LPCab) < g +4lICE - [CFlll

V.

Consequence: making a good decorrelation of order 2 protects
against differential and linear cryptanalysis.
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Example: DFCv2

e Team design from ENS, published in 2001
e Patented by CNRS

e family of block ciphers with flexible parameters (nominal
choice below)

e block cipher with 128-bit blocks
e dedicated to 64-bit microprocessors
* key length from 0 to 256

¢ Feistel scheme with 8 rounds with round functions
decorrelated to the order 2

e ||[[C)? = [C*]?||loo <2 '"® (assuming independent round
keys)
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Conclusion

e differential and linear cryptanalysis
¢ theory on best distinguishers
e decorrelation as a tool to prove security
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Train Yourself

e DP and LP:
midterm exam 2008—-09 ex2
final exam 2021-22 ex2 (optimal LP)
final exam 202223 ex2 (finding heavy differentials)
e distinguishers:
midterm exam 2008—-09 ex4
final exam 2008-09 ex1
midterm exam 2013—14 ex3
midterm exam 2014-15 ex2 (Ly norm and KL divergence)
midterm exam 2015-16 ex3 (using Hellinger distance)
midterm exam 2016-17 ex4 (distinguishing 3-round Feistel)
midterm exam 2017-18 ex3 (number of samples)
final exam 2018-19 ex1 (number of samples)
final exam 2019-20 ex2 (advantage amplification)
final exam 2021-22 ex2 (Lai-Massey)
final exam 2021-22 ex3 (mod p PRNG)
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Train Yourself

¢ non-linearity of functions: midterm exam 2010-11 ex3
¢ two-time pad: midterm exam 201011 ex4
® SQUASHO: final exam 2010—11 ex3

® biases in RC4:
midterm exam 2009-10 ex1
midterm exam 2012—-13 ex1

e multiple encryption: midterm exam 2012—13 ex2
e AES on 4 rounds: final exam 2016—17 ex1
e Even-Mansour cipher: final exam 2022-23 ex1

¢ a simple PRF: final exam 2023—24 ex2
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e Proving Security
@ The Random Oracle Model
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The Random Oracle Model

e participants can query a public oracle which, upon a fresh
query x will answer with a (long enough) bitstring whose
bits are i.i.d. and uniformly distributed
if x is queried again, the answer will be the same
— random oracles implement a random function H

* “long enough” means: enough for the use of a
polynomial-time Turing machines
if algorithms only use the first ¢ bits we can assume that H
yields /-bit results

e adversary does not see queries by honest participants

e simulators/extractors may simulate the random oracle, or
just look at queries and answers
for the simulation to work, they should simulate so that the
distribution of outputs are indistinguishable form the
correct one
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Full-Domain Hash (FDH) Signature

e consider the RSA homomorphic trapdoor permutation over
Zy

* let H be a random oracle hashing onto Zj,

* Signy n(m) = (H(m))? mod N

* Verify, y(m, o) <= 0 mod N = H(m)

Theorem

In the random oracle model, an EF-CMA adversary with time
complexity t, gs chosen messages, qy hash queries, and
probability of success e can be transformed into an RSA
decryption algorithm with complexity t + (gs + qy)O(Te) and
probability of success ae’;‘;(;” , where T, is the complexity of an
RSA encryption.

(exp(x) =2.71...%)
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Full-Domain Hash (FDH) Signature

x = H(m)? mod N | Adversary | H(m) < 5° mod N
\ \ Message
Message . . m
= Sign o —— Verify
——
ok?

*Public key e, N

key d, N
Secret key d, | INTEGRITY

Generator

\ \
A AUTHENTICATION
x x
\ \
\ \
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Proof —i

Let e = Pr[A wins].
e the EF-CMA game selects pk and sk and gives pk to A,
then OSign answers to any signature request

e example: if mis a signature query, OSign queries mto H,
gets h, and answers h? mod N to A

_F \

g

OS|gn
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Proof —ii

e define A as follows

"]
(]

"]
(]

simulate A until A yields its final (m, o) forgery
if m was queried to OSign, abort

— m not queried to H by OSign

if mwas not queried to H by A, query it

in any case, set h = H(m)

if o€ mod N # h, abort

yield (m, o)

¢ we obtain: a new EF-CMA adversary A with similar
complexity and same success probability e, who either
aborts or yields a final result (m, o) to win, and who always
queries m (by A) to H
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Proof — iii
roo 1 oy ﬂg ) \

RV
-<X—
e define B as follows
e get e, N and the challenge y to inver
@ set an optimal probability p
@ run A, and simulate H and OSign
@ upon a query mto H, if mwas queried before, give the
same answer; otherwise, pick r €y Zy,, flip a biased coin b
and gives y°r® mod N where Pr[b = 1] =p
— perfect simulation since y°r® mod N is uniform
@ upon a signature query m, query mto H. If the answer is of
type r® mod N, answer by r, otherwise, abort
@ when A, finished and output (m, o), if query mto H
produced the answer of type yré mod N, yield o/r mod N;
otherwise, abort
— if H(m) = yr® mod N, we have (o/r)® mod N =y
® we obtain: an inverter B with similar complexity as .4 who
succeeds when the m query to H is of type yr® mod N and
sign queries are of type ré mod N
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Proof — iv

e the probability of success is p(1 — p)9se
e the optimal value for pis p = q;ﬁ
¢ the probability of success is thus

Qs _
1 <1_ 1 ) Ezexp( 1)6
Qs + 1 gs +1 gs + 1

OJ
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Fiat-Shamir Signature Paradigm

Signature from a X-Protocol

e Y -protocol: R, P, V. £, S, setof challenges E
* public key: x
e secret key: w such that R(x, w)
e signature: pick r, set a = P(x, w; r),
e = H(message||x||a) € E, z=P(x,w, e; r)
signature is (a, )
e verification: V(x, a, H(message| x| a), z)
note: the x missing in e = H(message||x||a) is an original
mistake!
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Fiat-Shamir Signature Paradigm

a = Px,wr)
e = H(m,x,a) | e = H(m,x,a)
z = P(x,w,er) Adversary V(x,a,e, z)?
Message
Message ) . m
— Sign Az Az Verify
——
\ ok?
A AUTHENTICATION .
Secret key w | i INTEGRITY i *Pubhc key x
Generator
J\
Y
a= P(x,w;r) —a
R(x, w) —°— ecyE
z=P(x,w,er) —Z V(x,a, e, z)?
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Fiat-Shamir Signature Paradigm in ROM

Theorem

Given a relation R s.t. it is hard to find witnesses and a

Y -protocol for its language s.t. 1/#E = neg|, the signature
scheme obtained by the Fiat-Shamir construction using a
random oracle is EF-CMA-secure (existentially unforgeable
under chosen message attacks).
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Removing Chosen Messages

Lemma

Given a relation R s.t. it is hard to find witnesses and a

Y -protocol for its language s.t. 1/#E = neg|, we consider the
signature scheme obtained by the Fiat-Shamir construction
using a random oracle.

There is a compiler which can transform an adversary A
succeeding the EF-CMA game into an adversary A’ playing the
EF-OMA game (no message attack) such that the complexity of
A’ is the one by A multiplied by some polynomial and

Pr[A” wins] = Pr[.A wins] — neg|

SV 2025 Proving Security EPFL 477 /529



Proof of Lemma — i
Let e = Pr[A wins].
¢ modify: OSign and A output e in signatures

e the EF-CMA game selects x and w and gives x to A, then
OSign answers to any signature query

e example: if mis a signature query, the challenger picks r,
computes a = P(x, w; r), queries m||x||ato H, gets e,
computes z = P(x,w, e; r), and sends (a,e,z) to A

q m||x||a

w

m .
( A L | OSign )
(a,e, 2)
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Proof of Lemma — i

e define A4 as follows
o simulate A until A yields its final (m, a, e, z) forgery
o if mwas queried to OSign, abort

— no query of form m||x||& from OSign to H

if m||x||a was not queried to H by A, query it

if =V(x, a, e, z) or e # H(m|x||a), abort

yield (m, a, e, 2)

e we obtain: a new EF-CMA adversary A with similar
complexity and success probability ¢, who either aborts or
yields a final result (m, a, e, z) and wins, and who always
queries (m||x||a) to H
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Proof of Lemma — iii
e define A, as follows
e simulate .4 and make a list of all (g, H(q)) queries
(queries m||x||a — e by OSign are deduced from x, m, and
(a,e, 2))
o if adversary tries to repeat a query which was done before,
just take its answer from the list and avoid the query
o if OSign does a query which was done before (let ¢’ be the
probability this happens), abort
e we obtain: a new EF-CMA adversary A, with similar
complexity and success probability ¢ — ¢’ such that the
EF-CMA game never repeats any query
e ¢/ is negligible:
#queries is polynomial so ¢/ < poly x maxz pz with
pa = Pr[P(x,w;r) = &
the algorithm running S(x, e; r) and S(x, €'; r') with random
e, €, r,r' yields commit a twice with probability p2 so
makes £ extract w with probability p2(1 — 1/#E)
S0, ps is negligible
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Proof of Lemma — iv

e define A’ as follows

@ simulate Az until a query mto OSign is made

@ upon query m, A’ picks r, e, and computes
(a,e,z) = S(x,6e;r)
if m||a has been queried before, the simulation fails
otherwise, the H table is augmented with m||x||a+— e

e we obtain: an EF-OMA adversary A’ with similar complexity
and success probability e — &’

O
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Proof of Theorem — i

define B as follows

simulate A with initial x, simulate H to A

if A does not output any (m, a, e, z), abort; otherwise, run A
again with same random coins until m||x||a is queried to H

pick a fresh €’ to be answered to .4 and continue the simulation

if A does not output any (m, a, €, z’), abort; otherwise, get two
forgeries (a, e, z) and (a, €, z') with same a so extract
w=_¢&(x,a,ez¢€,z)
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Proof of Theorem — i

A Tl Al

dist(\ succ(\)

m,a e,z
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Proof of Theorem — iii
we build the tree of A executions with same random tape based
on answers from H (each node v corresponds to a query, each
leaf \ corresponds to a termination)
* we consider the random descent following the H simulation
which leads to a random leaf X
® let succ(\) be true if A yields (m, a, e, z) and false
otherwise
e if A\ — (m,a, e, z),letdist(\) be the ancestor of A who
made to the m||x||a query, otherwise, let dist(\) = A
¢ we have Pr[succ(X)] = e and E(depth(X)) = poly
e let visit(v) the event that X has v as an ancestor
let f(v) = Pr[succ(X), dist(X) = v|visit(v)]
we obtain: a witness extractor B with similar complexity who
succeeds if succ(X), e # €, and the second run succeeds on
X' such that dist(X") = dist(X).
since Pr[e = €] = negl, the success probability is greater than
E(f(dist(X))) — negl
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Proof of Theorem — iv

recap:
e we have a tree with a predicate succ on leaves and

dist: \rs 4 ON€ ancgstor if succ(\)
A otherwise

e we have a distribution on leaves such that the depth of a
random leaf X is polynomial and Pr[succ] = &’

¢ we define f(v) = Pr[succ(X), dist(X) = v|visit(v)] where
visit(v) is the event that v is an ancestor of X
e if E(f(dist(X))) is negligible, so is &’
we conclude using the Forking Lemma O
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Forking Lemma

Lemma (Forking Lemma)

e We consider a finite tree and a mapping dist which maps
any leaf \ to one of its ancestors dist(\). We call it a
distinguished ancestor.

* We assume we are given a distribution which defines a
random leaf X. We let visit(v) be the event that the
descent goes through v, i.e. that v is an ancestor of \.

e We let succ()\) be true iff dist(\) # \. When it occurs we
say that \ is successful.

o We let p = Pr[succ(X)], d = E(depth(X)), and
f(v) = Pr[succ(X) and dist(X) = v|visit(v)].

We have

Pr | f(dist(X)) > % %

succ(X)] >
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Consequence

E(f(dist(X))) — / prf(dist(X)) > f]
0
> / " Prf(dist(X)) > t, suce(X)]
0

- p / " prf(dist(X) > tlsuce(X)] dt
0

14
p2

4d

v

s0, p < \/4dE(f(dist(X)))
If E(f(dist(X))) is negligible, p is negligible as well, which
completes the proof of the Theorem.
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Proof of Forking Lemma

* we have Pr[dist(X) = v|succ(X)] = f(y)w
* let Bad be the set of s s.t. f(v) < 2%
we have
Prldist(X) € Badsuco(X)] = 3 f() T LSt)]
veBad p
N 2d
1
< _
-2

e s0, Prldist(X) ¢ Bad|succ(X)] > 3
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Controversy about the Random Oracle Model

e random oracle are idealizations of practical functions
e in practice, no hash function is a random oracle

e we may have scheme secure in the random oracle model
but insecure for any practical instanciation of the random
oracle

e security in this model is still better than nothing
¢ one should interpret these security results with great care
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Insecure ROM-Secure Signature Scheme
Canetti-Goldreich-Halevi 1998

e consider the FDH ROM-secure digital signature scheme
Signg y(m) = (H(m))? mod N

e construct another ROM-secure digital signature scheme:

@ message semantics: interpret m as an algorithm
implementing a partial function hp, within a bounded time 7
e Sign, y(m): pick r; if H(r) = hm(r) then output d; otherwise

output Sign§ (m)
e Verify, y(m, o) <= m® mod N = mor o® mod N = H(m)

e this is ROM-secure as well

¢ if we replace H by a function which can be implemented by
a code m, the chosen message m will leak the secret key!
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G Proving Security

@ Hybrid EIGamal
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Hybrid EIGamal Cryptosystem using the Leftover
Hash Lemma
take a group with a generator g of order g
key generation: pick x €y Z4, sety = g*
message space: M < {0,1}™
encryption: Enc,(M;r,n) = (g",M & hp(y"), n)
decryption: Decy(u, v, n) = v @ hy(u¥)
where (h,), is a family of universal hash functions from G O (g)
to {0,1}™
leftover hash Lemma: if ¢ > 2%/\@ then (hn(g®), n) is
e-indistinguishable from (u, n) where u €, {0,1}™
Theorem

If2% /\/q = negl and under the DDH assumption, the above is
IND-CPA-secure.
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Hybrid ElIGamal Cryptosystem

r,nrandom
u = g’ ‘
v = M ha(y) Adversary
Message Message
E t D t
7 ncryp wv.n ecryp VD (0
|
. AUTHENTICATION 4
Public key yt ‘ ‘ ki
uolic ey y T INTEGRITY | | [Seoretkeyx
| Generator
J
Y
domain parameter: _ g
y=9

group spanned by g
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Leftover Hash Lemma

example: Hy(g°) = logs q
° min-entropy:

Hoo(X) = — logy max Pr[X = x]
e universal hash function:

1
vx #x - Prin(x) = hn(x')] Jrange
where #range = 2™ is the size of the output domain of h

and N is uniformly distributed

Lemma (Impagliazzo-Levin-Luby 1989)

Ifm < Hoo(X) — 2logs % and h is a universal hash function with
a range of size 2™ then (hy(X), N) and (U, N) have
distributions which are 5 -indistinguishable.

X, N, U are independent.
N and U are uniformly distributed.
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Proof
let Py = (hn(X), N), Py = (U, N), compute the Euclidean distance:

1 2
IP = Pol = ;(;L[hn(x):’“”:”]_zmaw)
1
B _ -2 L
- (Z)I:Ir\l[hn(X)—k,N—n] ) 2mUN
k,n
! — N’ 1
PO = OO N = N
] . RN
_ #W;;Pr[X:X7X = X', hy(x) = hy(x')] 2MLN
— ﬂz:Pr[X—x]2 (split x = x" and x # x’)
— N2 = plit x =
1_o-m 1-2" !
1-2m < X)) <« 2
< N max Pr[x] N 2 = 2’"#/\/5
we then use
d(Po. P1) = 3I1Po — P11+ < 3]1Po — Pilo/Fdomain < 3 -
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Transitions — i

game 5:
1: run key generation and get y
2: pick p and set view = (y; p)
3: run A(view) = (mg, my)
4: pick r,u <+ g" DDH assumption in the group
5: pick n, v < mp @ hp(y")
6: setview = (y,u, v, n; p)
7: run A(view) = b’
8: return b’
1 bridge
rb. game I'§:
ga.mg 1 . 1: pick x, y + g¥
1: p!ckx,yegr 2: pick r, u <+ g"
2: pickr, u < g 3: pick s, X <+ g° > erase
3: X+ g¥ > erase X, r XS
4: pick p and setview = (yip)  PRH 4. pi7ck7  and set view = (y; p)
5: run A(view) = (mg, my) 5: run A(view) = (M m1)’
6: pick n, v < mp & hn(X) 6: pick n, v < mp & h,n(X)
72 setview = (y,u, v, n; p) 7: setviéw:(yu v, n; p)
8: run A(view) = b’ 8: run A(view) SV
9: return b/ 92 return b’
SV 2025 Proving Security EPFL
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Transitions — ii

gal

OCONOOTRAWN =

gal

© 00~ O WN =

b-
me ['3:

: pick x, y «+ g*¥
Dpickr,u+g"

I pick s, X < g°

. pick p and set view = (y; p)
I run A(view) = (mg, mq)

1 pick n, v < my @ hnp(X)

: setview = (y,u, v, n; p)

: run A(view) = b/

. return b/

7 bridge

b.
me rs.

 pick x, y < g~

: pick r, u <+ g"

. pick p and set view = (y; p)
I run A(view) = (mg, my)

: pick s, X < g°

1 pick n, vo < hp(X) > erase

s, X

VM DV
: setview = (y,u, v, n; p)
: run A(view) = b/

10: return v/

SV 2025

lemma

leftover hash Lemma

game 'y

1: pick x, y + g¥
tpickr,u<+g"

. pick p and set view = (y; p)
: run A(view) = (mg, my)

I pick U

D pickn, vp < U p>erase U
TV mpd vy

. setview = (y,u,v,n; p)

> run A(view) = b/

10: return v/

2
3
4
5
6
7
8
9
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Transitions —iii
game 'Y
1: pick x, y < g*

2: pickr,u<+g"
3: pick p and set view = (y; p)
4: run A(view) = (mg, my)
5: pick U Vp and v uniform
6: pick n, vp «+ U
T7:ve—mp®vy
8: setview = (y,u, v, n; p)
9: run A(view) = b’
10: return v/
1 bridge
game I'2: b.
1: pick x, y < g¥ g1a_n:)eicl‘;6).( y < g~
2: p?ckr,ueg’ . 2 pickr,u<—g’
3: pick p af‘d set view = (y; p) V‘ 3: pick p’and set view = (y; p)
4: run A(view) = (mo, my) ind  4: run A(view) = (mp, my)
5 p!ck n - 5 pick n 7
6: pick vo 6: pick v
7:v My ® Vo > erase Vg 72 setview = (y, u, v, ; p)
8: setview = (y,u, v, n; p) 8: run A(view) & Ll,/ ,
9: run A(view) = b’ 9: return b’

10: return v’/
SV 2025

Proving Security
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Transitions — iv

final step: 2 and '} are identical!

bridge DDH bridge lemma bridge

0 99 0 ~ 0 99 0 ~ 0

Iy r ~ s s ~ My ~
bridge DDH bridge lemma bridge

[ - L ~ i o=

so, Pr[I = 0] — Pr[l'} = 0] < 2Advppy + 2¢ = negl

SV 2025 Proving Security
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Hybrid EIGamal Cryptosystem using Random
Oracles

take a group with a generator g of order g
key generation: pick x € Zy, sety = g*
message space: M < {0,1}"
encryption: Ency(M;r) = (9", M@ H(y"))
decryption: Decy(u,Vv) = v & H(u¥)
where H is a random oracle onto {0, 1}™

Theorem

Under the DDH assumption, the above is INDCPA-secure in the
random oracle model.
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Hybrid ElIGamal Cryptosystem

r random
u = ¢ |
v = MaHy") Adversary
Message Message
E t D t
M nevet Iy M Bk )
|
. A AUTHENTICATION 4
Public key y T INTEGRITY | | Secret key x
Generator
J
Y
domain parameter:
p y =g

group spanned by g
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Transitions — i

game I'5:
1: pick H
2: run key generation and get y
3: pick p:’md set view = (y; p)
g rpt::ké stﬁvg,_ (mo, m+) DDH assumption in the group
6: v+ mpy® H(y")
7: setview = (y, u, v; p)
8: run A" (view) = b’
9: return b’

1 bridge
game ? game 3:
1: pick x, y + g~ 1: pick x, y + g~
2: pick r, u <+ g’ 2: pick r, u <+ g’
3: X+ g¥ 3: pick s, X «+ g°

>erase X,  ppy > erase X, r, S

4: pick H, p, set view = (y; p) ~ 4: pick H, p, set view = (y; p)
5: run A (view) = (mg, my) 5: run A (view) = (mg, my)
6: v+ my® H(X) 6: v+ my® H(X)
7: setview = (y,u, v; p) 7: setview = (y,u, v; p)
8: run A" (view) = b’ 8: run A" (view) = b’
9: return b’ 9: return b’
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Transitions — ii

game I'5:

: pick x, y « g*

: pick r,u <+ g"

. pick s, X < g°

1 pick H, p, set view = (y; p)
. run AP (view) = (mg, my)
V< mp ® H(X)

: setview = (y, u, v; p)

: run AH(view) = b’

: return b/

CONDURWN

1 bridge

game %

I pick x, y «+ g¥

> pickr,u<+g"

1 pick H, p, set view = (y; p)
. run AP (view) = (mg, my)
pick s, X « g°

L Vo — H(X)

Ve mp® vy

: setview = (y, u, v; p)

: run AH(view) = b/

10: return b’

SV 2025

difference lemma
F: A queried H(X)
Pr[F] < #queries
= q

game 2:
1: pick x, y «+ g¥

2: pick r,u+ g’

3: pick H, p, set view = (y; p)
4: run A (view) = (mg, my)

5: pick s, X < g

6:
7
8
9

pick vo

VMmO VW
: setview = (y, u, v; p)
: run AM(view) = b’

10: return 0 if A queried H(X)
11: return b’

Proving Security
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Transitions — iii

game 'Y

1: plck X,y + g

2: pickr,u<+g"

3: pick H, p, set view = (y; p)
4: run AH(view) = (mg, my)
5: pick s, X + g¢

6: pick vg, V < mp @ vy
7: setview = (y,u, V; p)

8: run A" (view) = b/

9: return 0 if A queried H(X)
0: return b’

1 bridge

game re:

: plck Vo, V4 My ® Wy

: pick x, y + g¥

2 pick r, u <+ g"

1 pick H, p, set view = (y; p)
: run A (view) = (mg, my)
. pick s, X + g°

. setview = (y, u, v; p)

: run AH(view) = b/

: return 0 if A queried H(X)
10: return b’

SV 2025

OCONOOPAWN =

Vo and v uniform

game I%:

1: plck v

2: pick x, y + g*

3: pickr,u<+g"

4: pick H, p, set view = (y; p)
5: run A (view) = (mg, my)
6: pick s, X < g°

7: setview = (y,u, v; p)

8: run A" (view) = v/

9: return 0 if A queried H(X)

10: return b’

Proving Security
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Transitions — iv

final step: 2 and '} are identical!

bridge DDH bridge difference bridge domain
0 0 '~ 0 0 ~ 0 0 His 0
ro ~ rs = s ~ r3 ~ My ~ Mg = Hr6
bridge DDH bridge difference bridge domain
1 1 '~ 1 s 1 ~ 1 2 1 1
Iy ~ Iy ~ I s = My g = e

so, Prrg = 1] - Pr[_rgJ = 1] < 2AdvppH + 2 Pr[F] = negl
since Pr[F] < w
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e Proving Security

@ The Fujisaki-Okamoto Transform
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Fujisaki-Okamoto

Secure Integration of Asymmetric and Symmetric Encryption Schemes,
CRYPTO 1999, JoC 2013

¢ ~-spread and OWCPA-secure PKC (Geng, Ency, Decp)
* one-time secure cipher (e.g. one-time pad)
e random oracles G and H
— construct a PKC which is INDCCA-secure
(many variants possible)

Gen — (pk = pko,sk = (sko, pky))
cto
—_———
Encpk(pt; coins) — | Enco pk, (coins; H(coins, ctz)), pt & G(coins)
\—v.—J
new coins
Decgk(cty, Cto):
1: Decp gk, (Ct1) — coins

2: if cty # Encg pk, (coins; H(coins, ctz)) then return L
3: return cty & G(coins)
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Security Notions

e ~-spread:
Vpk, pt, ct Pr[Encpk(pt) = ct] <277

¢ OWCPA-secure:
secure against decryption under chosen plaintext attacks
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Proof Sketch

owcPA S INDCCA

(need PKCy to be ~y-spread as well)

Encpk(pt): Decg(ct1, ctp):
1: pick o 1: o < Decg gk(cty)
2: ¢ty + pt & G(o) 2: if o = L then return L
3: ¢ty « Encopk(o; H(o, ctz)) 3: if cty # Encopk(o; H(o, ctz))
4: return (cty,ctp) then return L
4: pt + cto @ G(o)
5: return pt

e modify the decryption oracle so that it does not use sk but

only the oracle tables:

if there is no (o, cta, h) € H such that cty = Encg pk(o; h),
then return L, otherwise, decrypt by using G

¢ modify F and G on the challenge o point

SV 2025 Proving Security
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Transform Adapted to Quantum Random Oracles...

Targhi-Unruh, Quantum Security of the Fujisaki-Okamoto and OAEP Transforms,
TCC 2016

OWCPA ™ INDCCA
(need PKCy to be ~-spread as well)

Encpk(pt): Decgk(ct1, ctp, Ct3):

1: pick o 1: o < Decg ek(cty)

2: ¢ty +— pt & G(o) 2: if o = L then return L

3: ¢ty « Enco pk(o; H(o, ctz)) 3: if cty # Encopk(o; H(o, ctz))

4: ct3 + H'(0) then return L

5: return (cty, ctp, Ct3) 4: if ct3 # H'(o0) then return L
5: pt + cto @ G(o0)
6: return pt

secure, even with quantum access to the random oracle...
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A Modular Analysis of the FO Transformation

Hofheinz-Hovelmanns-Kiltz TCC 2017

adversary has access to:

Pco(ct pt):

1: return 1, Dece(ct)

Cvo(ct):

1: return 1Decy (ct)£ L

INDCPA o (\J
\

st OWPCVA ko)
(non tight)
OWCPA (ke
S T:
Encok(pt): Encox(pt):
1: pick Xq,. .., X 1: ¢t « Enco pk(pt; G(pt))
2: ctg < pt @ F(xq,..., Xp) 2: return ct
3: ct; & Encopk(Xi), I =1,..., Decg(ct):
4: return (cto, ..., cty) 3: pt « Decg sk(ct)
Decek(cto, - . -, cty): 4: if pt = L then return L
5: x; + Deco(cti), i=1,..., 5 if ct # Encopk(pt; G(pt))
6: pt < cto @ F(xi,..., X¢) then return L
7: return pt 6: return pt
SV 2025 Proving Security

— INDCCA em)

uU:

Encpk:
1: pick pt at random
2 ctd Enco pk(pt)
3: K « H(pt,ct)
4: return (K,ct)
Decg(ct):
5: pt « Decp gk(ct)
6: if pt = L then return L
7: K« H(pt,ct)
8: return K
EPFL
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S Transform

OWCPA 5 INDCPA

Encpk(pt): Decs(cto, . - ., Cty):

1: pick x1,...,Xp 1:x,-<—Deco7Sk(ct,-),i:1,..‘,£
2: ¢t « ptad F(x1,...,X) 2: pt+ cto® F(x1,...,X)

3: cf; (i Enco7pk(x,-), i=1,...,¢ 3: return pt

4: return (cto, ..., cty)

The OWCPA — INDCPA reduction is loosing a factor g'/ in the
advantage, where g is the number of random oracle queries the
adversary can make.

This factor can be huge.

Increase ¢ to make it smaller (but make encryption more costly).
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S Transform (Proof Sketch)

OWCPA 5 INDCPA

Encpk(pt): Decs(cto, . - ., Cty):

1: pick x1,...,Xp 1:x,-<—Deco7Sk(ct,-),i:1,...,£
2: Cto(—pt@F(X17...,Xg) 2: pt<—Cto@F(X1,...,Xg)

3: cf; (i Enco7pk(x,-), i=1,...,¢ 3: return pt

4: return (cto, ..., cty)

¢ add a failure event that the adversary queries F(xq, ..., X;)

e construct an OWCPA game in which the challenge ct is put
at a random place and completed

e define p; as the pobability that one F query out of the q
ones (taken at random) finds the right x; given that
(x1,...,Xj_1) are found and the failure event occurs

1
e use ;> pi > ([Ip)?and [[pi = §
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T Transform (Proof Sketch)

INDCPA L, OWPCVA
(need PKCy to be ~-spread as well)

Encpk(pt): Decs(ct):
1: ¢t <— Enco pk(pt; G(pt)) 1: pt < Decg (ct)
2: return ct 2: if pt = L then return L

3:if ¢t # Encom(pt; G(pt))
then return L
4: return pt

* remove the Pco oracles which can be simulated (use
correctness)

e get rid of Cvo oracles queries which can be simulated from
the G table

e other queries answer 0, but with probability 2=
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U Transform (Proof Sketch)

OWPCVA Y, INDCCAxem

Encpx: Decg(ct):

1: pick pt at random 1: pt < Decg k(ct)

2: ¢t & Enco ok(Pt) 2: if pt = L then return L
3: K « H(pt, ct) 3: K « H(pt,ct)

4: return (K, ct) 4: return K

¢ define a failure event that the right (pt, ct) is queried to H
e simulate the decryption query by
Dec(ct):
. if Cvo(ct) = 0 then return L
for all (pt,ct, K) € Hdo
if Pco(pt, ct) = 1 then return K
end for
return a random K and get ready to update H
(in H, check if pt would decrypt...)
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e Proving Security

@ The Generic Group Model
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Generic Group Algorithms

e Baby-step giant step
make group operations, store in tables, and expect a
matching

¢ Pollard Rho algorithm
make group operations and expect a matching

e why don’t we assume that only group operations can be
done?

we can prove the hardness of DL, CDH, DDH in generic groups
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Shoup Generic Model

® in a group G of order q
* set up a random bijection ¢ : G — Z4 (privately)
* “represent” a group element x € G by p(x)
e show only g and representation of group elements
® give access to an oracle

OAdd(u, v):

1: return (o~ (U) + 9~ 1(y))

e can implement scalar multiplication (double-and-add)
e can implement inversion (multiplication by g — 1)
e can compare group elements (compare representations)
e can pick a random group element (pick its representation)
e can apply random oracles to group elements
e can implement generic algorithms
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Results [Shoup 1997]

In a group of order g, in the Shoup generic model...

Theorem (DL)

Let p be the largest prime factor of q. A generic DL algorithm
making m > 0 oracle calls has advantage O(nm?/p).

Theorem (CDH)

Let p be the largest prime factor of q. A generic CDH algorithm
making m > 0 oracle calls has advantage O(m?/p).

v

Theorem (DDH)

Let p be the smallest prime factor of q. A generic DDH
algorithm making m > 0 oracle calls has advantage O(m?/p).
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Maurer Generic Model

e inagroup G of order g

e set up an array R to public group elements
e show only g

e give access to oracles

OAdd(i,/, k): OlsZero(i):
1: R[K] < RI[i] + R[j] 3: return 15—
2: return

e can implement scalar multiplication (double-and-add)
e can implement inversion (multiplication by g — 1)

e can compare group elements (IsZero of the difference)
e tricky to pick a random group element

e tricky to implement Baby-step giant-step (dictionary...)
e tricky to implement Pollard p (hash...)
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Example: DL is Hard in (Maurer) GGM

Theorem (DL)

In a cyclic group of prime order q, a generic (Maurer model) DL
algorithm making m OlsZero calls has advantage at most ’"T“.

Proof. Induction: trivial for m = 0 + show how to transform A
into B who simulates the first OlsZero (one less call):

DL setup: R[1] = gand R[2] = X (DL: )

set vi =(1,0), v = (0, 1), and other v; = (0, 0)
follow A and extend OAdd by vy < (v; + v;) mod q
simulate the first OlsZero by returning 1,,—o

failure case: v; = (a, ) # 0 but a + x5 =0 (mod Q)
Adv4 < Advg + ¢ by difference lemma

from induction: Advg < %
L]
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Better Comparison Oracle

ONew(/):

1: if R[i] is not in List then

2: add RJi] at the end of List

3: end if

4: return position of RJ[/] in List
e emulatable with OlsZero (m calls become
e can implement baby-step giant-step
e can implement Pollard p

mm1) calls)

Theorem (DL)
In a cyclic group of prime order q, a generic (Maurer model) DL

algorithm making m ONew calls has advantage at most %.
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Final Step towards Equivalence

* make sure no R value is overwritten
(use a fresh memory location for every OAdd)

e run ONew after every OAdd
(keep indices of pairwise different values)

¢ define ¢ values by lazy sampling
(for every new index)

Shoup model Maurer model
m(m—1)

mcallsto OAdd — ——— calls to OlsZero
! inputs representing nothing known (random generation)
define ¢~ values by lazy sampling
(multiply a generator by a random value until it is new)
— blow up in number of queries
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Algebraic Group Model

® in a group G of order q
e let Aq,..., Anbe all group elements provided to A as input

e require A to release any output X as a vector
(X1,...,Xn) € Zgsuch that X = x1 Ay + - + XpAp

e can do group scalar multiplication, inversion, comparison
e can pick a random group element (pick a representation)
® no problem with random oracles

e can implement generic algorithms

e can simulate a Shoup generic algorithm

e can simulate a Maurer generic algorithm
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Results [Fuchsbauer-Kiltz-Loss 2018]

Theorem (DL=CDH in AGM)

For a group of prime order q, in the algebraic group model, DL
and CDH are equivalent.

CDH in AGM: A(G, xG, yG) — (u, v, w) wins iff

uG + v(xG) + w(yG) = xyG, i.e. iff u+ vx + wy = xy

Proof. Given a DL instance (G, Z), pick a, 5 € Z4 and set
X=aZ, Y=pZrun A(G,X,Y)— (u,v,w), then solve

u+ (av+pBw)z = aBz?in z € Z,. O
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Conclusion

e a battery of formal security definitions
¢ the random oracle model: a tool to idealize hash functions
e the generic group model: a tool to idealize groups
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Train Yourself

e BLS signature: final exam 2012—13 ex2

PRF: final exam 2012—13 ex3 (PRF programming)

distance bounding: final exam 2013—14 ex2

forking Lemma and Fiat-Shamir: final exam 2013-14 ex3

blind signatures: final exam 2022—-23 ex3
IND-CCA ElGamal: final exam 2018—-19 ex2
twin DH problem: final exam 2018-19 ex3
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