
Advanced Cryptography

Serge Vaudenay

http://lasec.epfl.ch/

SV 2025 Advanced Crypto EPFL 1 / 529

http://lasec.epfl.ch/

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security

SV 2025 Advanced Crypto EPFL 2 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security

SV 2025 The Cryptographic Zoo EPFL 3 / 529

1 The Cryptographic Zoo
The Menagery
The Math Toolbox
The Algorithmic Toolbox
The Complexity Theory Toolbox

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security

SV 2025 The Cryptographic Zoo EPFL 4 / 529

Meta-Definition of a Cryptographic Primitive

correctness
(honest execution)

security
(malicious
execution)

components
(parameters, participants, algorithms,

protocols)

crypro
primitive

SV 2025 The Cryptographic Zoo EPFL 5 / 529

Correctness vs Security

• correctness:
what happens if everyone honestly follow the protocol
operations must be easy to perform

example: DecK (EncK (X)) = X
• security:

what should not happen even if someone is malicious
attacks should be hard to perform
practically: the threat model defines a game in which a
malicious adversary following any polynomially bounded
strategy gets a negligible advantage

example: key recovery under chosen plaintext attack is
hard

SV 2025 The Cryptographic Zoo EPFL 6 / 529

Easy vs Hard

There exist several notions of easiness/hardness. In this course
we mostly follow the polynomial/non-polynomial complexity
one:
• a computational problem with security parameter s is easy

if it can be solved with a probabilistic algorithm of
complexity sO(1) when s → +∞, i.e. probabilistic
polynomial-time (PPT) algorithm→ easy=PPT
(it is hard otherwise)
• example: a system is secure if it is hard to break

Sometimes, we may consider the information theoretic
approach (where adversaries are not limited in terms of
complexity).

SV 2025 The Cryptographic Zoo EPFL 7 / 529

Negligible and Secure

• a function f is negligible if

∀n f (s) = O(s−n) (s → +∞)

• example: f (s) = 2−s

• avoid writting non-negligible as it can be confusing
(for some authors, non-negligible 6= ¬negligible...)
• a system is secure if every PPT adversary has a negligible

advantage

SV 2025 The Cryptographic Zoo EPFL 8 / 529

Notation: Security Parameter

A cryptographic algorithm A often depens on some security
parameter s (e.g. a key length).

We denote 1s =

s times︷ ︸︸ ︷
11 · · · 1, the unary representation of s, and

consider 1s as the first input of A:

A(1s, x ; r)

Caution: 1s is often implicit and omitted from notations for
simplicity!

In practice, we consider polynomially bounded algorithms.
Their complexity is bounded by a polynomial in terms of the
length of the inputs, i.e. s + |x |. Since |x | is polynomially
bounded in terms of s, the complexity of A is sO(1).

SV 2025 The Cryptographic Zoo EPFL 9 / 529

Notation: Probabilistic Algorithms

A probabilistic algorithm A(input; coins) is an algorithm A fed
with input which sometimes needs to flip a coin to make a
decision. By convention, we prepare “coins”: an infinite
sequence of coin flips. A can read them in sequence whenever
needed.

So, A can also be seen as a deterministic function of both
input and coins. By convenience, we separate input and coins
by a semi-colon: A(input; coins)

Not all coins are used: there is always a minimal prefix r of
coins such that for all sequences s, we have
A(input; r‖s) = A(input; coins). We denote this common value
by A(input; r).

SV 2025 The Cryptographic Zoo EPFL 10 / 529

Big Picture

confidential transmission authenticated transmission

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
Auth - - Check

-
ok?

-Message
�

�
Adversary

Generator

6Secret KeyPublic Key 6 AUTHENTICATION
INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

Generator

6 Public KeySecret Key 6AUTHENTICATION
INTEGRITY

-Message
Sign - - Verify

-
ok?

-Message
�

�
Adversary

SV 2025 The Cryptographic Zoo EPFL 11 / 529

Symmetric Encryption

encryption : key, nonce, plaintext 7→ ciphertext
decryption : key, nonce, ciphertext 7→ plaintext

Security goal: protect the confidentiality of plaintexts
• may use a nonce (must not be reused in encryption)
• authenticated encryption: may use associated data as

additional input (to authenticate)

encryption : key, nonce, ad, plaintext 7→ ciphertext
decryption : key, nonce, ad, ciphertext 7→ plaintext

SV 2025 The Cryptographic Zoo EPFL 12 / 529

Using Encryption

• usage:
share a random key K between the sender and the receiver
to transmit a message pt, compute ct = EncK (pt) and send
ct over the communication channel
to receive the message, get ct and compute pt = DecK (ct)

• correctness:
DecK (EncK (pt)) = pt

• security: notion of confidentiality

SV 2025 The Cryptographic Zoo EPFL 13 / 529

Using MAC for Authentication

MAC : key,message 7→ tag

• usage:

AuthK (X) = X‖MACK (X)

CheckK (X‖t) = (X , 1t=MACK (X))

• correctness:

CheckK (AuthK (X)) = (X , 1)

• security: notion of authentication and integrity

SV 2025 The Cryptographic Zoo EPFL 14 / 529

Public-Key Cryptography

• public-key cryptosystem: encryption

Gen : ⊥ $7→ pk, sk

Enc : pk, pt $7→ ct
Dec : sk, ct 7→ pt

• digital signature scheme: authentication + integrity

Gen : ⊥ $7→ pk, sk

Sig : sk,X $7→ σ

Ver : pk,X , σ 7→ 0/1

SV 2025 The Cryptographic Zoo EPFL 15 / 529

Using Public-Key Encryption

• usage:
generate a key pair (pk, sk) using Gen
the receiver keeps sk and publicly reveals pk
to transmit a message pt, compute ct = Enc(pk, pt) and
send ct over the communication channel
to receive the message, get ct and compute
pt′ = Dec(sk, ct)

• correctness: pt′ = pt
• security: notion of confidentiality

SV 2025 The Cryptographic Zoo EPFL 16 / 529

Non-Deterministic Encryption

pt

R

-
�

Encrypt

ct3

ct2

ct1

�
-R

Decrypt

pt

SV 2025 The Cryptographic Zoo EPFL 17 / 529

Using Signature

• usage:
generate a key pair (pk, sk) using Gen
the sender keeps sk and publicly reveals pk
to sign a message X , compute σ = Sig(sk,X) and send X
with σ over the communication channel
to validate the message, get (X , σ) and compute
Ver(pk,X , σ)

• correctness: Ver evaluates to 1
• security: unforgeability

SV 2025 The Cryptographic Zoo EPFL 18 / 529

Key Agreement Protocol

• usage: A and B run an interactive protocol which uses no
common secret input and each produce a private output
KA and KB

• correctness:
running A(1s; ra) and B(1s; rb) together leads to KA = KB

• security: secrecy of the output K

SV 2025 The Cryptographic Zoo EPFL 19 / 529

Commitment Scheme

(most common construction)

Definition
A commitment scheme is a tuple (D,Commit) with a message
domain D and one PPT algorithm Commit implementing a
function

Commit : D × Random −→ {0, 1}∗
(X , r) 7−→ Commit(X , r)

SV 2025 The Cryptographic Zoo EPFL 20 / 529

Using Commitment

• usage:
commit to X : pick r and send c = Commit(X , r)
open commitment: send X and r ; receiver verifies
c = Commit(X , r)

• correctness: verification succeeds
• security: binding and hiding

SV 2025 The Cryptographic Zoo EPFL 21 / 529

Other Conventional Primitives

(informal)
• pseudorandom number generator (PRNG)

typically: PRNG(state)→ (new state, output r)
• key derivation function (KDF)

maps some random seed with a bias (e.g. a group element
coming from Diffie-Hellman key agreement) to a (set of)
secret key(s) with no bias
• hash function

maps arbitrary length input to fixed-length output

SV 2025 The Cryptographic Zoo EPFL 22 / 529

Security of PRNG: Indistinguishability

adversary - X

	
r1, . . . , rd

PRNG

adversary - Y

	
r1, . . . , rd

random

Adv = Pr[X = 1]− Pr[Y = 1]

• the goal of the adversary is to have |Adv| large
(possibly: by predicting the next generation)

SV 2025 The Cryptographic Zoo EPFL 23 / 529

Swiss Army Hash Function
• PRNG:

PRNG(state) = truncrequired length (H(state‖1)‖H(state‖2)‖ · · ·)

• KDF:

KDF(seed) = truncrequired length (H(seed‖1)‖H(seed‖2)‖ · · ·)

• Commitment:

Commit(X , r) = H(〈X , r〉)

〈X , r〉: encoding of X and r with non-ambiguous decoding
(example: concatenation, if X has a fixed length)
• Domain expander:

primitivelarge domain(input) = primitivelimited domain(H(input))

SV 2025 The Cryptographic Zoo EPFL 24 / 529

A Few Adversarial Models for Hash Functions

(informal)
• adversary objective: depends on the application
• first preimage attack: given y , find x such that H(x) = y
• second preimage attack: given x , find x ′ 6= x such that

H(x) = H(x ′)
• collision attack: find x and x ′ such that x ′ 6= x and

H(x) = H(x ′)

SV 2025 The Cryptographic Zoo EPFL 25 / 529

1 The Cryptographic Zoo
The Menagery
The Math Toolbox
The Algorithmic Toolbox
The Complexity Theory Toolbox

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security

SV 2025 The Cryptographic Zoo EPFL 26 / 529

Finite Abelian Group
• finite Abelian group: set with an operation which satisfies

closure, associativity, existence of neutral element,
universal invertibility, commutativity, and finite
cardinality
examples: Zn, Z∗p, GF(q)∗, elliptic curve Ea,b(K)
• additive or multiplicative notation:

additive a + b 0 −a a− b n.a
multiplicative: ab 1 1/a a/b an

• group constructors: spanned subgroup, product group,
power group, quotient by subgroup
• group order: cardinality of the group
• element order: order of the subgroup spanned by the

element = smallest power n such that xn = 1
• group exponent: smallest power n such that xn = 1 for all

x
• Lagrange property: the element order divides the group

exponent which divides the group order
SV 2025 The Cryptographic Zoo EPFL 27 / 529

Commutative Ring

• commutative ring: set with two operations + and × which
satisfies

for +: Abelian group
for ×: closure, associativity, existence of neutral
element, commutativity
distributivity

examples: Z, Zn, Z[x], Zp[x]
• ring constructors: spanned ideal, product ring, power

ring, quotient by ideal
• Euclidean ring: ring with Euclidean division (e.g. Z, K [x])
• principal ring: ring in which all ideals have a generator

ring is Euclidean =⇒ ring is principal
• group of units: R∗ is the set of all invertible elements in R

it is a group for multiplication!

SV 2025 The Cryptographic Zoo EPFL 28 / 529

Irreducibility and Primality in Rings

• in Z:
p prime iff p > 1 and

∀a, b ∈ Z, p = ab =⇒ |a| = 1 or |b| = 1
• in K [x]:

P(x) irreducible iff ∀A(x),B(x) ∈ K [x], P(x) =
A(x)B(x) =⇒ deg(A) = 0 or deg(B) = 0

(in a principal ring)
every ring element x can be written as x = p1 · · · pm where
each pi is irreducible and the factorization is unique in the
following sense: if x = q1 · · · qn where each qi is irreducible,
then there exists a bijection f : {1, . . . ,m} → {1, . . . , n} such
that for every i there exists a unit ui such that qf (i) = uipi (so
m = n)

SV 2025 The Cryptographic Zoo EPFL 29 / 529

Finite Field

• finite field: ring with finite cardinality in which all nonzero
elements are invertible
• multiplicative group: K ∗ = K − {0}
• Galois field: GF(pn) = Zp[x]/(P(x)) where p is prime,

P(x) is a monic (i.e., with leading coefficient 1) irreducible
polynomial of degree n in Zp[x]
• Galois theorem: the set of all finite field cardinalities is the

set of all integers of form pn for p prime, fields of same
cardinality are isomorphic, and the above construction is
possible for every prime power
useful fields in crypto: Zp, GF(2n)

SV 2025 The Cryptographic Zoo EPFL 30 / 529

Facts About the Zn Ring

• x ∈ Zn is invertible iff gcd(x , n) = 1
• Z∗n is of cardinality φ(n) and exponent λ(n)
• if p1, . . . , pr are pairwise different prime numbers

φ(pα1
1 · · · p

αr
r) = (p1 − 1)pα1−1

1 · · · (pr − 1)pαr−1
r

λ(pα1
1 · · · p

αr
r) = lcm

(
λ(pα1

1), . . . , λ(pαr
r)

)
with λ(pα) = φ(pα) except for λ(2α) with α ≥ 3
(for which λ(2α) = 1

2φ(2
α))

• Euler theorem: for x ∈ Z∗n we have xφ(n) mod n = 1
• for x ∈ Z∗n we have xλ(n) mod n = 1

SV 2025 The Cryptographic Zoo EPFL 31 / 529

Facts About the Zp Field

given p > 2 prime
• Z∗p has a generator
• Fermat’s little theorem: for x ∈ Z∗p we have xp−1 mod p = 1
• QR(p) is the group of quadratic residues modulo p

it is of order p−1
2

• x ∈ QR(p) iff x
p−1

2 mod p = 1

SV 2025 The Cryptographic Zoo EPFL 32 / 529

Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)
Let m and n be two integers such that gcd(m, n) = 1. We have
• f : Zmn → Zm × Zn

x 7→ (x mod m, x mod n)
is a ring isomorphism

• f−1(a, b) ≡ an(n−1 mod m) + bm(m−1 mod n) (mod mn)

SV 2025 The Cryptographic Zoo EPFL 33 / 529

Random Variables

random variable: process X taking random coins r as input
and producing some values in a given set Z
support: set of possible outputs

its probability distribution: function P from a set including
the support to R mapping values x to their
probabilities Pr[X = x]

independent variables: random variables X and Y s.t. for all
x , y

Pr[X = x and Y = y] = Pr[X = x]× Pr[Y = y]

examples: random variables using two disjoint
sets of random coins

SV 2025 The Cryptographic Zoo EPFL 34 / 529

Expected Value and Variance
• expected value: given a random variable X with a range

in a vector space over the real numbers, E(X) is a vector

E(X) =
∑

r

Pr[r]X (r) =
∑

x∈support

x Pr[X = x]

• variance: given a random variable X with a range in R,

V (X) = E
(
(X − E(X))2

)
= E

(
X 2

)
− (E(X))2

• Boolean random variable: if Pr[X ∈ {0, 1}] = 1

E(X) = p and V (X) = p(1−p) where p = Pr[X = 1]

• linearity: given random variables X ,Y and scalars λ, µ:

E(λX + µY) = λE(X) + µE(Y) and V (λX) = λ2V (X)

• case of independent variables: given independent X ,Y :

E(XY) = E(X)E(Y) and V (X + Y) = V (X) + V (Y)

SV 2025 The Cryptographic Zoo EPFL 35 / 529

Other Properties

E(f (X)) =
∑

r

f (X (r)) Pr[r]

=
∑

x∈support

f (x) Pr[X = x]

=
∑

y

y Pr[f (X) = y]

SV 2025 The Cryptographic Zoo EPFL 36 / 529

1 The Cryptographic Zoo
The Menagery
The Math Toolbox
The Algorithmic Toolbox
The Complexity Theory Toolbox

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security

SV 2025 The Cryptographic Zoo EPFL 37 / 529

Arithmetics with Big Numbers

ℓ: size of the input
• addition (O(ℓ)): x , y 7→ x + y
• multiplication (O(ℓ2)): x , y 7→ x × y
• Euclidean division (O(ℓ2)): x , n 7→ x mod n

• extended Euclid Algorithm (O(ℓ2)): x , y 7→ a, b s.t.
ax + by = gcd(x , y)

SV 2025 The Cryptographic Zoo EPFL 38 / 529

Modular Arithmetic

ℓ: size of n
• addition (O(ℓ)): x , y , n [x , y < n] 7→ (x + y) mod n
• multiplication (O(ℓ2)): x , y , n [x , y < n] 7→ (x × y) mod n

(Note: asymptotically better algorithm based on FFT, but
not better in practice)
• Euclidean division (O((ℓ+ log x)2)): x , n 7→ x mod n

• fast exponential (O(ℓ2 log e)): x , e, n [x < n] 7→ xe mod n
using the square and multiply algorithm
• inversion in Zn (O(ℓ2)): x , n [x < n] 7→ y s.t. xy mod n = 1

(when feasible)
using the extended Euclid algorithm

SV 2025 The Cryptographic Zoo EPFL 39 / 529

Other Algorithms

ℓ: size of n
• square root with factorization of n = pα1

1 · · · p
αr
r (O(ℓ3)):

x , pα1
1 , . . . , pαr

r 7→ y s.t. y2 ≡ x (mod n)
• primality test (O(kℓ3)): n 7→ 0 or 1

(O(ℓ3) if n is composite, with Pr[wrong answer] ≤ e−Ω(k))
• prime number generation (O(ℓ4)): ∅ 7→ p (ℓ is the size of p)

SV 2025 The Cryptographic Zoo EPFL 40 / 529

Birthday Effect

Given a random hash function with output domain of size N we
can find a collision with complexity O(

√
N)

SV 2025 The Cryptographic Zoo EPFL 41 / 529

Generic Attacks

primitive attack complexity parameter n
encryption key recovery 2n key length
hash function preimage attack 2n hash length

collision 2
n
2 hash length

MAC key recovery 2n key length

SV 2025 The Cryptographic Zoo EPFL 42 / 529

1 The Cryptographic Zoo
The Menagery
The Math Toolbox
The Algorithmic Toolbox
The Complexity Theory Toolbox

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security

SV 2025 The Cryptographic Zoo EPFL 43 / 529

Membership Problem

• problem defined by a language L (set of words)
• instance specified by a word x
• the membership problem is to decide whether x ∈ L or not
• languages in NP are of form

L = {x ; ∃w R(x ,w)}

for some predicate R which can be computed in
polynomial time
proof of membership specified by a
(polynomialy-bounded-sized) witness w

SV 2025 The Cryptographic Zoo EPFL 44 / 529

Easy Problems

P problems:
class of problems which can be solved by a polynomially
bounded algorithm
• primality:

given an integer, decide if it is prime

SV 2025 The Cryptographic Zoo EPFL 45 / 529

Hard Problems

• NP-hard problems:
class of problems such that if we can solve them in
polynomial time then we can solve all NP ones
• factoring problem:

given an integer generation algorithm, the problem is to
find a non-trivial factor of a number generated by this
algorithm
(not known NP-hard but still hard)
• discrete logarithm problem:

given a group generated by some g in which operations
are computable in polynomial time, given y , find x such
that y = gx

(not known NP-hard but still hard)

SV 2025 The Cryptographic Zoo EPFL 46 / 529

Non-Polynomial Algorithms

best algorithms so far:

• NFS factoring (factoring n) e
O
(
(ln n)

1
3 (ln ln n)

2
3

)

• ECM factoring (find a small factor p of n) eO(
√

ln p ln ln p)

• GNFS (discrete logarithm in Z∗p): same as NFS

• Index calculus (discrete logarithm in Z∗p) eO(
√

ln p ln ln p)

SV 2025 The Cryptographic Zoo EPFL 47 / 529

Turing Reduction
Oracle: Boolean function which says if a word is in a given

language. The oracle is connected to a query tape
which includes a finite number of non-blank cells.

Oracle Turing machine: Turing machine with distinguished
query state and query tape

Turing reduction: a language L1 reduces to a language L2 if
there exists a polynomial deterministic oracle
Turing machine which recognizes L1 when
plugged on an oracle L2.

y - ∈ L1? - yes/no

x1, . . . , xq
�	

yes/no
∈ L2?

SV 2025 The Cryptographic Zoo EPFL 48 / 529

Turing Reduction

y - ∈ L1? - yes/no

x1, . . . , xq

�	

yes/no

∈ L2?

• solving L2 implies solving L1

• L1 is hard =⇒ L2 is hard

SV 2025 The Cryptographic Zoo EPFL 49 / 529

Conclusion

• a menagery of cryptographic primitives:
encryption, MAC, commitment, key agreement, signature
• a math toolbox:

number theory, probability theory
• an algorithmic toolbox:

big number calculation, generic algorithms
• a complexity theory toolbox:

hard problem, reduction

SV 2025 The Cryptographic Zoo EPFL 50 / 529

References

• Vaudenay.
A Classical Introduction to Cryptography — Applications
for Communications Security.
Springer. 2005.
• Menezes-van Oorschot-Vanstone.

Handbook of Applied Cryptography.
CRC. 1997. http://www.cacr.math.uwaterloo.ca/hac/
• Shoup.

A Computational Introduction to Number Theory and
Algebra.
Cambridge University Press. 2005.
http://shoup.net/ntb

SV 2025 The Cryptographic Zoo EPFL 51 / 529

http://www.cacr.math.uwaterloo.ca/hac/
http://shoup.net/ntb

Train Yourself

• variant of collision search: midterm exam 2015–16 ex2

SV 2025 The Cryptographic Zoo EPFL 52 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security

SV 2025 Cryptographic Security Models EPFL 57 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models
Security Definitions
The Game Proof Methodology
RSA Security
Rabin Cryptosystem
Diffie-Hellman Security
ElGamal Security

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security
SV 2025 Cryptographic Security Models EPFL 58 / 529

Block Cipher

Definition

A block cipher is a tuple ({0, 1}k(s),Ds,Enc,Dec) with a key
domain {0, 1}k(s), a plaintext domain Ds = {0, 1}n(s), and two
“efficient” deterministic algorithms Enc and Dec.
It is such that

∀s ∀K ∈ {0, 1}k(s) ∀X ∈ Ds

{
Decs(K ,Encs(K ,X)) = X
Encs(K ,X) ∈ Ds

efficient = polynomially bounded in terms of s
(s is often implicit in notations)

SV 2025 Cryptographic Security Models EPFL 59 / 529

Symmetric Encryption

Definition
A (nonce-based, variable-length, length-preserving) symmetric
encryption scheme is a tuple ({0, 1}k ,D,N ,Enc,Dec) with a key
domain {0, 1}k , a plaintext domain D = {X ∈ {0, 1}∗; |X | ∈ L}, a
nonce domain N , and two polynomially bounded deterministic
algorithms Enc and Dec.
It is such that

∀K ∈ {0, 1}k ∀X ∈ D ∀N ∈ N
{

Dec(K ,N,Enc(K ,N,X)) = X
|Enc(K ,N,X)| = |X |

N is supposed to be used only once for encryption
random nonce (beware of random repetitions), counter, sent in
clear or synchronized

SV 2025 Cryptographic Security Models EPFL 60 / 529

Security against Key Recovery

Definition
A symmetric encryption scheme ({0, 1}k ,D,N ,Enc,Dec) is secure
against key recovery under chosen plaintext attacks (CPA) if for
any PPT algorithm A, the advantage Adv is negligible.

Adv = Pr[game returns 1]

Game
1: K $←− {0, 1}k

2: Used← ∅
3: AOEnc → K ′

4: return 1K=K ′

Oracle OEnc(N,X):
5: if N ∈ Used then return ⊥ ▷ nonce-respecting: cannot reuse N
6: Used← Used ∪ {N}
7: return Enc(K ,N,X)

SV 2025 Cryptographic Security Models EPFL 61 / 529

Adaptive Security against Key Recovery

Definition
A symmetric encryption scheme ({0, 1}k ,D,N ,Enc,Dec) is secure
against key recovery under chosen plaintext/ciphertext attacks
(CPCA) if for any PPT algorithm A, the advantage Adv is negligible.

Adv = Pr[game returns 1]

Game
1: K $←− {0, 1}k

2: Used← ∅
3: AOEnc,ODec → K ′

4: return 1K=K ′

Oracle OEnc(N,X):
5: if N ∈ Used then return ⊥
6: Used← Used ∪ {N}
7: return Enc(K ,N,X)

Oracle ODec(N,Y):
1: return Dec(K ,N,Y)

SV 2025 Cryptographic Security Models EPFL 62 / 529

Chosen Ciphertext Security: Motivation

• decryption device can be a freely available black box
• decryption device takes action after receiving external info

receive from
outside world

�retrieve

?
decrypt

- action - send out

SV 2025 Cryptographic Security Models EPFL 63 / 529

CPCA Security is Stronger than CPA Security

• assume we have CPCA security
• to prove CPA security, consider a CPA adversary A
• we define a CPCA adversary B = A

(same adversary who just never use decryption queries)
• B and A have the same advantage
• since the one of B is negligible, the one of A is as well

CPA-breaking =⇒ CPCA-breaking
CPCA-secure =⇒ CPA-secure

SV 2025 Cryptographic Security Models EPFL 64 / 529

Not Good Enough Security
Theorem
We define
• Enc(K ,N,X) = X
• Dec(K ,N,Y) = Y
• k = s

This makes a correct symmetric encryption scheme which is
KR-CPCA secure.

Proof. (details on next slide)
• correctness is trivial
• take A playing the CPCA game
• reduce to B not using the oracle with same advantage

simulate A
simulate ODec(N,Y) = Y
simulate OEnc by simulating Enc(K ,N,X) = X
• the advantage of B must be 2−s

SV 2025 Cryptographic Security Models EPFL 65 / 529

Not Good Enough Security — Proof
Γ1:

1: K $←− {0, 1}k

2: Used← ∅
3: AOEnc,ODec → K ′
4: return 1K=K ′

Oracle OEnc(N,X):
5: if N ∈ Used then return ⊥
6: Used← Used ∪ {N}
7: return Enc(K ,N,X)

Oracle ODec(N,Y):
8: return Dec(K ,N,Y)

→

Γ2:

1: K $←− {0, 1}k

2: Used← ∅
3: AOEnc,ODec → K ′
4: return 1K=K ′

Oracle OEnc(N,X):
5: if N ∈ Used then return ⊥
6: Used← Used ∪ {N}
7: return X

Oracle ODec(N,Y):
8: return Y

↓

• K and K ′ independent
• K is uniform
• Pr[K = K ′] = 2−k

←

Γ3:

1: K $←− {0, 1}k

2: B → K ′
3: return 1K=K ′

Pr[Γ1 → 1] = Pr[Γ2 → 1] = Pr[Γ3 → 1] = 2−k

SV 2025 Cryptographic Security Models EPFL 66 / 529

Security against Decryption

Definition
A symmetric encryption scheme ({0, 1}k ,D,N ,Enc,Dec) is secure
against decryption under CPA resp. CPCA if for any PPT algorithm
A, the advantage Adv is negligible.

Adv = Pr[game returns 1]

Game
1: K $←− {0, 1}k

2: X0
$←− D, N0

$←− N
3: Y0 ← Enc(K ,N0,X0)
4: Used← {N0}
5: AOEnc,ODec(N0,Y0)→ X
6: return 1X=X0

Oracle OEnc(N,X):
1: if N ∈ Used then return ⊥
2: Used← Used ∪ {N}
3: return Enc(K ,N,X)

Oracle ODec(N,Y):
4: if (N,Y) = (N0,Y0) then re-

turn ⊥
5: return Dec(K ,N,Y)

SV 2025 Cryptographic Security Models EPFL 67 / 529

Decryption Security is Stronger than Key
Recovery Security

• (CPA-security only for simplicity)
• we take a scheme without nonce (for the moment)
• assume we have decryption security and

(#N)−1 = negl(s)
• to prove key-recovery security, consider a key recovery

adversary A
• we define a decryption adversary B as follows
B(N0,Y0) :

1: run A → κ
(if A queries N0 then abort) ▷ happens with Pr ≤ q

#N
2: compute X = Dec(κ,N0, ,Y0)
3: return X

• Pr[B wins] ≥ Pr[A wins]− q
#N

• we know that Pr[B wins] = negl(s) (due to assumption)
• hence, Pr[A wins] = negl(s)

SV 2025 Cryptographic Security Models EPFL 68 / 529

Detail

• queried nonces by A: N1, . . . ,Nq

• union bound:

Pr[abort] = Pr[N0 = N1 ∨ · · ·N0 = Nq]

≤ Pr[N0 = N1] + · · ·Pr[N0 = Nq]

• Pr[N0 = Ni] =
1

#N
• Pr[B wins] + Pr[abort] ≥ Pr[A wins]

SV 2025 Cryptographic Security Models EPFL 69 / 529

Note: No Decryption Security over Small Domains

• Consider
A(N0,Y0) :

1: pick X $←− D
2: return X

• The advantage is 1
#D

• Therefore, if we have decryption security, then 1
#D = negl

SV 2025 Cryptographic Security Models EPFL 70 / 529

Not Good Enough Security

• some parts of the plaintext may be more private than
others
how about a cipher letting half of the plaintext in clear and
strongly encrypting the other half?
it would be secure against decryption

Enc(K ,N,X) = Enc0(K ,N, lefthalf(X))‖righthalf(X)

Dec(K ,N,Y) = Dec0(K ,N, lefthalf(Y))‖righthalf(Y)

({0, 1}k ,D,N ,Enc0,Dec0) Dec-secure
⇓

({0, 1}k ,D2,N ,Enc,Dec) Dec-secure

SV 2025 Cryptographic Security Models EPFL 71 / 529

The Ideal Cipher

• the ideal block cipher: (Perm({0, 1}n), {0, 1}n,Enc,Dec)

Enc(Π,X) = Π(X) Dec(Π,Y) = Π−1(Y)

• the “ideal cipher”: taking K random is equivalent to picking
a random length-preserving permutation ΠN for every N

Enc(K ,N,X) = ΠN(X)

Dec(K ,N,Y) = Π−1
N (Y)

• security would mean that we cannot tell the real cipher and
the ideal one apart from a black-box usage

SV 2025 Cryptographic Security Models EPFL 72 / 529

Security against Distinguisher (Real or Ideal)

Definition
A symmetric encryption scheme ({0, 1}k ,D,N ,Enc,Dec) is secure
against distinguishers under CPA resp. CPCA if for any PPT
algorithm A, the advantage Adv is negligible.

Adv = Pr[Γ1 returns 1]− Pr[Γ0 returns 1]

Game Γb

1: K $←− {0, 1}k

2: for every N, pick a length-
preserving permutation ΠN
over D

3: Used← ∅
4: AOEnc,ODec → z
5: return z

Oracle OEnc(N,X):
1: if N ∈ Used then return ⊥
2: Used← Used ∪ {N}
3: if b = 0 then return ΠN(X)
4: return Enc(K ,N,X)

Oracle ODec(N,Y):
5: if b = 0 then return Π−1

N (Y)
6: return Dec(K ,N,Y)

SV 2025 Cryptographic Security Models EPFL 73 / 529

Distinguisher Security is Stronger than Decryption
Security

• assume we have distinguisher security and 1
#D = negl

• to prove decryption security, consider a decryption
adversary A
• we define a distinguisher B as follows

B :
1: X0

$←− D, N0
$←− N

2: Y0 ← OEnc(N0,X0)
3: run
AOEnc,ODec′(N0,Y0)→ X

4: return 1X0=X

ODec′(N,Y) :
1: if (N,Y) = (N0,Y0) then

return ⊥
2: return ODec(N,Y)

• Pr[ΓB1 → 1] = Pr[ΓDec(A, real cipher)→ 1] = AdvA
• Pr[ΓB0 → 1] = Pr[ΓDec(A, ideal cipher)→ 1]
• Pr[ΓDec(A, ideal cipher)→ 1] = negl (see next slide)
• AdvB = negl
• hence, AdvA = negl

SV 2025 Cryptographic Security Models EPFL 74 / 529

Detail in the Ideal Cipher Case
(no nonce for simplicity, CPA for simplicity)

Pr[AΠ(·)(Π(X)) = X]

= Pr[AΠ(·)(Y) = Π−1(Y)] (where Y is random)

(wonder if Y is answered to any query by the oracle or not)

= Pr[AΠ(·)(Y) = Π−1(Y),Y not answered] + Pr[AΠ(·)(Y) = Π−1(Y),Y answered]

≤ Pr[AΠ(·)(Y) = Π−1(Y),Y not answered] + Pr[Y answered]

= Pr[AΠ(·)(Y) = Π−1(Y)|Y not answered] Pr[Y not answered] + Pr[Y answered]

≤ Pr[AΠ(·)(Y) = Π−1(Y)|Y not answered] + Pr[Y answered]

≤
1

#D − q
+ Pr[Y answered]

=
1

#D − q
+ Pr

[q∨
i=1

Y answered to i th fresh query

]

≤
1

#D − q
+

q∑
i=1

Pr[Y answered to i th fresh query]

=
1

#D − q
+

q−1∑
i=0

1
#D − i

≤
q + 1

#D − q
≤ negl(s)

SV 2025 Cryptographic Security Models EPFL 75 / 529

Security Notions

key recovery decryption distinguisher
CPA weakest security

CPCA strongest security

• if we can recover the key, we can decrypt
• if we can decrypt, we can tell ciphers aparts
• if we can break without chosen ciphertext, we can also

break with

SV 2025 Cryptographic Security Models EPFL 76 / 529

Note: Another Distinguisher Style

Game Γ′:
1: pick b ∈ {0, 1}
2: run Γb → z
3: return 1b=z

AdvΓ
′
= Pr[Γ′ → 1]− 1

2

AdvΓ
′

= Pr[Γ′ → 1]− 1
2

= Pr[Γ′ → 1 ∧ b = 1] + Pr[Γ′ → 1 ∧ b = 0]− 1
2

= Pr[b = 1] Pr[Γ1 → 1] + Pr[b = 0] Pr[Γ0 → 0]− 1
2

=
1
2
Pr[Γ1 → 1] +

1
2
(1− Pr[Γ0 → 1])− 1

2

=
1
2

AdvΓ

SV 2025 Cryptographic Security Models EPFL 77 / 529

MAC

(most common construction)

Definition
A message authentication code is a tuple
({0, 1}k ,D, {0, 1}τ ,MAC) with a key domain {0, 1}k , a
message domain D ⊆ {0, 1}∗, an output domain {0, 1}τ , and
one polynomially bounded deterministic algorithm MAC
implementing a function

MAC : {0, 1}k ×D −→ {0, 1}τ
(K ,X) 7−→ MACK (X)

SV 2025 Cryptographic Security Models EPFL 78 / 529

Using MAC for Authentication

• usage:

AuthK (X) = X‖MACK (X)

CheckK (X‖t) = (X , 1t=MACK (X))

• correctness:

CheckK (AuthK (X)) = (X , 1)

• security: notion of authentication and integrity

SV 2025 Cryptographic Security Models EPFL 79 / 529

Security against Key Recovery

Definition

A message authentication code ({0, 1}k ,D, {0, 1}τ ,MAC) is
secure against key recovery under chosen message
attacks if for any PPT algorithm A, the advantage Adv is
negligible.

Adv = Pr[game returns 1]

Game
1: K $←− {0, 1}k
2: AOMac → K ′

3: return 1K=K ′

Oracle OMac(X):
4: return MAC(K ,X)

SV 2025 Cryptographic Security Models EPFL 80 / 529

Security against Forgery

Definition

A message authentication code ({0, 1}k ,D, {0, 1}τ ,MAC) is
secure against forgery under chosen message attacks if for
any PPT algorithm A, the advantage Adv is negligible.

Adv = Pr[game returns 1]

Game
1: K $←− {0, 1}k
2: Queried← ∅
3: AOMac → (X , t)
4: if X ∈ Queried then

return 0
5: return 1MAC(K ,X)=t

Oracle OMac(X):
6: Queried← Queried ∪ {X}
7: return MAC(K ,X)

SV 2025 Cryptographic Security Models EPFL 81 / 529

Existential vs Universal

• universal forgery:
adversary is
able to forge a valid MAC/signature for an arbitrary message

Game
1: K $←− {0, 1}k

2: X0
$←− D

3: AOMac(X0)→ t
4: return 1MAC(K ,X0)=t

Oracle OMac(X):
1: if X = X0 then return ⊥
2: return MAC(K ,X)

• existential forgery:
adversary is able to forge a valid MAC/signature for a new
message of his choice (previous slide)

SV 2025 Cryptographic Security Models EPFL 82 / 529

Security against Distinguisher (PRF)
Definition

A message authentication code ({0, 1}k ,D, {0, 1}τ ,F) is a
pseudorandom function (PRF) if for any PPT algorithm A, the
advantage Adv is negligible.

Adv = Pr[Γ1 returns 1]− Pr[Γ0 returns 1]

Game Γb

1: K $←− {0, 1}k
2: pick F ∗ : D → {0, 1}τ
3: AO → z
4: return z

Oracle O(X):
1: if b = 0 then return

F ∗(X)
2: return F (K ,X)

Note: when talking about MAC, security usually refers to
unforgeability. Otherwise, we talk about PRF.
(for comparison of these notions: see midterm exam 2016–17
ex2)

SV 2025 Cryptographic Security Models EPFL 83 / 529

Security Relations

(Exercise: prove it like what was done for encryption!)
• EF-secure =⇒ UF-secure =⇒ key recovery-secure
• (PRF ∧ 2−τ = negl) =⇒ EF-secure

SV 2025 Cryptographic Security Models EPFL 84 / 529

Key Agreement Protocol

• components:
domain parameters: security parameter s, domain for K
two characters: Alice and Bob
one protocol (two probabilistic algorithms): A and B with no
common secret input; A→ KA, B → KB

• functionality:
running A(1s; ra) and B(1s; rb) together lead to the same
output KA = KB = K on both sides
• security: (against passive attacks)
→ next slide

SV 2025 Cryptographic Security Models EPFL 85 / 529

Security of Key Agreement Protocol

A(1s; ra)←→ B(1s; rb)

should protect against passive attacks:

• key recovery: (next slide)

• key distinguisher: (next slide)

active attacks:

• man-in-the-middle: A←→ E gives KA and E ←→ B gives KB

(always possible, unavoidable)

• more devastating: A←→ E ←→ B making KA = KB known by E
(should be avoided)

SV 2025 Cryptographic Security Models EPFL 86 / 529

Security against Passive Attacks
transcript = exchanges in A(1s; ra)↔ B(1s; rb)
• key recovery: Adv = Pr[Game returns 1]

Game
1: pick ra, rb
2: execute A(1s; ra)↔ B(1s; rb)
3: get transcript and K
4: run A(1s, transcript) $−→ K ′

5: return 1K=K ′

• key distinguisher:
Adv = Pr[Γ1 returns 1]− Pr[Γ0 returns 1]
Game Γb

1: pick ra, rb
2: execute A(1s; ra)↔ B(1s; rb)
3: get transcript and K1
4: pick K0 of same length as K1 at random
5: run A(1s, transcript,Kb)

$−→ z
6: return z

SV 2025 Cryptographic Security Models EPFL 87 / 529

PKC

Definition
A public-key cryptosystem is a tuple (Gen,M,Enc,Dec) with
a plaintext domainM and three polynomially bounded
algorithms Gen, Enc, and Dec. The algorithm Dec is
deterministic and outputs either something inM or an error ⊥.
It is such that

∀pt ∈M Pr
rg ,re

[Dec(sk,Enc(pk, pt; re)) = pt] = 1

where (pk, sk) = Gen(1s; rg).

SV 2025 Cryptographic Security Models EPFL 88 / 529

Threat Models

Adversary capability:
• CPA: encrypt chosen plaintexts (always: enc key is public)
• CCA: access to a decryption oracle

Adversary goal:
• Key recovery (KR): recover the secret key
• Decryption (OW): decrypt a random ciphertext
• Information recovery: infer a given bit of information on

the plaintext given a random ciphertext
• Distinguishability (IND): recognize whether a ciphertext

encrypts pt0 or pt1 for some pt0 and pt1 of her choice

SV 2025 Cryptographic Security Models EPFL 89 / 529

Hard Core Bit

Definition
Let R be a predicate over a domainM. We say that R is a
hard-core bit for a PKC (Gen,M,Enc,Dec) if for any PPT
adversary A, the advantage Adv is negligible.

Adv = 2Pr[game returns 1]− 1

Game
1: Gen $−→ (pk, sk)

2: pt $←−M
3: ct $←− Enc(pk, pt)

4: A(pk, ct) $−→ z
5: return 1z=R(pt)

SV 2025 Cryptographic Security Models EPFL 90 / 529

Security against Distinguisher (Left or Right)

Definition
A PKC (Gen,M,Enc,Dec) is secure under chosen plaintext
attacks (IND-CPA-secure) if for any interactive PPT process
(A1,A2), the advantage Adv is negligible.

Adv = Pr[Γ1 returns 1]− Pr[Γ0 returns 1]

Game Γb

1: Gen $−→ (pk, sk)

2: A1(pk) $−→ (pt0, pt1, st)
3: if |pt0| 6= |pt1| then return

0
4: ct $←− Enc(pk, ptb)

5: A2(st, ct) $−→ z
6: return z

SV 2025 Cryptographic Security Models EPFL 91 / 529

Remark: Two Styles of Interactive Adversaries

Two algorithms with state
variable

Game Γb

1: Gen $−→ (pk, sk)

2: A1(pk) $−→ (pt0, pt1, st)
3: if |pt0| 6= |pt1| then return

0
4: ct $←− Enc(pk, ptb)

5: A2(st, ct) $−→ z
6: return z

Deterministic algorithm with
variable number of inputs

Game Γb
1: pick ρ at random
2: Gen $−→ (pk, sk)
3: A(pk; ρ)→ (pt0, pt1)
4: if |pt0| 6= |pt1| then return

0
5: ct $←− Enc(pk, ptb)
6: A(pk, ct; ρ)→ z
7: return z

SV 2025 Cryptographic Security Models EPFL 92 / 529

Problem with Deterministic Cryptosystems

• IND-CPA is a modern notion of security
• problem: if Enc is deterministic, then PKC is insecure!
• example: plain RSA not IND-CPA secure (since

deterministic)
• modern PKC are probabilistic
• example: ElGamal cryptosystem (and variants) is IND-CPA

secure

SV 2025 Cryptographic Security Models EPFL 93 / 529

Comments on Semantic Security

• Semantic security ≈ all bits are hard core bits
• Semantic security⇔ IND-CPA security

SV 2025 Cryptographic Security Models EPFL 94 / 529

Chosen Ciphertext Security

• Adversary in “lunch time” attack: CCA1
Adversary can submit chosen ciphertexts before choosing
pt0 and pt1.
→ IND-CCA1

• CCA (aka CCA2) Adversary: he can submit chosen
ciphertexts even after (except ct)
→ IND-CCA

SV 2025 Cryptographic Security Models EPFL 95 / 529

Adaptive Security against Distinguisher

Definition
A PKC (Gen,M,Enc,Dec) is secure under chosen
ciphertext attacks (IND-CCA-secure) if for any interactive PPT
process (A1,A2), the advantage Adv is negligible.

Adv = Pr[Γ1 returns 1]− Pr[Γ0 returns 1]

Game Γb

1: Gen $−→ (pk, sk)

2: AODec1
1 (pk) $−→ (pt0, pt1, st)

3: if |pt0| 6= |pt1| then return
0

4: ct∗ $←− Enc(pk, ptb)

5: AODec2
2 (st, ct∗) $−→ z

6: return z

Oracle ODec1(ct):
7: return Dec(sk, ct)

Oracle ODec2(ct):
8: if ct = ct∗ then return ⊥
9: return Dec(sk, ct)

SV 2025 Cryptographic Security Models EPFL 96 / 529

Non-Malleability

Definition (Malleability (intuitively))
There is an R, a samplable distribution D, and an adversary
who given ct = Enc(pt) for some unknown random pt (sampled
following D) can forge ct′ such that R(pt,Dec(ct′)) “in a
nontrivial way”.

Example: in a regular stream cipher, if R(a, b) = 1a⊕b=δ and D
is any distribution, an adversary can compute
Dec(ct′) = Dec(ct)⊕ δ so it is malleable

Theorem
IND-CCA security and non-malleability under chosen ciphertext
attacks are equivalent.

SV 2025 Cryptographic Security Models EPFL 97 / 529

Plaintext Awareness

“For every A, there exists E such that if A can forge a valid
ciphertext ct, then E with the same view gives its decryption.”

There exist several flavors of PA-security

SV 2025 Cryptographic Security Models EPFL 98 / 529

Security Notions

key recovery decryption distinguisher
CPA weakest security
CCA strongest security

• if we can recover the key, we can decrypt
• if we can decrypt, we can tell ciphers apart
• if we can break without chosen ciphertext, we can also

break with

SV 2025 Cryptographic Security Models EPFL 99 / 529

Signature Scheme

Definition
A digital signature scheme is a tuple (Gen,D,Sig,Ver) with a
message domain D ⊆ {0, 1}∗ and three PPT algorithms Gen,
Sig, and Ver. The algorithm Ver is deterministic and outputs 0
(reject) or 1 (accept). It is such that

∀X ∈ D Pr
rg ,rs

[Ver(pk,X ,Sig(sk,X ; rs)) = 1] = 1

where (pk, sk) = Gen(1s; rg).

(could also define signature schemes with message recovery)

SV 2025 Cryptographic Security Models EPFL 100 / 529

Threat Models

• Total break: an adversary can recover the secret key
• Universal forgery: an adversary can forge the signature

of any or a random message
• Existential forgery: an adversary can forge a valid

message-signature pair
(same as for MAC)
Adversary model: may intercept signatures (known message
attack), may access to a signing oracle (chosen message
attack), ...

SV 2025 Cryptographic Security Models EPFL 101 / 529

EF-CMA Security

Definition
A digital signature scheme (Gen,D,Sig,Ver) is secure against
existential forgery under chosen message attacks
(EF-CMA) if for any PPT A, the advantage Adv is negligible.

Adv = Pr[game returns 1]

Game
1: Gen $−→ (pk, sk)
2: Queries← ∅
3: AOSig(pk)→ (X , σ)
4: if X ∈ Queries then

return 0
5: return 1Ver(pk,X ,σ)

Oracle OSig(X):
6: σ ← Sig(sk,X)
7: Queries← Queries ∪ {X}
8: return σ

SV 2025 Cryptographic Security Models EPFL 102 / 529

(Strong) EF-CMA Security

Definition
A digital signature scheme (Gen,D,Sig,Ver) is strongly
secure against existential forgery under chosen message
attacks (strong EF-CMA) if for any PPT A, the advantage Adv
is negligible.

Adv = Pr[game returns 1]

Game
1: Gen $−→ (pk, sk)
2: Queries← ∅
3: AOSig(pk)→ (X , σ)
4: if (X , σ) ∈ Queries then

return 0
5: return 1Ver(pk,X ,σ)

Oracle OSig(X):
6: σ ← Sig(sk,X)
7: Queries←

Queries ∪ {(X , σ)}
8: return σ

SV 2025 Cryptographic Security Models EPFL 103 / 529

Security Models

Universal Forgery (UF): X is selected at random by the game
No Message Attack (0MA): no OSig available
Known Message Attack (KMA): input to OSig is random

adversary power
0MA KMA CMA

total break weakest
model

UF
EF (default)

strong EF strongest
model

Note: stronger security means security against weaker
attacks...

SV 2025 Cryptographic Security Models EPFL 104 / 529

Exercise

write formal definitions for the security notions of other
primitives and prove implications between them

SV 2025 Cryptographic Security Models EPFL 105 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models
Security Definitions
The Game Proof Methodology
RSA Security
Rabin Cryptosystem
Diffie-Hellman Security
ElGamal Security

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security
SV 2025 Cryptographic Security Models EPFL 106 / 529

Methodology

• security properties are defined by a game
security parameter, different steps, rules, outcome
• assumptions: game runs in polynomial time
• adversary: strategy for the player of the game
• advantage: difference of the outcome of the adversary

and of a trivial one
• security means that every adversary has negligible

advantage

SV 2025 Cryptographic Security Models EPFL 107 / 529

Proof Methodology
build a sequence of games and adversary compilers so that the
first game is the one from the security definition and the last
one is a trivial one and such that the difference between the
advantages are negligible

game adversary
Γ1 ← A
↓ ↓ Pr[Γ1(A) = 1]− Pr[Γ2(C2(A)) = 1] ≤ ε2

Γ2 ← C2(A)
...

...
...

Γn−1 ← Cn−1(A)
↓ ↓ Pr[Γn−1(Cn−1(A)) = 1]− Pr[Γn(Cn(A)) = 1] ≤ εn

Γn ← Cn(A)

ε2 + · · ·+ εn = negl and Pr[Γn(Cn(A)) = 1] = negl

SV 2025 Cryptographic Security Models EPFL 108 / 529

Transition Tool 1: Indistinguishability

• consider a game Γ(X ,A) in which we use a r.v. X
• consider X and Y with indistinguishable distributions
• since X and Y are indistinguishable and Γ(·,A) is

computable in polynomial time,

Pr[Γ(X ,A) = 1]− Pr[Γ(Y ,A) = 1] = negl

SV 2025 Cryptographic Security Models EPFL 109 / 529

Transition Tool 2: Difference Lemma
• consider a game Γ
• F : a (“failure”) event in Γ
• (Γ becomes “simpler”

when ¬F holds)
• define Γ′ like Γ with ¬F as

an extra winning condition

Γ′(A):
1: Γ(A)→ z (check if F

holds)
2: return 1z=1∧¬F

Lemma

|Pr[Γ(A)→ 1]− Pr[Γ′(A)→ 1]| ≤ Pr[F]

Proof.

Pr[Γ(A)→ 1]− Pr[Γ′(A)→ 1]
= Pr[Γ(A)→ 1,F] + Pr[Γ(A)→ 1,¬F]− Pr[Γ′(A)→ 1,¬F]

= Pr[Γ(A)→ 1,F]

≤ Pr[F]

SV 2025 Cryptographic Security Models EPFL 110 / 529

Transition Tool 3: Bridging Step

• consider a game Γ

• consider a game variant Γ′ and a compiler C such that
Γ(A) and Γ′(C(A)) produce the same distribution

Pr[Γ(A)→ 1] = Pr[Γ′(C(A))→ 1]

Γ′ is a kind of rewriting of Γ

SV 2025 Cryptographic Security Models EPFL 111 / 529

Transition Tool 3: Bridging Step Examples

• case 0: permute two operations which are independent
• case 1: move operations between Γ and A without

affecting Γ(A)
• case 2: replace a random oracle by a “gnome” performing

the lazy sampling technique:
O(x): ▷ uses an associative array T

1: if T (x) is defined then
2: y ← T (x)
3: else
4: pick y at random
5: T (x)← y
6: end if
7: return y

SV 2025 Cryptographic Security Models EPFL 112 / 529

Double Bridge

bridge Γβ(A) to Γ′β(C(A))

Γ0(A):
1: ...
2: return b

bridge
⌢

Γ′0(C(A)):
1: γ0 → z
2: C(A)(z)→ b′
3: return b′

tool1
≈

Γ′1(C(A)):
1: γ1 → z
2: C(A)(z)→ b′
3: return b′

bridge
⌢

Γ1(A):
1: ...
2: return b

Γ0
bridge
⌢ Γ′0

l distinguisher between γ0 and γ1 (tool 1)

Γ1
bridge
⌢ Γ′1

SV 2025 Cryptographic Security Models EPFL 113 / 529

IND$-CPA: Real-or-Random IND-CPA Game

Adversary Game Γb
public key←−−−−−−−−−−−−−−−−−−−−−− generate keys

select pt0
pt0−−−−−−−−−−−−−−−−−−−−−−→ pt1 = random
ct←−−−−−−−−−−−−−−−−−−−−−− ct = Enc(ptb)

select z z−−−−−−−−−−−−−−−−−−−−−−→ return z

Game Γb

1: Gen $−→ (pk, sk)

2: A1(pk) $−→ (pt0, st)
3: pick pt1 s.t. |pt0| = |pt1|
4: ct $←− Enc(pk, ptb)

5: A2(st, ct) $−→ z
6: return z

A works in two steps: A1, A2
a state variable st is kept

Adv = Pr[Γ1 → 1]− Pr[Γ0 → 1]

SV 2025 Cryptographic Security Models EPFL 114 / 529

Equivalence with IND-CPA Game — i

IND-CPA secure =⇒ IND$-CPA secure:

an adversary A playing the IND$-CPA game with advantage ε
can be transformed into an adversary A′ playing the IND-CPA
game with advantage ε

A′
A IND-CPA game (b)

pk←−−− pk←−−− select pk
pt0−−−→ pt1 = random

pt0,pt1−−−→
ct←−−− ct←−−− ct = Enc(ptb)
z−−−→ z−−−→

AdvA′ = Pr
b=1

[z = 1]− Pr
b=0

[z = 1] = AdvA = ε

SV 2025 Cryptographic Security Models EPFL 115 / 529

Equivalence with IND-CPA Game — i (bis)

• Γb: A playing IND$-CPA
• Γ′b: A′ playing IND-CPA
• Γb(A) and Γ′b(A

′) are identical (bridge)
• actually, there is a double-bridge and IND-CPA security

Γ0
bridge
⌢ Γ′0

l indistinguishable due to IND-CPA security

Γ1
bridge
⌢ Γ′1

SV 2025 Cryptographic Security Models EPFL 116 / 529

Equivalence with IND-CPA Game — i (ter)

IND$-CPAb(A) IND-CPAb(A′)

Pr





Gen→ (pk, sk)
A1(pk)→ (pt0, st)
pick pt1
Enc(pk, pt0)→ ct
A2(st, ct)→ z
return z

→ 1


bridge
= Pr





Gen→ (pk, sk)
A1(pk)→ (pt0, st)
pick pt1
Enc(pk, pt0)→ ct
A2(st, ct)→ z
return z

→ 1



≈ (IND-CPA)

Pr





Gen→ (pk, sk)
A1(pk)→ (pt0, st)
pick pt1
Enc(pk, pt1)→ ct
A2(st, ct)→ z
return z

→ 1


bridge
= Pr





Gen→ (pk, sk)
A1(pk)→ (pt0, st)
pick pt1
Enc(pk, pt1)→ ct
A2(st, ct)→ z
return z

→ 1



SV 2025 Cryptographic Security Models EPFL 117 / 529

Equivalence with IND-CPA Game — ii
IND$-CPA secure =⇒ IND-CPA secure:

an adversary A playing the IND-CPA game with advantage ε
can be transformed into an adversary A′ playing the
real-or-random game with advantage ε

2

A′
A IND$-CPA challenger (b)

pk←−−− pk←−−− select pk
pt0,pt1−−−→ flip β

pt′0=ptβ−−−→
pt′1 = random

ct←−−− ct←−−− ct = Enc(pt′b)
z−−−→ z⊕β−−−→ win if b = z ⊕ β

AdvA′ = · · · =
ε

2
SV 2025 Cryptographic Security Models EPFL 118 / 529

Equivalence with IND-CPA Game — ii (bis)

IND$-CPAb=1(A′)

Pr





Gen→ (pk, sk)
A1(pk)→ (pt0, pt1, st)
pick β
pt′0 ← ptβ
pick pt′1
Enc(pk, pt′1)→ ct
A2(st, ct)→ z
z ′ ← z ⊕ β
return z ′


→ 1


bridge
= Pr





Gen→ (pk, sk)
A1(pk)→ (pt0, pt1, st)
pick pt′1
Enc(pk, pt′1)→ ct
A2(st, ct)→ z
pick β
z ′ ← z ⊕ β
return z ′


→ 1


= 1

2

SV 2025 Cryptographic Security Models EPFL 119 / 529

Equivalence with IND-CPA Game — ii (ter)
IND$-CPAb=0(A′)

Pr





Gen→ (pk, sk)
A1(pk)→ (pt0, pt1, st)
pick β
pt′0 ← ptβ
pick pt′1
Enc(pk, pt′0)→ ct
A2(st, ct)→ z
z ′ ← z ⊕ β
return z ′


→ 1


=



1
2 Pr





Gen→ (pk, sk)
A1(pk)→ (pt0, pt1, st)
(β = 0)
Enc(pk, pt0)→ ct
A2(st, ct)→ z
return z

→ 1


+

1
2 Pr





Gen→ (pk, sk)
A1(pk)→ (pt0, pt1, st)
(β = 1)
Enc(pk, pt1)→ ct
A2(st, ct)→ z
return z ⊕ 1

→ 1



=
1
2
Pr[IND-CPA0(A)→ 1] +

1
2
Pr[IND-CPA1(A)→ 0]

=
1
2
Pr[IND-CPA0(A)→ 1] +

1
2
− 1

2
Pr[IND-CPA1(A)→ 1]

=
1
2
− 1

2
AdvA(IND-CPA)

SV 2025 Cryptographic Security Models EPFL 120 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models
Security Definitions
The Game Proof Methodology
RSA Security
Rabin Cryptosystem
Diffie-Hellman Security
ElGamal Security

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security
SV 2025 Cryptographic Security Models EPFL 121 / 529

Plain RSA Encryption

Generator

6Secret key d ,NPublic key e,N 6 AUTHENTICATION
INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

N = pq
φ(N) = (p − 1)(q − 1)

1 = gcd(e, φ(N))
d = e−1 mod φ(N)

6
?

x xe mod N y yd mod N

SV 2025 Cryptographic Security Models EPFL 122 / 529

Plain RSA Signature

Generator

6Secret key d ,N Public key e,N6AUTHENTICATION
INTEGRITY

-Message
x Sign -Signature

xd mod N
-

y Extract -
ye mod N

�
�

Adversary

N = pq
φ(N) = (p − 1)(q − 1)

1 = gcd(e, φ(N))
d = e−1 mod φ(N)

6
?

SV 2025 Cryptographic Security Models EPFL 123 / 529

RSA Problems

(implicit: Gen is the RSA key generation algorithm)

RSA Problem
Given (N, e) generated by Gen
and a random residue y ,
compute x such that
y = xe mod N:
Game

1: Gen(1s)
$−→ (N, e)

2: pick x ∈ ZN
3: y = xe mod N
4: A(N, e, y) $−→ z
5: return 1x=z

RSA Factoring
Factor N generated by Gen:
Game

1: Gen(1s)
$−→ N

2: A(N)
$−→ (p, q)

3: return 11<p,q<N,N=pq

RSA assumption: the RSA problem is hard

SV 2025 Cryptographic Security Models EPFL 124 / 529

Bit Security of Plain RSA

lsb(x): least significant bit of x (1 iff x mod N is odd)
lsbdec(y): least significant bit of the decryption of y

Theorem
If the RSA problem is hard, lsb(y) is a hard core bit:
recovering it is as hard as decrypting y.

(even approximations...)

SV 2025 Cryptographic Security Models EPFL 125 / 529

Reducing Decryption to lsbdec
Key trick: lsb(2i+1x mod N) = i th bit of the binary expansion of
x/N...
• we write a = k

2i N ≤ x < k+1
2i N = b

• start with k = 0 and i = 0
• increment i and find the bit β s.t. k replaced by 2k + β

• end up with a ≤ x < b with b − a ≤ 1

1: a← 0, b ← N
2: for i = 0 to blog2 Nc do
3: if lsbdec(2(i+1)ey mod N) = 1 then
4: a← (a + b)/2
5: else
6: b ← (a + b)/2
7: end if
8: end for
9: yield bac

SV 2025 Cryptographic Security Models EPFL 126 / 529

Not All Bits are Hard in Plain RSA

jacdec(y): Jacobi symbol of the decryption of y
jac(x): Jacobi symbol (x/N)

jacdec(y) =
(

yd mod N
N

)
=

(
yd

N

)
=

[(y
N

)]d
=

(y
N

)
which is easy to compute even without the factorization of N

Reminder: x 7→ (x/N) is an easy-to-compute homomorphism
from Z∗N to {−1,+1}.

SV 2025 Cryptographic Security Models EPFL 127 / 529

RSA Security

(seen in the previous lecture)
• key recovery is equivalent to factoring N

given N generated by Gen, factor N
• the decryption problem is the RSA problem

given (N, e) generated by Gen (e is coprime with φ(N))
and y ∈ ZN random, compute x such that xe mod N = y
(not known to be equivalent to factoring)
• not IND-CPA secure (deterministic)
• no OW-CCA security: Dec(y · ue mod N)/u = Dec(y)

SV 2025 Cryptographic Security Models EPFL 128 / 529

Strong RSA Problem

(implicit: Gen is the RSA key generation algorithm)

Strong RSA Problem
Given N generated by Gen and a random residue y , compute x
and e > 1 such that y = xe mod N:
Game

1: Gen(1s)
$−→ N

2: pick y ∈ ZN

3: A(N, y) $−→ (x , e)
4: return 1xe mod N=y ,e>1

Strong RSA assumption: the strong RSA problem is hard

SV 2025 Cryptographic Security Models EPFL 129 / 529

RSA-OAEP

ciphertext
?

Enc
?

00 maskedSeed maskedDB
?

⊕� MGF�

?

⊕-MGF-

?

?

seed
H(L) 0 · · · 01 M

?

message

SV 2025 Cryptographic Security Models EPFL 130 / 529

Security of RSA-OAEP

• Security results are far beyond this lecture
• They exist for the IND-CCA notion (in the random oracle

model, under the RSA assumption)
• Its significance was controversial

(The original proof was wrong.)

SV 2025 Cryptographic Security Models EPFL 131 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models
Security Definitions
The Game Proof Methodology
RSA Security
Rabin Cryptosystem
Diffie-Hellman Security
ElGamal Security

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security
SV 2025 Cryptographic Security Models EPFL 132 / 529

Plain Rabin Encryption

Generator

6Secret key p, qPublic key N 6 AUTHENTICATION
INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

p, q prime
N = pq

6
?

x x2 mod N y √
y mod N

SV 2025 Cryptographic Security Models EPFL 133 / 529

Ensuring Non-Ambiguity in the Decryption

- -
xRedundancy Encryption -

x2
-

y Decryption -
�

Adversary

• we add redundancy in the plaintext so that valid plaintexts
are sparse
• we make sure that no other square root has valid

redundancy
• we take the only expected square root with valid

redundancy
• we reject ciphertexts which fail to decrypt

SV 2025 Cryptographic Security Models EPFL 134 / 529

Rabin Security
(implicit: N is the product of two different large primes)

OW-CPA (Rabin Decryption)
Given N generated by Gen and
a random quadratic residue,
compute a square root:
Game

1: Gen(1s)
$−→ N

2: pick x ∈ ZN
3: y = x2 mod N
4: A(N, y) $−→ z
5: return 1z=x

KR-CPA (Rabin Key Recovery)
Factor N generated by Gen:
Game

1: Gen(1s)
$−→ N

2: A(N)
$−→ (p, q)

3: return 11<p<N,N=pq

decryption problem ⇐⇒ factorization problem
key recovery problem ⇐⇒ factorization problem

SV 2025 Cryptographic Security Models EPFL 135 / 529

Factoring Hard =⇒ OW-CPA Security
Game OW-CPA
1: Gen(1s)

$−→ N
2: pick x ∈ ZN
3: y ← x2 mod N

4: A(N, y) $−→ z
5: return 1z=x

→

Game Γ

1: Gen(1s)
$−→ N

2: pick x ∈ Z∗N
3: y ← x2 mod N

4: A(N, y) $−→ z
5: return 1z=x

↓

ε=Pr[x ̸∈ Z∗N] =
p+q−1

pq = negl

|Pr[OW-CPA → 1] − Pr[Γ →
1]| ≤ ε (difference lemma)

when z2 ≡ y , x is indep. uni-
form in SQRT(y) (4 elements)

Pr[Γ→ 1|z2 ≡ y] = 1
4

Pr[Fact→ 1|z2 ≡ y] = 1
2

Pr[Γ→ 1]
= Pr[Γ→ 1, z2 = y]
= 1

2 Pr[Fact→ 1, z2 = y]
≤ 1

2 Pr[Fact→ 1] = negl

Game Fact
1: Gen(1s)

$−→ N

2: B(N)
$−→ (p, q)

3: return 11<p<N,N=pq

B(N):
4: pick x ∈ Z∗N
5: y ← x2 mod N

6: A(N, y) $−→ z
7: p ← gcd(z − x ,N)
8: if p ∈ {1,N} then abort
9: q ← N/p
10: return (p, q)

SV 2025 Cryptographic Security Models EPFL 136 / 529

A KR-CCA Attack against Rabin

Game KR-CCA
1: Gen(1s)

$−→ sk,N

2: BODec(N)
$−→ (p, q)

3: return 1(p,q)=sk

B(N):
4: pick x ∈ Z∗N
5: y ← x2 mod N
6: ODec(y)→ z
7: p ← gcd(z − x ,N)
8: if p ∈ {1,N} then abort
9: q ← N/p

10: return (p, q)

ODec(y):
11: compute a square root of

y in ZN using sk
12: return result

SV 2025 Cryptographic Security Models EPFL 137 / 529

Paradoxical Security Result

• Rabin cryptosystem is PROVABLY as secure (OW-CPA) as
the factorization is hard
• the security proof yields a CHOSEN CIPHERTEXT

ATTACK (KR-CCA)

• the attack does not hold when adding the redundancy
• the security proof does no longer hold with the redundancy

SV 2025 Cryptographic Security Models EPFL 138 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models
Security Definitions
The Game Proof Methodology
RSA Security
Rabin Cryptosystem
Diffie-Hellman Security
ElGamal Security

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security
SV 2025 Cryptographic Security Models EPFL 139 / 529

The Diffie-Hellman Key Agreement Protocol

Assume a group (Z∗p, an elliptic curve, ...) generated by some g

Alice Bob

pick x at random, X ← gx X−−−−−−−−−−−−→
Y←−−−−−−−−−−−− pick y at random, Y ← gy

K ← Y x K ← X y

(K = gxy)

resists passive adversaries

SV 2025 Cryptographic Security Models EPFL 140 / 529

CDH vs DL Problems
implicit: Setup→ (group, q, g)
• group: parameters to perform group operations
• q: integer (order of the group)
• g: group element (generator)

CDH (Computational
Diffie-Hellman)

Adv = Pr[game returns 1]

Game
1: Setup(1s)

$−→ pp ▷ q, g
2: pick x , y ∈ Zq
3: X ← gx , Y ← gy

4: A(pp,X ,Y)
$−→ K

5: return 1K=gxy

DL (Discrete Logarithm)

Adv = Pr[game returns 1]

Game
1: Setup(1s)

$−→ pp ▷ q, g
2: pick x ∈ Zq
3: X ← gx

4: A(pp,X)
$−→ z

5: return 1X=gz

SV 2025 Cryptographic Security Models EPFL 141 / 529

CDH is the Key Recovery Problem in DH

Game CDH
1: Setup(1s)

$−→ pp ▷ q, g
2: pick x , y ∈ Zq
3: X ← gx , Y ← gy

4: A(pp,X ,Y)
$−→ K

5: return 1K=gxy

Game KR with DH
1: Setup(1s)

$−→ pp ▷ q, g
2: execute A(pp)↔ B(pp)
3: get transcript and output K
4: run A(pp, transcript) $−→ K ′

5: return 1K=K ′

SV 2025 Cryptographic Security Models EPFL 142 / 529

CDH Hard =⇒ DL Hard

Pr



Game DL
1: Setup(1s)

$−→ pp ▷ q, g
2: pick x ∈ Zq
3: X ← gx

4: A(pp,X)
$−→ z

5: return 1X=gz

 ≤ Pr


1: Setup(1s)

$−→ pp ▷ q, g
2: pick x , y ∈ Zq
3: X ← gx

4: A(pp,X)
$−→ z

5: return 1Xy=gyz



=

Pr



Game CDH
1: Setup(1s)

$−→ pp ▷ q, g
2: pick x , y ∈ Zq
3: X ← gx , Y ← gy

4: B(pp,X ,Y)
$−→ K

5: return 1K=gxy

B(pp,X ,Y):

6: A(pp,X)
$−→ z

7: K ← Y z

8: return K


= Pr



1: Setup(1s)
$−→ pp ▷ q, g

2: pick x , y ∈ Zq
3: X ← gx , Y ← gy

4: A(pp,X)
$−→ z

5: K ← Y z

6: return 1K=gxy



SV 2025 Cryptographic Security Models EPFL 143 / 529

Decisional DH Problem

DDH (Decisional Diffie-Hellman)

Adv = Pr[Γ1 → 1]− Pr[Γ0 → 1]

Game Γb

1: Setup(1s)
$−→ pp ▷ q, g

2: pick x , y ∈ Zq
3: if b = 0 then
4: pick z ∈ Zq
5: else
6: z ← xy mod q
7: end if
8: X ← gx , Y ← gy , Z ← gz

9: A(pp,X ,Y ,Z)
$−→ c

10: return c

DDH is the key distinguiher problem with DH

SV 2025 Cryptographic Security Models EPFL 144 / 529

DDH is the Key Distinguisher Problem in DH

Game DDHb

1: Setup(1s)
$−→ pp ▷ q, g

2: pick x , y ∈ Zq
3: z ← b = 0 ? random : xy
4: X ← gx , Y ← gy , Z ← gz

5: A(pp,X ,Y ,Z)
$−→ c

6: return c

Game KD with DH
1: Setup(1s)

$−→ pp ▷ q, g
2: execute A(pp)↔ B(pp)
3: get transcript and K1
4: set K0 at random
5: A(pp, transcript,Kb)

$−→ z
6: return z

SV 2025 Cryptographic Security Models EPFL 145 / 529

DDH Hard =⇒ CDH Hard

Game CDH
1: Setup(1s)

$−→ pp ▷ q, g
2: pick x , y ∈ Zq
3: X ← gx , Y ← gy

4: A(pp,X ,Y)
$−→ K

5: return 1K=gxy

Game DDH
1: Setup(1s)

$−→ pp ▷ q, g
2: pick x , y ∈ Zq
3: z ← b = 0 ? random : xy
4: X ← gx , Y ← gy , Z ← gz

5: B(pp,X ,Y ,Z)
$−→ c

6: return c

B(pp,X ,Y ,Z):

7: A(pp,X ,Y)
$−→ K

8: return 1K=Z

Adv(A) = Adv(B) + 1
q

next slide: 1
q = negl

SV 2025 Cryptographic Security Models EPFL 146 / 529

DDH Hard =⇒ Large Group

B′(pp,X ,Y ,Z):
1: pick x at random
2: if X = gx then
3: if Z = Y x then
4: return 1
5: else
6: return 0
7: end if
8: else
9: return 0

10: end if

• Pr[Γ1 → 1] = 1
q

• Pr[Γ0 → 1] = 1
q2

• Adv(B′) = 1
q

(
1− 1

q

)
≥

1
2q

• if DDH is hard,
Adv(B′) = negl, so
1
q = negl

SV 2025 Cryptographic Security Models EPFL 147 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models
Security Definitions
The Game Proof Methodology
RSA Security
Rabin Cryptosystem
Diffie-Hellman Security
ElGamal Security

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security
SV 2025 Cryptographic Security Models EPFL 148 / 529

Plain ElGamal Encryption

Generator

6Secret key xPublic key y 6 AUTHENTICATION
INTEGRITY

-Message
m Encrypt -Ciphertext

(gr ,my r)
-

(u, v)
Decrypt -Message

vu−x

�
�

Adversary

domain parameter:
group spanned by g

order is q (prime)

r ∈ Z∗q random

y = gx

6
?

(assume m ∈ 〈g〉)

SV 2025 Cryptographic Security Models EPFL 149 / 529

ElGamal Security: ElGamal Problems

OW-CPA Security

Given (g, y) generated by Gen
and u, v ∈ 〈g〉, compute m
such that there exists r such
that u = gr and v = my r :
Game
1: Setup(1s)

$−→ pp
2: Gen(pp) $−→ (y , x)
3: pick m in group
4: Enc(pp, y ,m)

$−→ (u, v)
5: A(pp, y , u, v) $−→ z
6: return 1z=m

KR-CPA Security

Given (g, y) generated by Gen,
compute x such that y = gx :
Game
1: Setup(1s)

$−→ pp
2: Gen(pp) $−→ (y , x)
3: A(pp, y) $−→ z
4: return 1x=z

decryption problem ⇐⇒ computational Diffie-Hellman problem
key recovery problem ⇐⇒ discrete logarithm problem

SV 2025 Cryptographic Security Models EPFL 150 / 529

ElGamal KR-CPA Secure⇐⇒ DL Hard

Game DL
1: Setup(1s)

$−→ pp ▷ g, q
2: pick x ∈ Zq
3: X ← gx

4: A(pp,X)
$−→ z

5: return 1X=gz

Game KR-CPA
1: Setup(1s)

$−→ pp ▷ g, q
2: pick x ∈ Zq
3: y ← gx

4: B(pp, y) $−→ z
5: return 1y=gz

B(pp, y):

6: A(pp, y) $−→ z
7: return z

Pr[KR-CPA(B)→ 1] = Pr[DL(A)→ 1]

SV 2025 Cryptographic Security Models EPFL 151 / 529

ElGamal OW-CPA Secure =⇒ CDH Hard

Game CDH
1: Setup(1s)

$−→ pp ▷ g, q
2: pick x , y ∈ Zq
3: X ← gx , Y ← gy

4: A(pp,X ,Y)
$−→ K

5: return 1K=gxy

Game OW-CPA
1: Setup(1s)

$−→ pp ▷ g, q
2: pick x ∈ Zq, y ← gx

3: pick m ∈ 〈g〉
4: pick r ∈ Zq, u ← gr ,

v ← my r

5: B(pp, y , u, v) $−→ z
6: return 1m=z

B(pp, y , u, v):

7: A(pp, y , u) $−→ K
8: return v/K

Pr[OW-CPA(B)→ 1] = Pr[DL(A)→ 1]

SV 2025 Cryptographic Security Models EPFL 152 / 529

CDH Hard =⇒ ElGamal OW-CPA Secure

Game OW-CPA
1: Setup(1s)

$−→ pp ▷ g, q
2: pick x ∈ Zq, y ← gx

3: pick m ∈ 〈g〉
4: pick r ∈ Zq, u ← gr ,

v ← my r

5: A(pp, y , u, v) $−→ z
6: return 1m=z

Game CDH
1: Setup(1s)

$−→ pp ▷ g, q
2: pick x , y ∈ Zq
3: X ← gx , Y ← gy

4: B(pp,X ,Y)
$−→ K

5: return 1K=gxy

B(pp,X ,Y):
6: pick v ∈ 〈g〉
7: A(pp,X ,Y , v) $−→ z
8: return v/z

Pr[OW-CPA(B)→ 1] = Pr[DL(A)→ 1]

SV 2025 Cryptographic Security Models EPFL 153 / 529

ElGamal Encryption Security

• key recovery is equivalent to the discrete logarithm
problem
• decryption is equivalent to the CDH problem
• IND-CPA security equivalent to the hardness of the DDH

problem
(to be seen next)

SV 2025 Cryptographic Security Models EPFL 154 / 529

Plain ElGamal Encryption is not OW-CCA Secure

• if (u, v) is the encryption of m then (u, vw) is the
encryption of mw
• OW-CCA attack:
A(pp, y , u, v):

1: pick w at random in the group
2: ODec(u, vw)→ m′ ▷ m′ = (vw)/ux = mw
3: return m = m′/w

m is the decryption of (u, v)!
• consequence: not IND-CCA either

SV 2025 Cryptographic Security Models EPFL 155 / 529

Semantic Security of ElGamal Encryption

Theorem
If the DDH problem is hard over the group generated by Gen,
then the ElGamal cryptosystem is IND-CPA secure.

SV 2025 Cryptographic Security Models EPFL 156 / 529

IND$-CPA Security of ElGamal Encryption
(IND$-CPA security)

• given g, get y , choose x0, get (u, v), decide if (u, v) was
generated by

r ∈U Zq , u = gr , v = x0y r or r ∈U Zq , x1 ∈U 〈g〉, u = gr , v = x1y r

• (set v ′ = v/x0)
given g, get y , get (u, v ′), decide if (u, v ′) was generated by

r ∈U Zq , u = gr , v ′ = y r or r ∈U Zq , x1 ∈U 〈g〉, u = gr , v ′ =
x1

x0
y r

• given g, get y , get (u, v ′), decide if (u, v ′) was generated by

r ∈U Zq , u = gr , v ′ = y r or r ∈U Zq , u = gr , v ′ ∈U 〈g〉

this is equivalent to the decisional Diffie-Hellman problem in 〈g〉

SV 2025 Cryptographic Security Models EPFL 157 / 529

IND-CPA Proof with Game Methodology

take a group with a generator g of order q
(to ease notations, we write “g” instead of “group, g”)
key generation: pick x ∈U Zq, set y = gx

message space: pt ∈ 〈g〉
encryption: Ency (pt; r) = (gr , pt.y r)

decryption: Decx(u, v) = vu−x

IND-CPA game Γb
0:

1: run key generation and get y
2: run A1(q, g, y) = (pt0, pt1, st)
3: pick r ∈U Zq, and (u, v) = Ency (ptb; r)
4: run A2(st, u, v) = b′

5: return b′

SV 2025 Cryptographic Security Models EPFL 158 / 529

Transitions — i

game Γb
0 :

1: run key generation and get y
2: run A1(g, y) = (pt0, pt1, st)
3: r ∈U Zq , (u, v) ←

Ency (ptb; r)
4: run A2(st, u, v) = b′
5: return b′

DDH assumption in the group

↕ bridge

game Γb
1 :

1: pick x , y ← gx

2: pick r , u ← gr

3: v0 ← gxr ▷ erase x , r
4: run A1(g, y) = (pt0, pt1, st)
5: v = ptbv0
6: run A2(st, u, v) = b′
7: return b′

DDH
≈

game Γb
2 :

1: pick x , y ← gx

2: pick r , u ← gr

3: pick v0 ▷ erase x , r
4: run A1(g, y) = (pt0, pt1, st)
5: v = ptbv0
6: run A2(st, u, v) = b′
7: return b′

SV 2025 Cryptographic Security Models EPFL 159 / 529

Transitions — ii

game Γb
2 :

1: pick x , y ← gx

2: pick r , u ← gr

3: pick v0
4: run A1(g, y) = (pt0, pt1, st)
5: v = ptbv0
6: run A2(st, u, v) = b′
7: return b′

messages are in the group!

↕ bridge

game Γb
3 :

1: pick x , y ← gx

2: pick r , u ← gr

3: run A1(g, y) = (pt0, pt1, st)
4: pick v0
5: v = ptbv0 ▷ erase v0
6: run A2(st, u, v) = b′
7: return b′

ind
=

game Γb
4 :

1: pick x , y ← gx

2: pick r , u ← gr

3: run A1(g, y) = (pt0, pt1, st)
4: pick v
5: run A2(st, u, v) = b′
6: return b′

SV 2025 Cryptographic Security Models EPFL 160 / 529

Transitions — iii

final step: Γ0
4 and Γ1

4 are identical!

Γ0
0

bridge
⌢ Γ0

1
DDH
≈ Γ0

2
bridge
⌢ Γ0

3
domain
= Γ0

4

=

Γ1
0

bridge
⌢ Γ1

1
DDH
≈ Γ1

2
bridge
⌢ Γ1

3
domain
= Γ1

4

so, Pr[Γ0
0 = 1]− Pr[Γ1

0 = 1] ≤ 2AdvDDH = negl

SV 2025 Cryptographic Security Models EPFL 161 / 529

Observation

• DDH must be hard for security
• messages must be group elements

SV 2025 Cryptographic Security Models EPFL 162 / 529

Practical Problems with ElGamal Encryption

• the DDH problem is not always hard
example of bad groups: 〈g〉 = Zn, Z∗p, ... slide 196

• we should take g of large prime order q
• but then how to embed pt in 〈g〉?

example: in the case of a subgroup of Z∗
p with p � q, group

elements are scarce→ hard to embed pt in 〈g〉
example: in the case of a subgroup of Z∗

p with p = 2q + 1,
one residue out of two is a group element
−1 is not a group element (since (−1)q 6= 1)
we could take map(pt) = ±pt mod p ∈ 〈g〉 for 1 ≤ pt ≤ q
example: elliptic curves
→ technical to embed pt in 〈g〉

SV 2025 Cryptographic Security Models EPFL 163 / 529

Conclusion

• key recovery
RSA, Rabin: key recovery⇐⇒ factoring pq
ElGamal: key recovery⇐⇒ discrete logarithm
• ciphertext decryption

RSA: decryption⇐⇒ RSA problem
Rabin: decryption⇐⇒ factoring pq
ElGamal: decryption⇐⇒ CDH problem
• hard core bit

lsb in RSA⇐⇒ RSA problem
• semantic security (IND-CPA)

ElGamal IND-CPA⇐⇒ DDH problem
• adaptive security (IND-CCA)

none

SV 2025 Cryptographic Security Models EPFL 164 / 529

References

• Shoup.
Sequences of Games: A Tool for Taming Complexity in
Security Proofs
Eprint 2004/332

SV 2025 Cryptographic Security Models EPFL 165 / 529

Train Yourself
• security of encryption: final exam 2011–12 ex3

• security proofs:
final exam 2010–11 ex4 (security reduction)
final exam 2011–12 ex2 (MAC revisited)
final exam 2014–15 ex1 (security of Davies-Meyer)

• DH:
midterm exam 2010–11 ex2 (easy DDH from bilinear mappings)
final exam 2011–12 ex1 (easy DDH cases)
midterm exam 2014–15 ex1 (hard log and easy DH world)
final exam 2015–16 ex2 (fixed vs random g in DH problems)
midterm exam 2016–17 ex1 (solving DDH with small subgroups)
midterm exam 2017–18 ex2 (gap DH problem)
midterm exam 2019–20 ex2 (OW-CPA vs IND-CPA)
midterm exam 2022–23 ex1 (squares in exponent)

SV 2025 Cryptographic Security Models EPFL 166 / 529

Train Yourself
• ElGamal:

final exam 2009–10 ex2 (message mapping)
final exam 2012–13 ex1
midterm exam 2016–17 ex3 (issue from weird distribution)

• BLS signature: final exam 2012–13 ex2
• PRF: final exam 2015–16 ex3 (equivalent PRF notions)
• PRP vs left-or-right security: final exam 2016–17 ex3
• IND-CPA implies collision-resistance: final exam 2017–18 ex1
• IND-CCA and NM-CCA are equivalent: final exam 2017–18 ex2
• MAC vs PRF: midterm exam 2016–17 ex2
• key agreement:

final exam 2019–20 ex1
midterm exam 2021–22 ex1

• contact tracing: midterm exam 2019–20 ex2
• equivalent IND notions: midterm exam 2018–19 ex1

SV 2025 Cryptographic Security Models EPFL 167 / 529

Train Yourself

• security of signature with setup: midterm exam 2023–24 ex1

• find-then-guess security for symmetric encryption: midterm
exam 2023–24 ex2

SV 2025 Cryptographic Security Models EPFL 168 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security

SV 2025 Cryptanalysis (Public-Key) EPFL 169 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)
RSA
Diffie-Hellman
ElGamal

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security

SV 2025 Cryptanalysis (Public-Key) EPFL 170 / 529

Plain RSA Encryption

Generator

6Secret key d ,NPublic key e,N 6 AUTHENTICATION
INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

N = pq
φ(N) = (p − 1)(q − 1)

1 = gcd(e, φ(N))
d = e−1 mod φ(N)

6
?

x xe mod N y yd mod N

SV 2025 Cryptanalysis (Public-Key) EPFL 171 / 529

Plain RSA Signature

Generator

6Secret key d ,N Public key e,N6AUTHENTICATION
INTEGRITY

-Message
x Sign -Signature

xd mod N
-

y Extract -
ye mod N

�
�

Adversary

N = pq
φ(N) = (p − 1)(q − 1)

1 = gcd(e, φ(N))
d = e−1 mod φ(N)

6
?

SV 2025 Cryptanalysis (Public-Key) EPFL 172 / 529

RSA Engineering

• Implementation issues (from plain RSA to real life
standards)

Problems with broadcast encryption
Problems with low exponents
Problems with side channels

• Side channel attacks
Power analysis
Single/differential fault analysis
Timing attack, electromagnetic fields, sound
Side channel from protocols: formatting issues

• Relevance of the mathematical model

SV 2025 Cryptanalysis (Public-Key) EPFL 173 / 529

Broadcast Encryption with Low Exponent

Sending the same message x to at least e participants with the
same encryption exponent e and different moduli N1, . . . ,Ne.
• The i th participant receives yi = xe mod Ni

• The attacker intercepts e values y1, . . . , ye

• The attacker computes y = xe mod N where
N = N1 × . . .× Ne by CRT (assume moduli are coprime)
• We have y = xe

• The attacker deduces x = e
√

y

SV 2025 Cryptanalysis (Public-Key) EPFL 174 / 529

Example with e = 3

x

s
y3

N3, 3

-y2 N2, 3

3
y1

N1, 3
Broadcast plaintext x to 3
receivers using e = 3:

Let yi = x3 mod Ni
We have CRT(y1, y2, y3) =
x3 mod (N1N2N3) = x3

So we can compute x3 then
extact a cubic root and get x

SV 2025 Cryptanalysis (Public-Key) EPFL 175 / 529

Attack on Low Exponents

• Attack on low e: Coppersmith algorithm to find roots less
than N

1
e of a polynomial of degree e.

Example: decryption attack when e = 3 and we know 2
3 of

the plaintext bits (e.g. RSA.Enc(pattern||x) with 1024-bit
modulus when x is a 256-bit symmetric key and pattern is
a constant pattern).
• Attack on low d : Wiener key recovery attack for d <

4
√

N
(e.g. N of 1024 bits and d of less than 256 bits).

SV 2025 Cryptanalysis (Public-Key) EPFL 176 / 529

Simple Power Analysis (SPA)

Computing x = yd mod N is performed by a device with
external power supply by using the square-and-multiply
algorithm.
• The power usage tells what kind of operation is performed
• Some cryptoprocessors have faster square than multiply

algorithms
• The power usage tells when a square and a multiply is

performed
• The attacker deduces d

SV 2025 Cryptanalysis (Public-Key) EPFL 177 / 529

Square-and-Multiply Algorithm (Left to Right)

Input: y , d , N, three integers of at most ℓ
bits

Output: x = yd mod N
Complexity: O(ℓ3)

1: a← 1
2: for i = ℓ− 1 to 0 do
3: a← a2 mod N
4: if di = 1 then
5: a← a× y mod N
6: end if
7: end for
8: x ← a

SV 2025 Cryptanalysis (Public-Key) EPFL 178 / 529

SPA

-

6

time

power

SQ MUL

1

SQ MUL

1

SQ

0

SQ

0

SQ

secret key is 1100... (from right to left or left to right)

SV 2025 Cryptanalysis (Public-Key) EPFL 179 / 529

Countermeasures

• hardware
flatten power usage
• software

always do a multiplication

SV 2025 Cryptanalysis (Public-Key) EPFL 180 / 529

Differential Fault Attack (DFA)

Computing x = yd mod N is performed by a device using CRT
accelaration.

• The attacker picks x and sends y = xe mod N to the device

• The attacker agressively (but mildly) stresses the device

• The device eventually makes computation errors

• Error may occur during the CRT accelaration

• The device computes x ′ and outputs it

• The attacker computes gcd(x − x ′,N)

SV 2025 Cryptanalysis (Public-Key) EPFL 181 / 529

DFA

pick x and submit y = xe mod N to normally obtain x

xe mod N = y
q

1

yd mod q

yd mod p

1

q
CRT - yd mod N = x

xe mod N = y
q

1

random

yd mod p

1

q
CRT - x ′ ≡ x (mod p)

SV 2025 Cryptanalysis (Public-Key) EPFL 182 / 529

Countermeasures

• hardware
sensors
• software

verify the result

SV 2025 Cryptanalysis (Public-Key) EPFL 183 / 529

PKCS#1v1.5 Encryption (Reminder) (OBSOLETE)

ciphertext
?

Enc
?

00 02 PS 00 M
?

random

?

message

SV 2025 Cryptanalysis (Public-Key) EPFL 184 / 529

Yet Another Side Channel Attack (PKCS#1v1.5)

Bleichenbacher’s attack against PKCS#1v1.5 encryption:
• Attacker intercepts y = xe mod N and aims at recovering x
• Attacker plays with the server by sending fake ciphertexts

y ′ of the form
y ′ = sey mod N

• Most of the time, y ′ does not decrypt well and the server
issues an error message.
• If the server accepts, then (y ′)d mod N starts with 00 02,

hence

2× 256k−2 ≤ sx mod N < 3× 256k−2

• By using this oracle 14 500 times, Attacker can reconstruct
x with probability 50% [Bardou et al., CRYPTO’12]

SV 2025 Cryptanalysis (Public-Key) EPFL 185 / 529

Countermeasures

• hide (well) errors
• use the IND-CCA secure variant of RSA

SV 2025 Cryptanalysis (Public-Key) EPFL 186 / 529

Other Side Channel Attacks

• Simple fault analysis
• Differential fault analysis
• Timing attack
• Electromagnetic fields
• Noisy machines
• Cache attacks
• Branch prediction algorithm
• Power LED
• Dynamic frequency scaling (CPU throttling)
• ...

SV 2025 Cryptanalysis (Public-Key) EPFL 187 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)
RSA
Diffie-Hellman
ElGamal

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security

SV 2025 Cryptanalysis (Public-Key) EPFL 188 / 529

CDH vs DL Problems (Reminder)

(implicit: relative to Setup)

CDH (Computational
Diffie-Hellman)

Adv = Pr[game returns 1]

Game
1: Setup(1s)

$−→ (pp) ▷ q, g
2: pick x , y ∈ Zq
3: X ← gx , Y ← gy

4: A(pp,X ,Y)
$−→ K

5: return 1K=gxy

DL (Discrete Logarithm)

Adv = Pr[game returns 1]

Game
1: Setup(1s)

$−→ (pp) ▷ q, g
2: pick x ∈ Zq
3: X ← gx

4: A(pp,X)
$−→ z

5: return 1X=gz

SV 2025 Cryptanalysis (Public-Key) EPFL 189 / 529

Easy Discrete Logarithm Cases

The DH and DL problems are relative to a group selection
• an easy group case: G = Zn for any n

If g generates G then the “exponential” of x is
X = (xg) mod n so the “logarithm” of X is x = X

g mod n

• B-smooth order: G of order n = pα1
1 × · · · × pαr

r with pi
prime and p1 < · · · < pr < B
Use the Pohlig-Hellman algorithm

Hardness example: subgroup of Z∗p of large prime order q

SV 2025 Cryptanalysis (Public-Key) EPFL 190 / 529

Pohlig-Hellman Algorithm

• In a group of order n = pα1
1 × · · · × pαr

r

• Pohlig-Hellman algorithm to compute discrete logarithm in
O((α1

√
p1 + · · ·+ αr

√
pr)T) where T is the complexity of

one group operation
• this is O(

√
BT log n) if n is B-smooth

SV 2025 Cryptanalysis (Public-Key) EPFL 191 / 529

Pohlig-Hellman Algorithm
Input: g,X in a group G and the factorization #G = n = pα1

1 . . . pαr
r

such that pi is prime, pi 6= pj , and αi > 0, for 1 ≤ i < j ≤ r
Output: the logarithm of X in base g
Complexity: O(α1

√
p1 + · · ·+ αr

√
pr) group operations

1: for i = 1, . . . , r do
2: g′ ← gn/pαi

i

3: g′′ ← g′p
αi−1
i

4: X ′ ← X n/pαi
i

5: xi ← 0
6: for j = 0 to αi − 1 do

7: X ′′ ← X ′p
αi−j−1
i

8: compute the discrete logarithm u of X ′′ in the subgroup of
order pi which is spanned by g′′ (next slide)

9: X ′ ← X ′/g′u.p
j
i

10: xi ← xi + u.pj
i

11: end for
12: end for
13: reconstruct and yield x such that x ≡ xi (mod pαi

i)

SV 2025 Cryptanalysis (Public-Key) EPFL 192 / 529

Baby Step - Giant Step Algorithm

Input: g and X in a group G, B an upper bound for #G
Output: the logarithm of X in base g
Complexity: O(

√
B) group operations

Precomputation
1: let ℓ = d

√
Be be the size of a “giant step”

2: for i = 0, . . . , ℓ− 1 do
3: set T{g iℓ} ← i
4: end for

Algorithm
5: for j = 0, . . . , ℓ− 1 do
6: compute z = Xg−j

7: if T{z} exists then
8: i ← T{z}
9: yield x = iℓ+ j and stop ▷ we get Xg−j = g iℓ

10: end if
11: end for

SV 2025 Cryptanalysis (Public-Key) EPFL 193 / 529

g0

gℓ

g2ℓ = Xg−5

g3ℓ

X

Pollard Rho Discrete Logarithm Algorithm

Input: g and X in a group G of
order n

Output: the logarithm of X in
base g

Complexity: O(
√

n) group
operations

1: pick a random function
h : G −→ {1, 2, 3}

2: a⃗, b⃗ ← (1, 0, 0) ∈ G × Zn × Zn
3: repeat
4: a⃗← f (a⃗)
5: b⃗ ← f (f (b⃗))
6: until a1 = b1
7: return

(a2 − b2)/(a3 − b3) mod n ▷
fail if not possible

• G is multiplicatively denoted

• f (Z , α, β) is defined to be


(Z × g, α+ 1 mod n, β) if h(Z) = 1
(Z × X , α, β + 1 mod n) if h(Z) = 2
(Z 2, 2α mod n, 2β mod n) if h(Z) = 3

• vectors (Z , α, β) are all such
that Z = gαXβ

• we could have taken another
random function f with this
property

SV 2025 Cryptanalysis (Public-Key) EPFL 194 / 529

Decisional DH Problem (Reminder)
(implicit: relative to Gen) slide 144

Hardness of DDHP (Decisional Diffie-Hellman Problem)

Adv = Pr[Γ1 → 1]− Pr[Γ0 → 1]

Game Γb

1: Setup(1s)
$−→ (pp) ▷ q, g

2: pick x , y ∈ Zq
3: if b = 0 then
4: pick z ∈ Zq
5: else
6: z ← xy mod q
7: end if
8: X ← gx , Y ← gy , Z ← gz

9: A(pp,X ,Y ,Z)
$−→ c

10: return c

DDH is the key distinguiher problem with DH
SV 2025 Cryptanalysis (Public-Key) EPFL 195 / 529

Easy Case: Z∗p
The DDH problem is relative to some Setup may be easy

Z∗p with p prime:
Setup(1s)

1: pick p prime of size f (s)
2: pick a random generator g of Z∗p
3: return (p, p − 1, g)

then let A(pp,X ,Y ,Z) = 1 iff

(logg Z mod 2) = (logg X mod 2) × (logg Y mod 2)

= = =

log−1

(
Z
p

)
log−1

(
X
p

)
log−1

(
Y
p

)
we have

(
·
p

)
= −1 iff the logarithm is odd, and

logZ = (logX)(logY) in the DH case, so

Pr
b=0

[A(pp,X ,Y ,Z)→ 1] =
1
2

, Pr
b=1

[A(pp,X ,Y ,Z)→ 1] = 1

thus Adv(A) = 1
2

SV 2025 Cryptanalysis (Public-Key) EPFL 196 / 529

Reminder on the Legendre Symbol

• for an odd prime p
• QRp: set of elements from Z∗p which have a square root

(quadratic residues)

•
(

x
p

)
=


0 if x 6∈ Z∗p
+1 if x ∈ QRp
−1 if x ∈ Z∗p −QRp

•
(

x
p

)
≡ x

p−1
2 (mod p)

SV 2025 Cryptanalysis (Public-Key) EPFL 197 / 529

Easy Case: Group of Order with Smooth Factor

The DDH problem is relative to some Setup may be easy

G of order n such that n
w is smooth:

let A(pp,X ,Y ,Z) = 1 iff

loggw Z w =
(
loggw X w)× (

loggw Y w)
we have Adv(A) = 1− w

n
Indeed,

Pr
b=0

[A(pp,X ,Y ,Z)→ 1] =
w
n

, Pr
b=1

[A(pp,X ,Y ,Z)→ 1] = 1

SV 2025 Cryptanalysis (Public-Key) EPFL 198 / 529

Hard Cases

The DDH problem relative to some Setup is believed to be hard
• large subgroup of prime order of Z∗p (p prime)

prime subgroup of Z∗p with p prime:
Setup(1s)

1: pick q prime of size 2s
2: pick p of size f (s) such that q|p − 1
3: start again until p is prime
4: pick a random g in Z∗p of order q
5: return (p, q, g)

• large subgroup of prime order of a “regular” elliptic curve

SV 2025 Cryptanalysis (Public-Key) EPFL 199 / 529

Some Failure Cases

check the previous course
• attacks based on DL precomputation on a fixed group
• problems when not checking group membership
• problems with subgroups

SV 2025 Cryptanalysis (Public-Key) EPFL 200 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)
RSA
Diffie-Hellman
ElGamal

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security

SV 2025 Cryptanalysis (Public-Key) EPFL 201 / 529

ElGamal Signature

Generator

6Secret key x Public key y6AUTHENTICATION
INTEGRITY

-Message
Sign - - Ver

-
ok?

-Message
�

�
Adversary

p prime
g generator of Z∗p

y = gx mod p

M

k ∈ Z∗p−1
r = gk mod p
s = H(M)−xr

k mod p − 1

M, r , s M, r , s

0 ≤ s < p − 1
0 ≤ r < p
y r r s ≡ gH(M) (mod p)

M

SV 2025 Cryptanalysis (Public-Key) EPFL 202 / 529

ElGamal Signature Security

• key recovery is equivalent to the discrete logarithm
problem
• results from EUROCRYPT 1994:

existential forgery is hard on average over the random
choice of the public parameters in the random oracle model
(covered in final chapter) provided that the discrete
logarithm is hard
universal forgery attack on a specific parameter choice

SV 2025 Cryptanalysis (Public-Key) EPFL 203 / 529

Security if we Miss the Second Inequality Check

(If we miss the first inequality check: no strong-forgery
resistance...)

If we do not check that 0 ≤ r < p, we have a universal forgery
attack:
• pick rp−1, s ∈ Z∗p−1 at random

• set rp = g
H(M)

s y−
rp−1

s mod p
• pick r such that r mod p = rp and r mod (p − 1) = rp−1

using the Chinese Remainder Theorem
• issue (r , s) as a signature for M

SV 2025 Cryptanalysis (Public-Key) EPFL 204 / 529

Bleichenbacher Attack (Setup Assumptions)

• Assume that p − 1 = bw with an integer b which is
smooth. Example: b = 2 which works for every odd prime
p.
• Assume that we know some relation g1/t mod p = cw .

Example: if we have g = b (note that the complexity of the
exponentiation is decreased if g is small) and p ≡ 1
(mod 4), the relation holds for t = p−3

2 and c = 1:

(cw)t ≡
(

p − 1
g

) p−1
2 −1

≡ −g
(−1)

p−1
2

g
p−1

2

≡ g (mod p)

since g
p−1

2 is a square root of 1 which is not 1 (otherwise g
would not be a generator) and (−1)

p−1
2 = 1 due to the

assumption on p mod 4.

SV 2025 Cryptanalysis (Public-Key) EPFL 205 / 529

Attack (Universal Forgery)

• We first take r = cw .
• We find z such that ycw ≡ gcwz (mod p). This is nothing

but the discrete logarithm of ywc mod p in base gwc mod p
which spans a group of order factor of b. Thus the
Pohlig-Hellman algorithm works, thanks to the assumption
on b.
• We take s = t(H(M)− cwz) mod (p − 1).
• Yield the signature (r , s).

We only have to prove that the signature is valid. First we check
that 0 ≤ r < p. Next we have

y r r s ≡ ycw (cw)t(H(M)−cwz) ≡ ycwgH(M)−cwz ≡ gH(M) (mod p).

Therefore the signature is valid.
→ use subgroups of prime order.

SV 2025 Cryptanalysis (Public-Key) EPFL 206 / 529

Conclusion

• insecurity cases
particular cases for parameters (short exponents...)
groups with smooth order
side channels

SV 2025 Cryptanalysis (Public-Key) EPFL 207 / 529

References — i
• Håstad.

On Using RSA with Low Exponent in a Public Key Network.
In CRYPTO 1985, LNCS 218.

• Wiener. Cryptanalysis of Short RSA Secret Exponents.
In EUROCRYPT 1989, LNCS 434.

• In EUROCRYPT 1996, LNCS 1070:
Coppersmith. Finding a Small Root of a Univariate Modular
Equation.
Coppersmith. Finding a Small Root of a Bivariate Integer
Equation; Factoring with High Bits Known.
Coppersmith, Franklin, Patarin, Reiter.
Low-Exponent RSA with Related Messages.
Van Oorschot, Wiener.
On Diffie-Hellman Key Agreement with Short Exponents.
Bleichenbacher. Generating ElGamal Signatures Without
Knowing the Secret Key.

SV 2025 Cryptanalysis (Public-Key) EPFL 208 / 529

References — ii
• Kocher.

Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems.
In CRYPTO 1996, LNCS 1109.

• Boneh, DeMillo, Lipton. On the Importance of Checking
Cryptographic Protocols for Faults.
In EUROCRYPT 1997, LNCS 1233.

• Bleichenbacher.
Chosen Ciphertext Attacks against Protocols Based on RSA
Encryption Standard PKCS #1.
In CRYPTO 1998, LNCS 1462.

• Kocher. Differential Power Analysis.
In CRYPTO 1999, LNCS 1666.

• Bardou, Focardi, Kawamoto, Simionato, Steel, Tsay.
Efficient Padding Oracle Attacks on Cryptographic Hardware.
In CRYPTO 2012, LNCS 7417.

SV 2025 Cryptanalysis (Public-Key) EPFL 209 / 529

Train Yourself

• RSA:
midterm exam 2008–09 ex1 ex3
midterm exam 2009–10 ex2 (Wiener attack)
midterm exam 2010–11 ex1
midterm exam 2012–13 ex3 (broadcast encryption)
midterm exam 2015–16 ex1 (secret modulus recovery)
midterm exam 2021–22 ex2 (redundant RSA)

• threshold implementation: midterm exam 2017–18 ex1

• dedicated cryptanalysis: midterm exam 2013–14 ex1

• predicate encryption: midterm exam 2013–14 ex2

• OW-VCA security and Regev: final exam 2020–21 ex1

• Goldwasser-Micali PKC: midterms exam 2018–19 ex2

• a weird signcryption: midterms exam 2018–19 ex3

SV 2025 Cryptanalysis (Public-Key) EPFL 210 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security

SV 2025 The Power of Interaction EPFL 217 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction
Interactive Proofs
Zero-Knowledge
Zero-Knowledge Construction from Σ Protocol
Setup Models
A Building Block for Making Cryptographic Primitives

5 Cryptanalysis (Conventional)

6 Proving Security

SV 2025 The Power of Interaction EPFL 218 / 529

Motivation

foundations: study the theory, models, and primitives for
interactive proofs
this allows
• to make access control
• to make signature schemes
• to make encryption
• to give a methodology to analyze security
• ...

SV 2025 The Power of Interaction EPFL 219 / 529

Definitions

• Z is an alphabet (a set of letters)
• Z ∗ is the set of finite sequences of Z elements, including

the empty sequence ⊥
• L is a language (subset of Z ∗)
• x is a word (element of Z ∗)
• w is a witness (element of Z ∗)
• R(x ,w) is a relation on x and w (either true or false)

L = {x ∈ Z ∗; ∃w ∈ Z ∗ R(x ,w)}

Problem: given x ∈ Z ∗, prove that x ∈ L

SV 2025 The Power of Interaction EPFL 220 / 529

NP Class

Definition (NP Language)
A language L over the alphabet Z belongs to the class NP if
there exists a relation R and a polynomial P such that
• R(x ,w) can be evaluated in polynomial time (with respect

to the length of x and w)
• L = {x ∈ Z ∗; ∃w ∈ Z ∗ R(x ,w), |w | ≤ P(|x |)}

= language of statements which can be proven by a proof with
polynomial size

SV 2025 The Power of Interaction EPFL 221 / 529

co-NP Class

Definition (co-NP Language)
A language L over the alphabet Z belongs to the class co-NP if
Z ∗ − L ∈ NP , i.e. there exist a relation R such that for any
polynomial P,
• R(x ,w) can be evaluated in polynomial time (with respect

to the length of x and w)
• L = {x ∈ Z ∗; ∀w ∈ Z ∗ |w | ≤ P(|x |) =⇒ ¬R(x ,w)}

SV 2025 The Power of Interaction EPFL 222 / 529

P Class

Definition (P Language)
A language L over the alphabet Z belongs to the class P if
there exists a polynomial time deterministic algorithm A such
that

L = {x ∈ Z ∗;A(x)→ accept}

= language of statements which are checked in polynomial time
NP⇐⇒ membership can be decided in non-deterministic
polynomial time

SV 2025 The Power of Interaction EPFL 223 / 529

P vs NP Problem

clearly:
P ⊆ NP

big open question:

P = NP or P 6= NP ?

SV 2025 The Power of Interaction EPFL 224 / 529

NP vs co-NP Problem

NP = co-NP or NP 6= co-NP ?

PNP co-NP

SV 2025 The Power of Interaction EPFL 225 / 529

Karp-Reduction

Definition (Karp Reduction)
Given two languages L1 and L2 over an alphabet Z , we say that
L1 (Karp-)reduces to L2 if there exists a function f which can
be computed by a polynomial-time algorithm such that

∀x ∈ Z ∗ x ∈ L1 ⇐⇒ f (x) ∈ L2

The Karp reduction is stronger than the Turing reduction
(≈ Turing reduction restricted to a single oracle access)

SV 2025 The Power of Interaction EPFL 226 / 529

NP-Hardness

Definition (NP-Hardness)

A language L over the alphabet Z is NP-hard if for all L′ ∈ NP ,
L′ (Karp-)reduces to L.
It is NP-complete if it further belongs to NP .

SV 2025 The Power of Interaction EPFL 227 / 529

NP-Hardness
Example: SAT, the set of Boolean terms r such that there exists
an assignment of all variables in r which satisfies the term.

Theorem (Cook 1971)
SAT is NP-complete.

Proof intuition.
• if L′ ∈ NP , there exists a relation R for L′

• for each x , the size of the potential witness is bounded so
we can write r(x) = R(x , ·) as a Boolean term holding on
variables corresponding to w
(a Boolean term has AND, OR, NOT gates and variables)
• for each x , w is a witness for x iff this it defines an

assignment satisfying r(x)
• for each x , x ∈ L′ iff r(x) is satisfiable
• the x 7→ r(x) is polynomially bounded

SV 2025 The Power of Interaction EPFL 228 / 529

Consequence

SAT ∈ P ⇐⇒ P = NP

SV 2025 The Power of Interaction EPFL 229 / 529

Interactive Machines
“a Turing machine with an extra communication tape”

Definition
We say that A is an polynomial/deterministic/probabilistic
interactive machine if it is a
polynomial/deterministic/probabilistic algorithm mapping an
input x and a list m1, . . . ,mn of incoming messages to an
outgoing message A(x ,m1, . . . ,mn; r).
• Messages can end by a special termination symbol. In this

case we call it a terminal message.
• A shall be such that if mn is a terminal message then
A(x ,m1, . . . ,mn; r) is a terminal message.
• (x ,m1, . . . ,mn; r) is called a partial view of A. It is a final

view if the last message is a terminal one.

An interactive machine is an algorithm computing a
next-message from a partial view.

SV 2025 The Power of Interaction EPFL 230 / 529

Interactive System

Given two interactive machines A and B, an input x , random
tapes rA and rB, we call A the initiator and define

• exp =
(
A(rA)

x←→ B(rB)
)

the experiment consisting in
defining

ai = A(x , b1, . . . , bi−1; rA)

bj = B(x , a1, . . . , aj ; rB)

for i = 1, . . . , nA s.t. anA is the first terminal message ai and
j = 1, . . . , nB s.t. bnB is the first terminal message bj

• OutA(exp) = anA

• OutB(exp) = bnB

• ViewA(exp) = (x , b1, . . . , bnA−1; rA)

• ViewB(exp) = (x , a1, . . . , anB ; rB)

SV 2025 The Power of Interaction EPFL 231 / 529

Interactive System

A B
coins: rA (input x) coins: rB

a1 = A(x ; rA)
a1−−−−−−−−−−−−−→
b1←−−−−−−−−−−−−− b1 = B(x , a1; rB)

a2 = A(x , b1; rA)
a2−−−−−−−−−−−−−→
...

A(x , b1, . . . , bnA−1; rA)
anA−−−−−−−−−−−−−→
bnB←−−−−−−−−−−−−− B(x , a1, . . . , anB ; rB)

ViewA(exp) =
(
x , b1, . . . , bnA−1; rA

)
ViewB(exp) = (x , a1, a2, . . . , anB ; rB)

SV 2025 The Power of Interaction EPFL 232 / 529

Example: Coin Flipping Game

• game:
given a bit x , A and C flip a coin together and A wins if it is
x
• coin flipping:

1 A commits to a random bit a
2 C flips a bit b and sends it
3 A opens a
4 the final bit is a⊕ b

SV 2025 The Power of Interaction EPFL 233 / 529

Example: Coin Flipping Game
Adversary Challenger
coins: rA (input x) coins: rB

parse rA = a‖r parse rB = b‖r ′
with a ∈ {0, 1} with b ∈ {0, 1}

c = commit(a; r) c−−−−−−−−−−−−−−→
b←−−−−−−−−−−−−−−

a∥r (final)−−−−−−−−−−−−−−→ y = a⊕ b
check c = commit(a; r)

you win (final)←−−−−−−−−−−−−−− if OK and x = y
you lose (final)←−−−−−−−−−−−−−− otherwise

ViewC

(
A(a‖r) x←→ C(b‖r ′)

)
= (x , c, a‖r ; b‖r ′)

OutC
(
A(a‖r) x←→ C(b‖r ′)

)
=

 you win if x = a⊕ b
and c = commit(a; r)

you lose otherwise

SV 2025 The Power of Interaction EPFL 234 / 529

Interactive Proof

Definition
Given a language L over an alphabet Z , an interactive proof
system for L is a pair (P,V) of interactive machines such that
there exist a polynomial P, β such that 0 ≤ β < 1 and
• termination: for any x , the total complexity of V (until

termination) in P x↔ V(r) is bounded by P(|x |)
• perfect completeness: for any x ∈ L then

Pr
rP ,rV

[
OutV

(
P(rP)

x↔ V(rV)
)
= accept

]
= 1

• β-soundness: for any x 6∈ L and any algorithm P∗ then

Pr
rP ,rV

[
OutV

(
P∗(rP)

x↔ V(rV)
)
= accept

]
≤ β

SV 2025 The Power of Interaction EPFL 235 / 529

Notes

• we assume no bound on the prover P (powerful prover)
w.l.o.g. it can be assumed deterministic
• the verifier V is polynomially bounded
• variants consider imperfect completeness
• β is the maximal probability that V can be fooled

SV 2025 The Power of Interaction EPFL 236 / 529

Example: Proof of some P Language

language: set of x such that A(x) = accept where A is a
deterministic and polynomially bounded Turing
machine

Prover Verifier
x

(final)−−−−−−−−−−−−−→
accept (final)←−−−−−−−−−−−−− if A(x) = accept

SV 2025 The Power of Interaction EPFL 237 / 529

Example: Proof of some NP Language

language: set of x such that there is some w such that
R(x ,w) is true where R is a deterministic and
polynomially bounded Turing machine

Prover Verifier
x

find w
w (final)−−−−−−−−−−−−−→

accept (final)←−−−−−−−−−−−−− if R(x ,w)

SV 2025 The Power of Interaction EPFL 238 / 529

Example: Goldwasser-Micali-Rackoff 1985
A co-NP Case

reminder: QR(n) is the set of all squares modulo n

language: set of pairs (n, v) such that v ∈ Z∗
n and v 6∈ QR(n)

Prover Verifier
(n, v)

pick r ∈ Z∗
n, e ∈ {0, 1}

solve y = x2 mod n
y←−−−−−−−−−−−−−− y = ver2 mod n

f =
{

0 if solvable
1 otherwise

f (final)−−−−−−−−−−−−−−→
accept (final)←−−−−−−−−−−−−−− if e = f and gcd(v , n) = 1

Termination: Verifier runs in polynomial time with respect to the size
of (n, v)

SV 2025 The Power of Interaction EPFL 239 / 529

Example: GMR85 Completeness

completeness:

Prover Verifier
(n, v)

pick r , e = 0 or 1
solve y = x2 mod n

y←−−−−−−−−−−−−−− y = ver2 mod n

f =
{

0 if solvable
1 otherwise

f−−−−−−−−−−−−−−→ check e = f , gcd(v , n) = 1

• assume that P and V follow the protocol and (n, v) ∈ L

• ver2 ≡ x2 is solvable iff e = 0

• we always have e = f , so V always accept

SV 2025 The Power of Interaction EPFL 240 / 529

Example: GMR85 Soundness

β-soundness with β = 1
2 :

Prover Verifier
(n, v)

pick r , e = 0 or 1
y←−−−−−−−−−−−−− y = ver2 mod n
f−−−−−−−−−−−−−→ check e = f , gcd(v , n) = 1

• assume that V follows the protocol and (n, v) 6∈ L
• we can write v = s2 mod n then y = (ser)2 mod n
• if r ∈U Z∗n then ser ∈U Z∗n whatever e
• y and e are independent thus e and f are independent
• Pr[accept] = 1

2

SV 2025 The Power of Interaction EPFL 241 / 529

Sequential Composition

Given an interactive proof system (P,V) for L which is complete
and β-sound we define a new proof system (P ′,V ′) as follows:
• P ′ resp V ′ simulates P resp V but have no terminal

message until n iterations are made
• after an iteration completes, they restart the entire protocol

with fresh random coins
• V ′ accepts all iterations accepted

the new interactive proof system is complete and β′-sound with

β′
next th
= βn

so β′ → 0

Conclusion: by sequential composition we can tune β as close
to 0 as we want

SV 2025 The Power of Interaction EPFL 242 / 529

Soundness Result for Sequential Composition

Theorem
Consider an interactive proof system (P,V) which is β-sound.
Given n, we construct the interactive proof system (P ′,V ′)
making n sequential iterations of (P,V) then accepting if all
iterations lead to an acceptance result (see previous slide).
This new interactive proof system is β′-sound where

β′ = βn

skip details

SV 2025 The Power of Interaction EPFL 243 / 529

Technical Lemma

Lemma
Assume that no adversary can succeed one protocol session
with probability higher than β.
Then, for each adversary A repeating the protocol n times and
any I ⊆ {1, . . . , n}, we have

Pr

[∧
i∈I

A succeeds iteration i

]
≤ β#I

Theorem follows with I = {1, . . . , n}.

SV 2025 The Power of Interaction EPFL 244 / 529

Proof of Lemma
• proceed by induction on i such that I ⊆ {1, . . . , i}:

trivial for i = 0 (I empty)
assume this is true for i − 1 and prove it for i :

let I ⊆ {1, . . . , i}
if I ⊆ {1, . . . , i − 1}, the result is proven
otherwise, let I = I′ ∪ {i}
consider an adversary B who plays with A and simulate i − 1
honest verifiers at random
if A passes each iteration i s.t. i ∈ I′ then proceed
otherwise, reset A and restart
play a challenge session with A in the i th iteration
if B halts, since he passes with probability at most β, we
have

Pr

A succeeds iteration i

∣∣∣∣∣∣
∧
j∈I′

A succeeds iteration j

 ≤ β

by induction, we prove (if B does not halt as well) that

Pr

[∧
i∈I

A succeeds iteration i

]
≤ β#I

SV 2025 The Power of Interaction EPFL 245 / 529

Tricky Things with Parallel Composition

• OK for parallel composition of proofs
• not OK if we consider computational soundness
• WARNING: parallel composition does not always work in

protocols

SV 2025 The Power of Interaction EPFL 246 / 529

Example: DD Protocol
Bellare-Impagliazzo-Naor 1997

Prover Verifier
pick r , e = 0 or 1

pick r ′, e′ = 0 or 1
y←−−−−−−−−−−−−− y = commit(e; r)

y ′ = commit(e′; r ′)
y ′−−−−−−−−−−−−−→
r ,e←−−−−−−−−−−−−−

r ′,e′−−−−−−−−−−−−−→ check y ′ = commit(e′; r ′)
accept (final)←−−−−−−−−−−−−− if e 6= e′

• commitment perfectly hiding and computationally binding
• for any (polynomial) prover, probability of acceptance is

negligibly close to 1
2

SV 2025 The Power of Interaction EPFL 247 / 529

Parallel Composition of DD

Prover Verifier
pick r1, r2, e1, e2 = 0 or 1

pick r ′1, r
′
2, e′

1, e
′
2 = 0 or 1

y1,y2←−−−−−−−−−−−− yi = commit(ei ; ri)

y ′
i = commit(e′

i ; r
′
i)

y ′
1,y

′
2−−−−−−−−−−−−→

r1,r2,e1,e2←−−−−−−−−−−−−
r ′1 ,r

′
2 ,e

′
1,e

′
2−−−−−−−−−−−−→ check y ′

i = commit(e′
i ; r

′
i)

accept (final)←−−−−−−−−−−−− if e1 6= e′
1 and e2 6= e′

2

• we would expect that for any prover, the probability to pass is
≤ 1

4 + negl...

SV 2025 The Power of Interaction EPFL 248 / 529

Example: DD Protocol

• a prover can win 2 parallel repetitions with probability 1
2

(instead of 1
4)

Prover Verifier
pick r1, r2, e1, e2 = 0 or 1

y1,y2←−−−−−−−−−− yi = commit(ei ; ri)

set y ′1 = y2, y ′2 = y1
y ′1,y

′
2−−−−−−−−−−→

r1,e1,r2,e2←−−−−−−−−−−
r2,e2,r1,e1−−−−−−−−−−→ check

win iff e1 6= e2

SV 2025 The Power of Interaction EPFL 249 / 529

IP Class

Definition (IP Language)
A language L over the alphabet Z belongs to the class IP if
there exists an interactive proof system for L.

SV 2025 The Power of Interaction EPFL 250 / 529

Example: a Proof System for any NP Language

Theorem

NP ⊆ IP

Proof. Let L be a language in the NP class: define R.

Prover Verifier
x

find w
w (final)−−−−−−−−−−−−−→

accept (final)←−−−−−−−−−−−−− if R(x ,w) = 1

• we have perfect completeness
• we have perfect soundness (β = 0)

SV 2025 The Power of Interaction EPFL 251 / 529

PSPACE Class

Definition (PSPACE Language)
A language L over the alphabet Z belongs to the class
PSPACE if there exists an algorithm A working with a
polynomially bounded memory such that

L = {x ∈ Z ∗;A(x)→ accept}

We have NP ⊆ PSPACE because A can do an exhaustive
search on the witness and check it with limited space.

Theorem (Shamir 1992)
IP = PSPACE .

SV 2025 The Power of Interaction EPFL 252 / 529

Complexity Classes

PNP co-NP

IP

SV 2025 The Power of Interaction EPFL 253 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction
Interactive Proofs
Zero-Knowledge
Zero-Knowledge Construction from Σ Protocol
Setup Models
A Building Block for Making Cryptographic Primitives

5 Cryptanalysis (Conventional)

6 Proving Security

SV 2025 The Power of Interaction EPFL 254 / 529

Zero-Knowledge Interactive Proof

Definition (ZKIP)
An interactive proof system (P,V) is ∗-zero-knowledge if for
any ppt interactive machine V∗ there exists a ppt algorithm S
such that for any x ∈ L ViewV∗

(
P(rP)

x↔ V∗(rV)
)

and S(x ; r)
produce ∗-indistinguishable distributions.

∀V∗ ppt ∃S ppt ∀x ViewV∗(x)
∗∼ OutS(x)

Several ∗-indistinguishability notions:
• ∗=perfect: ∗-identical means identical
• ∗=statistical: ∗-identical means the statistical distance is

negligible in terms of |x |
• ∗=computational: ∗-identical means any ppt distinguisher

has an advantage which is negligible in terms of |x |

SV 2025 The Power of Interaction EPFL 255 / 529

Zero-Knowledge Levels

∀x ViewV∗(x)
∗∼ OutS(x)

ViewV∗(x): what comes from interacting with powerful prover
OutS(x): what comes from from powerless simulator
• Perfect. No matter the complexity of the distinguisher, the

advantage is null.

∀x ∀v Pr[ViewV∗(x) = v] = Pr[OutS(x) = v]

• Statistical. No matter the complexity of the distinguisher,
the advantage is negligible.

∀x ∀D |Pr[D(ViewV∗(x))]− Pr[D(OutS(x))]| = negl(|x |)

• Computational. With a distinguisher of ppt complexity, the
advantage is negligible.

∀x ∀D ppt |Pr[D(ViewV∗(x))]−Pr[D(OutS(x))]| = negl(|x |)

SV 2025 The Power of Interaction EPFL 256 / 529

Example: Goldwasser-Micali-Rackoff 1989

language: set of pairs (n, v) such that v is a quadratic
residue modulo n

Prover Verifier
(n, v)

find s st v = s2 mod n
pick r ∈ Z∗n, x = r2 mod n x−−−−−−−−→

e←−−−−−−−− e = 0 or 1
y = ser mod n

y−−−−−−−−→ check y2 ≡ vex (mod n)
and gcd(x , n) = 1

SV 2025 The Power of Interaction EPFL 257 / 529

GMR89 - Completeness

completeness:

Prover (n, v) Verifier
find s st v = s2

pick r , x = r2 x−−−−−−−−−−−−−−→
e←−−−−−−−−−−−−−− e = 0, 1

y = ser
y−−−−−−−−−−−−−−→ check y2 = vex

if Prover and Verifier follow the protocol, then it always
succeeds

Pr[P ↔ V accept] = 1

SV 2025 The Power of Interaction EPFL 258 / 529

GMR89 - Soundness
β-soundness with β = 1

2 :

Prover (n, v) Verifier

x−−−−−−−−−−−−−−→
e←−−−−−−−−−−−−−− e = 0, 1
y−−−−−−−−−−−−−−→ check y2 = vex

if Verifier follows the protocol and accepts with probability > 1
2 then v

is a quadratic residue

Pr[P∗ ↔ V accept] >
1
2
=⇒ v quadratic residue

• If the protocol succeeds with probability > 1
2 , there must be at

least one rP for which the probability (over e) that the verifier
accepts is > 1

2

• there is one x for which the verifier accepts ye to challenge e
• y2

0 = x and y2
1 = vx so v = (y1/y0)

2: v is a quadratic residue

SV 2025 The Power of Interaction EPFL 259 / 529

GMR89 - Zero-Knowledge
Prover (n, v) Verifier

find s st v = s2 mod n
pick r , x = r2 x−−−−−−−−−−−−−−→

e←−−−−−−−−−−−−−−
y = ser

y−−−−−−−−−−−−−−→
Zero-Knowledge: if Prover follows the protocol, we can make a
Simulator which generates random views (n, v , x , y ; rV) with the same
distribution: for all (n, v) ∈ L,

∀V∗ ∃S
(

View(P n,v←→ V∗)
)
= distribution (S(n, v))

• pick e0 ∈ {0, 1} at random
• pick x = y2v−e0 with y random

(distribution of x like in P and independent from e0)
• run V∗(n, v , x ; rV) with random rV

• if V∗ yields e 6= e0, try again, otherwise, output (n, v , x , y ; rV)

to do: the distribution is the same + S is polynomially bounded
SV 2025 The Power of Interaction EPFL 260 / 529

Black-Box Zero-Knowledge

Definition (Black-Box ZK)
An interactive proof system (P,V) is ∗-black-box
zero-knowledge if there exists a ppt oracle machine S such
that any ppt interactive machine V∗ and any x ∈ L,

ViewV∗
(
P(rP)

x↔ V∗(rV)
)

and SV∗(x ; r) produce ∗-identical distributions.

SV∗ means that algorithm S can use the algorithm V∗ as a
subroutine and select all its inputs

regular ZK: ∀V∗ ∃S ∀x ViewV∗(x) ∼ OutS(x) slide 255

BB ZK: ∃S ∀V∗ ∀x ViewV∗(x) ∼ OutS(x)

SV 2025 The Power of Interaction EPFL 261 / 529

Example

In the GMR89 protocol the simulator was black-box!

SV 2025 The Power of Interaction EPFL 262 / 529

Example: Goldreich-Micali-Wigderson 1986
language: set of graphs (V ,E) such that there exists a

mapping φ : V → {1, 2, 3} such that for each
(u, v) ∈ E then φ(u) 6= φ(v)

Prover Verifier
(V ,E)

find φ

repeat #E times
pick π ∈ S3

ru for each u ∈ V
cu = π(φ(u))

Ru = commit(cu, ru)
R−−−−−−−−−−−−−→

u,v←−−−−−−−−−−−−− pick (u, v) ∈ E
if (u, v) ∈ E

cu ,cv ,ru ,rv−−−−−−−−−−−−−→ check Ru,Rv
check cu 6= cv

SV 2025 The Power of Interaction EPFL 263 / 529

Graph Coloring

• a graph is a pair (V ,E) such that E ⊆ V × V
V is a set of vertices
E is a set of edges
an edge (u, v) ∈ E is said to go from vertex u to vertex v
• a function φ : V → {1, 2, . . . , n} is a coloring of (V ,E) in n

colors if for any (u, v) ∈ E we have φ(u) 6= φ(v)
• graph 2-colorability can be decided in linear time
• graph 3-colorability is an NP-complete problem

SV 2025 The Power of Interaction EPFL 264 / 529

GMW86 - Completeness

completeness:

Prover φ (V ,E) Verifier
pick π ∈ S3, r (#E times)
cu = π(φ(u))

Ru = commit(cu, ru)
R−−−−−−−−−−−−−−→

u,v←−−−−−−−−−−−−−− pick (u, v) ∈ E
cu ,cv ,ru ,rv−−−−−−−−−−−−−−→ check

if Prover and Verifier follow the protocol, then it always
succeeds

Pr[P ↔ V accept] = 1

SV 2025 The Power of Interaction EPFL 265 / 529

GMW86 - Soundness (sketch)
2
3 -soundness with β = 2

3 for #E ≥ 5:

(V ,E) Verifier
(#E times)

R−−−−−−−−−−−−−−→
u,v←−−−−−−−−−−−−−− pick (u, v) ∈ E

cu ,cv ,ru ,rv−−−−−−−−−−−−−−→ check

Pr[P∗ ↔ V accept] ≤ 2
3
⇐= graph non-colorable

• if there is no possible φ then at least one edge is incorrect
so each iteration may fail with probability at least 1

#E
(assume the commitment to be perfectly binding!)
• all iterations pass with probability at most(

1− 1
#E

)#E
≤ e−1

SV 2025 The Power of Interaction EPFL 266 / 529

GMW86 - Zero-Knowledge (sketch)
Prover φ (V ,E)
pick π ∈ S3, r (#E times)
cu = π(φ(u))

Ru = commit(cu, ru)
R−−−−−−−−−−−−−−→

u,v←−−−−−−−−−−−−−−
cu ,cv ,ru ,rv−−−−−−−−−−−−−−→

Zero-Knowledge: if Prover follows the protocol, we can make a
Simulator which generate random views with the same
distribution

∃S ∀V∗ distribution
(

View(P V ,E←→ V∗)
)
= distribution

(
SV∗(V ,E)

)
• guess (u, v), make cu, cv , ru, rv such that it works and

make random commitments for the other vertices
• run V∗ on the constructed R
• if V∗ yields e 6= (u, v), rewind it and try again, otherwise,

output cu,v , ru, rv

SV 2025 The Power of Interaction EPFL 267 / 529

Some Further Technicalities

• assuming that the commitment is computationally hiding
and perfectly binding

soundness works
(prover can open commitment on at most one color)
zero-knowledge is computational
(cannot distinguish simulated commitments from real ones)

• assuming that the commitment is perfectly hiding and
computationally binding

zero-knowledge is perfect (distributions are equal)
soundness is only true in a weaker form

SV 2025 The Power of Interaction EPFL 268 / 529

Consequence: NP has Zero-Knowledge Proofs

Theorem (Goldreich-Micali-Wigderson 1986)
Assuming that a computationally hiding and perfectly binding
commitment exists, for all language L ∈ NP there exists a
computational zero-knowledge interactive proof.

SV 2025 The Power of Interaction EPFL 269 / 529

Proof of Knowledge
Definition
Given a language L ∈ NP over an alphabet Z defined by a relation
R, an interactive proof of knowledge for L is a pair (P,V) of
interactive machines such that there exist a polynomial P and β such
that 0 ≤ β < 1 and

• termination: [as for interactive proof systems]

• perfect completeness: [as for interactive proof systems]

• β-soundness: there exists an oracle algorithm E called
extractor verifying what follows. For any P∗ we let

ε(x) = Pr
rP ,rV

[
OutV

(
P∗(rP)

x↔ V(rV)
)
= accept

]
If ε(x) > β then EP∗

(x) outputs w such that R(x ,w) holds with
complexity at most P(|x |)/(ε(x)− β).

EP∗
means that E can use P∗ as a subroutine and select its inputs

(note: access to P∗ counts as 1 in the complexity)
SV 2025 The Power of Interaction EPFL 270 / 529

Typical Prover

the typical provers that we have seen so far:
1 P finds w such that R(x ,w) by exhaustive search
2 P runs an algorithm based on x and w

typically: second step is polynomial

equivalent definition
• P uses w as a private input
• P is a polynomially bounded algorithm

this is closer to practical use as we want P to prove efficiently
that he knows w

SV 2025 The Power of Interaction EPFL 271 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction
Interactive Proofs
Zero-Knowledge
Zero-Knowledge Construction from Σ Protocol
Setup Models
A Building Block for Making Cryptographic Primitives

5 Cryptanalysis (Conventional)

6 Proving Security

SV 2025 The Power of Interaction EPFL 272 / 529

Motivation

Σ-protocols make the design of ZK proofs of knowledge easier

SV 2025 The Power of Interaction EPFL 273 / 529

Σ Protocol
Definition
Given a language L ∈ NP over an alphabet Z defined by a relation
R, a Σ-protocol for L is a pair of interactive machines P(x ,w) and
V(x) such that

• V is polynomially bounded

• 3-move: P starts with a message a, V answers with a challenge
e ∈U E , P terminates with a response z, V accepts (always for
x ∈ L) or reject only depending on (x , a, e, z)

• special soundness: there exists a polynomially bounded
algorithm E called extractor such that for any x , if (x , a, z; r) and
(x , a, z ′; r ′) are two accepting views for V such that e 6= e′ where
e = V(x , a; r) and e′ = V(x , a; r ′) then E(x , a, e, z, e′, z ′) yields w
such that R(x ,w)

• special HVZK: there exists a polynomially bounded algorithm S
called simulator such that for any x ∈ L and e, the transcript
(a, e, z) of the interaction P(rP)

x↔ V(rV) conditioned to e has
same distribution as S(x , e; r). (PrP↔V [a, z|x , e] = PrS [a, z|x , e])
SV 2025 The Power of Interaction EPFL 274 / 529

Σ Protocol

Prover Verifier
w x

a← P(x ,w ; rP)
a−−−−−−−−−−−−−→
e←−−−−−−−−−−−−− pick e ∈U E

z ← P(x ,w , e; rP)
z−−−−−−−−−−−−−→ check V (x , a, e, z)

• w s.t. R(x ,w)

• E s.t. e 6= e′, V (x , a, e, z), and V (x , a, e′, z ′) implies
R(x , E(x , a, e, z, e′, z ′))
• S s.t. a honest (a, e, z) and S(x , e) generate the same

distribution

SV 2025 The Power of Interaction EPFL 275 / 529

Specifying a Σ Protocol
To fully define a Σ-protocol we need
• a relation R defining the language
• a function for a = P(x ,w ; rP)
• a samplable domain E for e
• a function for z = P(x ,w , e; rP)
• a verification relation V (x , a, e, z)
• a function E(x , a, e, z, e′, z ′)
• a function S(x , e; r)

Properties to satisfy:
1 R, P, V , E , S and sampling are polynomially computable in
|x |

2 ∀(x ,w) ∈ R ∀rP ∀e ∈ E V (x , a, e, z)
3 ∀x ∀e, e′ ∈ E ∀a, z, z ′

(e 6= e′,V (x , a, e, z),V (x , a, e′, z ′)) =⇒
R(x , E(x , a, e, z, e′, z ′))

4 ∀(x ,w) ∈ R ∀e ∈ E distribrP (a, e, z) = distribr (S(x , e; r))
SV 2025 The Power of Interaction EPFL 276 / 529

Example: Goldreich-Micali-Wigderson 1986
• relation R((G0,G1), φ): φ invertible and φ(G0) = G1
• P(G0,G1, φ; rP), e domain, P(G0,G1, φ, e; rP),

V (G0,G1,H, e, σ)
Prover Verifier

φ st φ(G0) = G1 (G0,G1)
pick π invertible pick e ∈ {0, 1}

H = π(G0)
H−−−−−−−−−−−−−→
e←−−−−−−−−−−−−−

σ = π ◦ φ−e σ−−−−−−−−−−−−−→ σ(Ge)
?
= H

G0

H

G1

φ

π

π◦φ−1

• E(G0,G1,H, e, σe, e′, σe′) = σ−1
1 ◦ σ0 (e 6= e′ so

{e, e′} = {0, 1})
• S(G0,G1, e; r): pick σ invertible then set H = σ(Ge)

SV 2025 The Power of Interaction EPFL 277 / 529

Graph Isomorphism

• a graph is a pair (V ,E) such that E ⊆ V × V
V is a set of vertices
E is a set of egdes
an edge (u, v) ∈ E is said to go from vertex u to vertex v
• given a permutation π of V , π(V ,E) = (V ,F) where F is

the set of all (π(u), π(v)) for (u, v) ∈ E
• the graphs G and G′ on the same vertex set V are

isomorphic if there exists a permutation π over V such
that π(G) = G′

SV 2025 The Power of Interaction EPFL 278 / 529

Check List

1 R, P, V , E , S and sampling are polynomially computable in
|G0,G1|

2 perfect completeness: quite clear
3 ∀(G0,G1, φ) ∈ R ∀H, σ0, σ1

(V (G0,G1,H, 0, σ0),V (G0,G1,H, 1, σ1)) =⇒
R(G0,G1, E(G0,G1,H, 0, σ0, 1, σ1))

4 ∀(G0,G1, φ) ∈ R ∀e distribrP (H, e, σ) =
distrib(S(G0,G1, e))

since H is a function of G0,G1, e, σ, it is enough to show
that ∀(G0,G1, φ) ∈ R ∀e, σ = π ◦ φ−e is uniformly
distributed in SV if π ∈U SV
this is true

SV 2025 The Power of Interaction EPFL 279 / 529

ZK Trick
An easy way to prove special HVZK for V of form

∀x , a, e, z V (x , a, e, z)⇐⇒ a = f (x , e, z)

(most of Σ-protocols are like this)
• define
S(x , e; r):

1: pick z
2: set a = f (x , e, z)

• use z well distributed, i.e. such that:

∀x , e, z Pr[ViewV → z|x , e] = Pr[S → z|x , e]

• conclude:

∀x , a, e, z Pr[ViewV → a, z|x , e] = Pr[S → a, z|x , e]

SV 2025 The Power of Interaction EPFL 280 / 529

A Malicious Prover

S: as on previous slide

P∗ Verifier
x

pick eguess ∈U E
S(x , eguess)→ (a, eguess, z)

a−−−−−−−−−−−−−−→
if e 6= eguess: fail! e←−−−−−−−−−−−−−− pick e ∈U E

z−−−−−−−−−−−−−−→ check V (x , a, e, z)

P∗ succeeds with probability 1/#E

SV 2025 The Power of Interaction EPFL 281 / 529

Σ Protocols are Proof of Knowledge — i

Theorem
A Σ protocol (P,V) for L defined by R is an interactive proof of
knowledge for L, with β-soundness for β = 1/#E.

Proof. Termination and completeness come from the definition.
Extractor (sketch):
• pick rP , rV , r ′V and run P∗(rP)

x↔ V(rV) and P∗(rP)
x↔ V(r ′V)

• we have same a, if e 6= e′ and the two runs accept then
E(x , a, e, z, e′, z ′) yields w
• extraction works iff both runs accept and e 6= e′

• problem: prove that it works within O
(

1
ε(x)−β

)
attempts

SV 2025 The Power of Interaction EPFL 282 / 529

Σ Protocols are Proof of Knowledge — ii
run 1

P∗(rP)
x↔ V(rV) makes (a, e, z)

and the acceptance bit b
• Pr[b = 1] = ε(x)
• Pr[b = 1|rP] = ε(x , rP)

• E(ε(x , rP)) = ε(x)

run 2

P∗(rP)
x↔ V(r ′V) makes (a, e′, z ′)

and the acceptance bit b′

• Pr[b′ = 1] = ε(x)
• Pr[b′ = 1|rP] = ε(x , rP)

• E(ε(x , rP)) = ε(x)
extraction works iff bb′ = 1, and e 6= e′

• if rP is fixed, b resp b′ only depends on rV resp r ′V
• if rP is fixed, b and b′ are iid
• Pr[bb′ = 1|rP] = ε(x , rP)

2

• Pr[bb′ = 1, e 6= e′|rP] = Pr[bb′ = 1|rP]− Pr[bb′ = 1, e =
e′|rP]
• Pr[bb′ = 1, e = e′|rP] = Pr[b = 1, e = e′|rP] and

Pr[b = 1, e = e′|rP] =
∑

e st b=1
from rP

Pr[V(x , ·; rV) = e]2 = ε(x , rP)β

SV 2025 The Power of Interaction EPFL 283 / 529

Σ Protocols are Proof of Knowledge — iii

• Pr[bb′ = 1, e = e′|rP] = ε(x , rP)β

• Pr[bb′ = 1, e 6= e′|rP] = ε(x , rP)(ε(x , rP)− β)

• by applying the Jensen Inequality on Z = ε(x , rP), we
obtain Pr[bb′ = 1, e 6= e′] ≥ ε(x)(ε(x)− β)
(Jensen Inequality: E(f (Z)) ≥ f (E(Z)) if f is convex)
• the expected number of iterations until the extractor works

is lower than the inverse of this
• for ε(x) > β, since β > 0 is constant then 1/ε(x) = O(1)

so the extractor works with complexity O
(

Poly(|x |)
ε(x)−β

)

SV 2025 The Power of Interaction EPFL 284 / 529

Parallel Composition
Theorem
If (P,V) is a Σ-protocol on set E, what follows is a Σ-protocol
on E t .

• P(n, v , s; rP), domain for e, P(n, v , s, e; rP), V (n, v , x , e, y)

Prover Verifier
w st R(x ,w) x
pick r1, . . . , rt pick (e1, . . . , et) ∈ E t

ai = P(x ,w ; ri)
a1,...,at−−−−−−−−−−−−−→
e1,...,et←−−−−−−−−−−−−−

zi = P(x ,w , ei ; ri)
z1,...,zt−−−−−−−−−−−−−→

∧
i V (x , ai , ei , zi)?

• E(x , a, e, z, e′, z ′):
find i s.t. ei 6= e′i then do Eold(x , ai , ei , zi , e′i , z

′
i)

• S(x , e1, . . . , et ; r1, . . . , rt):
set (ai , ei , zi) = Sold(x , ei ; ri)

convenient to improve the soundness threshold!
SV 2025 The Power of Interaction EPFL 285 / 529

Honest Verifier Zero-Knowledge

Definition (HVZK)
An interactive proof system (P,V) is ∗-honest verifier
zero-knowledge if there exists a ppt algorithm S such that

ViewV
(
P(rP)

x↔ V(rV)
)

and S(x , r) produce ∗-identical distributions.

“ZK only when the verifier is honest”

SV 2025 The Power of Interaction EPFL 286 / 529

Σ Protocols are HVZK

Theorem
A Σ protocol (P,V) for L defined by R is honest verifier
zero-knowledge.

Proof. We construct a simulator for the honest V as follows:
1: pick a0, set e = V(x , a0; rV) ▷ V(., .; rV) is constant
2: pick r , compute (a, e, z) = S(x , e; r)
3: yield (x , a, z; rV) as the view ▷ note: V(x , a; rV) = e

• Pr[x , a, z, rV] = Pr[x , a, z|rV] Pr[rV] (Bayes)
• Pr[x , a, z|rV] = Pr[x , a, z|e, rV] (e is a function of rV)
• Pr[x , a, z|e, rV] = Pr[x , a, z|e] (only e depends on rV)
• Pr[view] = Pr[x , a, z|e] Pr[rV] = Pr[a, z|x , e] Pr[x] Pr[rV]

• PrP↔V [a, z|x , e] = PrS [a, z|x , e] due to special HVZK

SV 2025 The Power of Interaction EPFL 287 / 529

Zero-Knowledge on Small Challenge Set
Theorem
A Σ-protocol with a challenge set E with polynomially bounded size is
zero-knowledge.

Proof. Simulator:
1: pick eguess ∈ E ▷ a guess for e
2: run S(x , eguess)→ (a, eguess, z)
3: get e∗ = V∗(a; ρ) for ρ random
4: if e∗ 6= eguess: try again ▷ this trial failed
5: output (a, z; ρ)

• (a, eguess, z) has same distribution as (a, e, z) in P x↔ V
• same as

1: run P x↔ V where V selects a random e
2: if e 6= V∗(a; ρ) for ρ random: try again
3: output (a, z; ρ)

• Pr[¬try again] = 1/#E so it terminates with polynomial time

• final (a, z; ρ) has same distribution as for P x↔ V∗

SV 2025 The Power of Interaction EPFL 288 / 529

Σ Protocols are Not Always ZK

For a malicious V∗ who sets e = H(x , a):
• assume that e is large (#E super-polynomial)
• assume that H “looks like random” (to be formalized later)
• assume that finding a witness for x is hard
• then simulating the proof with V∗ is hard
• → not ZK
• (Fiat-Shamir result to be seen later)

SV 2025 The Power of Interaction EPFL 289 / 529

Summary about Composition

parallel composition sequential composition
proof systems it works it works
Σ-protocols it works it does not work
ZK proofs it may not work it works

• proof systems: soundness amplifies well

• Σ-protocols: a sequential repetition is no longer a Σ-protocol

• ZK proofs: counterexample
Σ-protocols are fully ZK if E is small (polynomial size) but not
fully ZK if E is large!

we don’t obtain a Σ-protocol

SV 2025 The Power of Interaction EPFL 290 / 529

Example: Fiat-Shamir 1986 Simplified
≈GMR89 slide 257

• relation R(v , s): s2v = 1
• P(v , s; rP), domain for e, P(v , s, e; rP), V (v , x , e, y)

Prover Verifier
s st s2v = 1 v

pick r pick e ∈ {0, 1}
x = r2 x−−−−−−−−−−−−−→

e←−−−−−−−−−−−−−
y = rse y−−−−−−−−−−−−−→ y2ve ?

= x
• E(v , x , e, ye, e′, ye′) = y1/y0 (e 6= e′ so {e, e′} = {0, 1})(

y1

y0

)2

v =
y2

1 v1

y2
0 v0

=
x
x
= 1

• S(v , e): pick y then set x = y2ve

SV 2025 The Power of Interaction EPFL 291 / 529

Example: Fiat-Shamir 1986
• relation R((n, v), s): s2v mod n = 1, v , s ∈ Z∗n
• P(n, v , s; rP), domain for e, P(n, v , s, e; rP), V (n, v , x , e, y)

Prover Verifier
s st s2v mod n = 1 (n, v)

pick r ∈ Z∗n pick e ∈ {0, 1}
x = r2 mod n x−−−−−−−−−−−−−→

e←−−−−−−−−−−−−−
y = rse mod n

y−−−−−−−−−−−−−→ y2ve mod n ?
= x

v , y
?
∈ Z∗n

• E(n, v , x , e, ye, e′, ye′) = y1/y0 mod n (e 6= e′ so
{e, e′} = {0, 1})(

y1

y0

)2

v ≡
y2

1 v1

y2
0 v0
≡ x

x
≡ 1 (mod n)

• S(v , e): pick y ∈ Z∗n then set x = y2ve mod n
SV 2025 The Power of Interaction EPFL 292 / 529

Check List

1 R, P, V , E , S and sampling are polynomially computable in
|instance|

2 perfect completeness: quite clear
3 special soundness: in previous slide
4 ∀(instance, s) ∈ R ∀e distribrP (x , e, y) =

distrib(S(instance, e))
since x is a function of instance, e, y , it is enough to show
that ∀(instance, s) ∈ R ∀e, y = rse mod n is uniformly
distributed in Z∗

n if r ∈U Z∗
n

this is true since (instance, s) ∈ R implies that s ∈ Z∗
n

SV 2025 The Power of Interaction EPFL 293 / 529

Example: Schnorr 1989 Simplified
• relation R(y , x): gx = y in a group 〈g〉
• P(y , x ; rP), domain for e, P(y , x , e; rP), V (y , r , e, s)

Prover Verifier
x st gx = y y

pick k pick e (can be large)
r = gk r−−−−−−−−−−−−−−→

e←−−−−−−−−−−−−−−
s = ex + k s−−−−−−−−−−−−−−→ rye ?

= gs

• E(y , r , e, s, e′, s′) = s−s′

e−e′

gs−s′
=

rye

rye′ = ye−e′

we extract (e − e′)-th roots and get g
s−s′
e−e′ = y

• S(y , e): pick s then set r = gsy−e

SV 2025 The Power of Interaction EPFL 294 / 529

Example: Schnorr 1989
• pp defines g, q, and a group 〈g〉 of prime order q
• relation R((pp, y), x): gx = y , q prime > 2t , g of order q
• P(pp, y , x ; rP), domain for e, P(pp, y , x , e; rP), V (pp, y , r , e, s)

Prover Verifier
x st gx = y (pp, y)
pick k ∈ Zq pick e ∈ {1, . . . , 2t}

r = gk r−−−−−−−−−−−−−−→ q prime > 2t

e←−−−−−−−−−−−−−− g of order q?, y
?
∈ 〈g〉

s = ex + k mod q s−−−−−−−−−−−−−−→ rye ?
= gs

• E(pp, y , r , e, s, e′, s′) = s−s′

e−e′ mod q we have gcd(e − e′, q) = 1
and g, y of order q

gs−s′
=

rye

rye′ = ye−e′

we extract (e − e′)-th roots and get g
s−s′
e−e′ = y

• S(pp, y , e; r): pick s ∈ Zq then set r = gsy−e
SV 2025 The Power of Interaction EPFL 295 / 529

Example: Schnorr 1989 Generalized

• group homomorphism φ : Zm
q → Gn, prime q

• relation R((φ, Y⃗), x⃗): φ(x⃗) = Y⃗

• P(Y⃗ , x⃗ ; rP), domain for e, P(Y⃗ , x⃗ , e; rP), V (Y⃗ , R⃗, e, s⃗)

Prover Verifier
x⃗ st φ(x⃗) = Y⃗ Y⃗

pick k⃗ ∈ Zm
q pick e ∈ Zq

R⃗ = φ(k⃗) R⃗−−−−−−−−−−−−−−→
e←−−−−−−−−−−−−−−

s⃗ = ex⃗ + k⃗ s⃗−−−−−−−−−−−−−−→ R⃗ + eY⃗ ?
= φ(⃗s)

• example: proof of discrete log equality gx
1 = y1 and gx

2 = y2

• example: proof of representation gx1
1 gx2

2 gx3
3 = y

SV 2025 The Power of Interaction EPFL 296 / 529

Check List

1 R, P, V , E , S and sampling are polynomially computable in
|instance|

2 perfect completeness: quite clear
3 special soundness: in previous slide
4 ∀(instance, x) ∈ R ∀e distribrP (r , e, s) =

distrib(S(instance, e))
since r is a function of instance and e, s, it is enough to
show that ∀(instance, x) ∈ R ∀e, s = ex + k mod q is
uniformly distributed in Zq if k ∈U Zq
this is true

SV 2025 The Power of Interaction EPFL 297 / 529

Problem with a Malicious Verifier

Prover Verifier
w st R(x ,w) x

pick rP

a = P(x ,w ; rP)
a−−−−−−−−−−−−−→ take e = f (x , a)
e←−−−−−−−−−−−−−

z = P(x ,w , e; rP)
z−−−−−−−−−−−−−→ V (x , a, e, z)?

• at the end, get (a, z) such that V (x , a, f (x , a), z)
• can be easily simulated if E is small but not when it is large
• not ZK if E is large

SV 2025 The Power of Interaction EPFL 298 / 529

Strengthening by Commitment

Prover Verifier
w st R(x ,w) x

pick rP pick e ∈ E
Commit(e;r)←−−−−−−−−−−−−− pick r

a = P(x ,w ; rP)
a−−−−−−−−−−−−−→

verify Commit(e; r)
e,r←−−−−−−−−−−−−−

z = P(x ,w , e; rP)
z−−−−−−−−−−−−−→ V (x , a, e, z)?

• now ∗-ZK if commitment is ∗-binding (next slide)
• caveat: problem with soundness...

SV 2025 The Power of Interaction EPFL 299 / 529

Proving the ZK Property

Prover Verifier
w st R(x ,w) x

pick rP
Commit(e;r)←−−−−−−−−−−−−−

a = P(x ,w ; rP)
a−−−−−−−−−−−−−→

verify Commit(e; r)
e,r←−−−−−−−−−−−−−

z = P(x ,w , e; rP)
z−−−−−−−−−−−−−→

• run V∗ once on rV and send him a dummy a0 to make him
open the commitment
• given e, generate a (a, e, z) triplet
• rewind V∗ and run it again on rV with a
• if e has changed, break the commitment!
• otherwise, yield the final view (x , a, z; rV)

SV 2025 The Power of Interaction EPFL 300 / 529

Strengthening by Commitment — Caveat

Prover Verifier
w st R(x ,w) x

pick rP pick e ∈ E
Commit(e;r)←−−−−−−−−−−−−− pick r

a = P(x ,w ; rP)
a−−−−−−−−−−−−−→

verify Commit(e; r)
e,r←−−−−−−−−−−−−−

z = P(x ,w , e; rP)
z−−−−−−−−−−−−−→ V (x , a, e, z)?

• ∗-ZK (commitment ∗-binding)
• problem: extractor no longer works

(our extractor would break the binding property)
• could work using a trapdoor to break the binding property

SV 2025 The Power of Interaction EPFL 301 / 529

Pedersen Commitment 1991

• setup: generate two large primes p and q s.t. q|(p − 1), an
element g ∈ Z∗

p of order q, τ ∈ Z∗
q , and h = gτ mod p

Domain parameters: 〈p, q, g, h〉
• commit: Commit(X ; r) = gX hr mod p

• unconditionally hiding

• computationally binding

• trapdoor

SV 2025 The Power of Interaction EPFL 302 / 529

Pedersen Commitment — i

h = gτ mod p Commit(X ; r) = gX hr mod p

• unconditionally hiding: given c in the subgroup spanned by g,
any X has a related r such that Commit(X ; r) = c

∀x Pr[gX hr = c|X = x] =
1
q

so c and X are statistically independent (perfect secrecy)

SV 2025 The Power of Interaction EPFL 303 / 529

Pedersen Commitment — ii

h = gτ mod p Commit(X ; r) = gX hr mod p

• computationally binding: commiting to X and opening to
X ′ 6= X leads to solving gX hr ≡ gX ′

hr ′ (mod p) hence
τ = X ′−X

r−r ′ mod q
This is equivalent to solving the discrete logarithm problem with
the domain parameters

Game Bind
1: Setup(1s)

$−→ (p, q, g, h)
2: A(p, q, g, h) $−→ (x , r , x ′, r ′)
3: return

1x≠x′,Commit(x ;r)=Commit(x′;r ′)

Game DL
1: Setup(1s)

$−→ (p, q, g)
2: pick τ ∈ Zq , h← gτ

3: B(p, q, g, h) $−→ z
4: return 1h=gz

B(p, q, g, h):
5: A(p, q, g, h) $−→ (x , r , x ′, r ′)
6: z ← x′−x

r−r ′ mod q
7: return z

SV 2025 The Power of Interaction EPFL 304 / 529

Pedersen Commitment — iii

h = gτ mod p Commit(X ; r) = gX hr mod p

• trapdoor: using τ we can open a commitment Commit(X0; r0)
on an arbitrary X :

Commit
(

X ; r0 +
X0 − X

τ

)
= gX hr0+

X0−X
τ = gX0hr0 = Commit(X0; r0)

SV 2025 The Power of Interaction EPFL 305 / 529

Strengthened Protocol

Prover Verifier
w st R(x ,w) x

pick rP pick e ∈ E
pick τ

h = gτ mod p h−−−−−−−−−−−−−→
Commith(e;r)←−−−−−−−−−−−−− pick r

a = P(x ,w ; rP)
a−−−−−−−−−−−−−→

verify Commit(e; r)
e,r←−−−−−−−−−−−−−

z = P(x ,w , e; rP)
z,τ−−−−−−−−−−−−−→ V (x , a, e, z)?

h ?
= gτ mod p

• now computational ZK (based on the hardness of discrete
logarithm)
• sound

SV 2025 The Power of Interaction EPFL 306 / 529

Proving Soundness
Prover Verifier

x
pick e ∈ E

h−−−−−−−−−−−−−→
Commith(e;r)←−−−−−−−−−−−−− pick r

a−−−−−−−−−−−−−→
e,r←−−−−−−−−−−−−−
z,τ−−−−−−−−−−−−−→ V (x , a, e, z)?

h ?
= gτ mod p

• run P∗ once on rP and simulate V with commitment c
• get τ at the end
• rewind P∗ and run it again on rP with same c
• open c on e′ (using τ) as in the standard extraction

SV 2025 The Power of Interaction EPFL 307 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction
Interactive Proofs
Zero-Knowledge
Zero-Knowledge Construction from Σ Protocol
Setup Models
A Building Block for Making Cryptographic Primitives

5 Cryptanalysis (Conventional)

6 Proving Security

SV 2025 The Power of Interaction EPFL 308 / 529

ZK from Σ-Protocol Again

Prover Verifier
w st R(x ,w) x

pick rP pick e ∈ E
pick τ

h = gτ mod p h−−−−−−−−−−−−−→
Commith(e;r)←−−−−−−−−−−−−− pick r

a = P(x ,w ; rP)
a−−−−−−−−−−−−−→

verify Commit(e; r)
e,r←−−−−−−−−−−−−−

z = P(x ,w , e; rP)
z,τ−−−−−−−−−−−−−→ V (x , a, e, z)?

h ?
= gτ mod p

Why not setting up h once for all as a common reference
string and give τ to the extractor?

SV 2025 The Power of Interaction EPFL 309 / 529

Common Reference String Model

CRS in Theory

• setup: generate a pair
(crs, τ) made of a common
reference string crs and a
trapdoor τ
• add crs as an input to P, V
• add τ as an input to the

extractor and the simulator

CRS in Practice

• use a generator for crs only
and a seed to convince that
it has been generated
without being able to
compute the trapdoor

SV 2025 The Power of Interaction EPFL 310 / 529

ZK from Σ-Protocol Again
Prover Verifier
w st R(x ,w) x

pick rP pick e ∈ E
pick τ

h = gτ mod p h−−−−−−−−−−−−−→ pick r
c←−−−−−−−−−−−−− c = gehr mod p

a = P(x ,w ; rP)
a−−−−−−−−−−−−−→

c ?
= gehr mod p

e,r←−−−−−−−−−−−−−
z = P(x ,w , e; rP)

z,τ−−−−−−−−−−−−−→ V (x , a, e, z)?

h ?
= gτ mod p

• need for Pedersen commitment looks artificial
• it only helps proving security
• it costs more computation
• why not using c = H(e‖r)?

SV 2025 The Power of Interaction EPFL 311 / 529

Random Oracle H (Lazy Sampling)

• setup: erase a table T
• query H(u):

look for some (u, v) pair in T
if there is none, pick v at random and insert (u, v) in T
answer by v

• a participant cannot predict the value of H(u) before a
query u is made

SV 2025 The Power of Interaction EPFL 312 / 529

Random Oracle Model

ROM in Theory

• setup: setup the random
oracle H
• provide P and V access to

oracle H
• allow the extractor to

simulate oracle H for P∗

• allow the simulator to
simulate oracle H for V∗

ROM in Practice

• use hash function at the
place of H

SV 2025 The Power of Interaction EPFL 313 / 529

Example

Prover Verifier
w st R(x ,w) x

pick rP pick e ∈ E
pick r

c←−−−−−−−−−−−−− c = H(e‖r)
a = P(x ,w ; rP)

a−−−−−−−−−−−−−→
c ?
= H(e‖r) e,r←−−−−−−−−−−−−−

z = P(x ,w , e; rP)
z−−−−−−−−−−−−−→ V (x , a, e, z)?

• soundness: keep same c in both runs but cheat on the
input e
• ZK: from the query by V∗ to H see if c is the commitment

of some e (if not V∗ is unlikely to be able to open it)

SV 2025 The Power of Interaction EPFL 314 / 529

Other Setup Models

• common reference string
• random oracle
• public key setup for all participants
• key registration to a public directory
• secure token, trusted agent

SV 2025 The Power of Interaction EPFL 315 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction
Interactive Proofs
Zero-Knowledge
Zero-Knowledge Construction from Σ Protocol
Setup Models
A Building Block for Making Cryptographic Primitives

5 Cryptanalysis (Conventional)

6 Proving Security

SV 2025 The Power of Interaction EPFL 316 / 529

Constructions

• non-interactive zero-knowledge proofs (NIZK) from
Σ-protocol
• signature from Σ-protocol
• trapdoor commitment from Σ-protocol
• hash function from Σ-protocol (in exercise)

SV 2025 The Power of Interaction EPFL 317 / 529

The Fiat-Shamir Paradigm 1986
NIZK from Σ-Protocol

(making the Σ verifier malicious by selecting e adaptively...)

Prover Verifier
w st R(x ,w) x

a−−−−−−→
e←−−−−−− e = H(x∥a)
z−−−−−−→ a,z−−−−−−→ V (x , a,H(x∥a), z)?

• replace V(x , a; rV) by a random oracle H(x‖a)
• the final view is a non-interactive proof
• a random oracle “looks like” a honest verifier
→ “kind of” zero-knowledge
• a simulator for the final view becomes a cheating prover
→ cannot be zero-knowledge and sound at the same time

SV 2025 The Power of Interaction EPFL 318 / 529

Fiat-Shamir Signature
Signature from Σ-Protocol

• public key: x
• secret key: (x ,w)
• signature:

1 pick rP , set a = P(x ,w ; rp)
2 replace V(x , a; rV) by e = H(message‖x‖a)
3 set z = P(x ,w , e; rP)
4 signature is the pair (a, z)

• verification: V (x , a,H(message‖x‖a), z)

SV 2025 The Power of Interaction EPFL 319 / 529

Fiat-Shamir Signature

Generator

?
6

R(x ,w)

6Secret key x ,w Public key x6AUTHENTICATION
INTEGRITY

-Message
Sign - - Verify

-
ok?

-Message
�

�
Adversary

m

pick rP
a = P(x ,w ; rP)
z = P(x ,w ,H(m∥x∥a); rP)

m, a, z m, a, z

V (x , a,H(m∥x∥a), z)?

m

SV 2025 The Power of Interaction EPFL 320 / 529

Full Fiat-Shamir Signature
Prover Verifier

s st s2v mod n = 1 (n, v)
pick ri ∈ Z∗n pick ei ∈ {0, 1}

xi = r2
i mod n

x1,...,xt−−−−−−−−−−−−−→
e1,...,et←−−−−−−−−−−−−−

yi = risei mod n
y1,...,yt−−−−−−−−−−−−−→ y2

i vei mod n ?
= xi

• domain parameter: n
• public key: v
• secret key: s such that s2v mod n = 1
• signature: pick r⃗ , set xi = r2

i mod n, e⃗ = H(message‖x⃗),
yi = risei mod n
signature is (x⃗ , y⃗)
• verification: y2

1 ve1 mod n = x1, . . . , y2
t vet mod n = xt with

e⃗ = H(message‖x⃗)

SV 2025 The Power of Interaction EPFL 321 / 529

Schnorr Signature
Prover Verifier
x st gx = y (G, q, g, y)
pick k ∈ Zq pick e ∈ {1, . . . , 2t}

r = gk r−−−−−−−−−−−−−→
e←−−−−−−−−−−−−−

s = ex + k mod q s−−−−−−−−−−−−−→ rye ?
= gs

• domain parameter: G, q, g
• public key: y
• secret key: x such that gx = y
• signature: pick k , set r = gk , e = H(message‖r),

s = ex + k mod q
signature is (e, s) (equivalent to (r , s) by r = y−egs)
• verification: e = H(message‖y−egs) (equivalent to

ryH(message∥r) = gs)

SV 2025 The Power of Interaction EPFL 322 / 529

Schnorr Signature

Generator

?
6

y = gx

6Secret key x Public key y6AUTHENTICATION
INTEGRITY

-Message
Sign - - Verify

-
ok?

-Message
�

�
Adversary

m

r = gk

e = H(m, r)
s = ex + k mod q

m, e, s m, e, s

r = gsy−e

e ?
= H(m, r)

m

r = gk r−−−−−−→
e←−−−−−− e ∈U {1, . . . , 2t}

s = ex + k mod q s−−−−−−→ rye ?
= gs

SV 2025 The Power of Interaction EPFL 323 / 529

The Security of a Fiat-Shamir Signature in ROM

Theorem
Given a relation R s.t. it is hard to find witnesses and a
Σ-protocol for its language s.t. 1/#E = negl, the signature
scheme obtained by the Fiat-Shamir construction using a
random oracle is EF-CMA-secure (existentially unforgeable
under chosen message attacks).

(to be seen in another chapter)

SV 2025 The Power of Interaction EPFL 324 / 529

Trapdoor Commitment

Commitment on e ∈ E based on a Σ-protocol such that finding
a witness is hard
• Setup→ (x ,w): take a parameter (crs) x ∈ L such that

nobody knows a witness (trapdoor) w s.t. (x ,w) ∈ R
• Commit(x , e)→ (a, z): to commit to e ∈ E , pick r and let
(a, e, z) = S(x , e; r)
commit value is a
opening key is (e, z)
• Open(x , a, e, z)→ 0/1: check V (x , a, e, z) holds
• perfectly hiding (distribution of a independent from e)
• computationally binding (otherwise extract w)
• trapdoor w : make (using P) a commit value a which can

open to any e

SV 2025 The Power of Interaction EPFL 325 / 529

Conclusion

• interaction opens new computational powers (PSPACE
instead of P)
• zero-knowledge proof feasible
• nice building block for cryptographic primitives
• theoretical crypto foundation

SV 2025 The Power of Interaction EPFL 326 / 529

References — i

• Goldwasser-Micali-Rackoff.
The Knowledge Complexity of Interactive Proof Systems.
SIAM Journal of Computing, 18(1), 1989.
• Goldreich-Micali-Wigderson.

Proofs that Yield Nothing But their Validity and a
Methodology of Cryptographic Protocol Design.
In FOCS 1986, IEEE.
• Goldreich-Micali-Wigderson.

How to Prove all NP Statements in Zero-Knowledge and a
Methodology of Cryptographic Protocol Design
In CRYPTO 1986, LNCS 218.
• Fiat-Shamir.

How to Prove Yourself: Practical Solutions to Identification
and Signature Problems.
In CRYPTO 1986, LNCS 218.

SV 2025 The Power of Interaction EPFL 327 / 529

References — ii

• Schnorr.
Efficient Identification and Signatures for Smart Cards.
In EUROCRYPT 1989, LNCS 434.
In CRYPTO 1989, LNCS 435.
• Pass.

On Deniability in the Common Reference String and
Random Oracle Model.
In CRYPTO 2003, LNCS 2729.
• Damgård.

On the Existence of Bit Commitment Schemes and
Zero-Knowledge Proofs.
In CRYPTO 1989, LNCS 435.

SV 2025 The Power of Interaction EPFL 328 / 529

Train Yourself
• Σ-protocol:

final exam 2008–09 ex2 (cubic residues)
final exam 2009–10 ex1 (chameleon hash)
final exam 2010–11 ex1
final exam 2015–16 ex1 (in a group of exponent 2)
final exam 2020–21 ex3 (MPC-in-the-head)
final exam 2021–22 ex1 (DLEQ)
midterm exam 2022–23 ex2 (DLEQ)

• OR proof: final exam 2010–11 ex1
• GQ: final exam 2008–09 ex3
• setup: final exam 2009–10 ex3
• ZKPoK and composition:

final exam 2013–14 ex1 (security interference)
final exam 2016–17 ex2 (ZKPoK from Σ)

• weak Fiat-Shamir: final exam 2014–15 ex2
• Unruh transform: final exam 2017–18 ex3
• soundness of DLEQ: final exam 2023–24 ex1SV 2025 The Power of Interaction EPFL 329 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security

SV 2025 Cryptanalysis (Conventional) EPFL 337 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)
Block Ciphers
Differential Cryptanalysis
Linear Cryptanalysis
Hypothesis Testing in Cryptography
Decorrelation

6 Proving Security

SV 2025 Cryptanalysis (Conventional) EPFL 338 / 529

Block Cipher

C- -

6

plaintext block ciphertext block

secret key

C−1� �

?

plaintext block ciphertext block

SV 2025 Cryptanalysis (Conventional) EPFL 339 / 529

Example: DES

IP−1

?
Y

Feistel

?

IP

?

?
X

�
K16

�K1
�
K2
...

schedule

?

K

SV 2025 Cryptanalysis (Conventional) EPFL 340 / 529

DES — Feistel Scheme

Ψ(F K1 ,F K2 ,F K3)

⊕
??

��

⊕
??

��

⊕
?

?

?
��

?

F

K1

F

K2

F

K3

SV 2025 Cryptanalysis (Conventional) EPFL 341 / 529

Distinguishing Attack on Ciphers
Indinstinguishability from an ideal scheme is another security
model

distinguisher - 0 or 1

x
�	

y
C or C∗

• C: permutation (block cipher) defined by a random key
• C∗: uniformly distributed random permutation (ideal

scheme)
• Advantage: Pr[output = 1|C]− Pr[output = 1|C∗]

SV 2025 Cryptanalysis (Conventional) EPFL 342 / 529

Perfect Cipher

Definition

Given a message block space {0, 1}ℓ, a key K is a uniformly
distributed integer between 1 and 2ℓ!, and CK is the K th
permutation of {0, 1}ℓ.

Reminder (Stirling Formula)

n! ∼
√

2πnnne−n

Number of bits to represent K : log2(2ℓ!) ≈ ℓ2ℓ...
Example for ℓ = 64: log2(2ℓ!) ≈ 1 180 591 620 717 411 303 424
bits
(1 048 576 Petabytes)

SV 2025 Cryptanalysis (Conventional) EPFL 343 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)
Block Ciphers
Differential Cryptanalysis
Linear Cryptanalysis
Hypothesis Testing in Cryptography
Decorrelation

6 Proving Security

SV 2025 Cryptanalysis (Conventional) EPFL 344 / 529

History

• invented by Eli Biham and Adi Shamir (Biham’s PhD
Thesis)
• 1990: broke DES-like ciphers
• 1992: theoretical attack against DES requiring 247 chosen

plaintexts (not realistic enough to be called an attack)
• 1993: breakdown if the design of DES is slightly modified
• 1994: Coppersmith claimed that DES was designed to

optimally resist it

SV 2025 Cryptanalysis (Conventional) EPFL 345 / 529

Chosen Plaintext Key Recovery Attack

?

� KEnc

?Plaintext Ciphertext

attacker

?
K

SV 2025 Cryptanalysis (Conventional) EPFL 346 / 529

Step 1: Cipher Decomposition

find an appropriate decomposition of following form

X

?

core

?
Z

post-enc

?
Y

�K2

� K1

� K

SV 2025 Cryptanalysis (Conventional) EPFL 347 / 529

Step 2: Deviant Property

find a deviant property of following form

Pr [∆Z = b|∆X = a] large

Difference: ∆Z = Z ′ ⊕ Z
• trick: look at difference propagation
• use heuristic approximations

SV 2025 Cryptanalysis (Conventional) EPFL 348 / 529

Step 3: Differential Computation
isolate (little) information about Y ,Y ′,K2 to filter out pairs s.t.
∆Z 6= b

we use a predicate R(κ, π(Y ,Y ′)) (assuming ∆Z = b):
“∆Z is consistent with κ and π(Y ,Y ′)”

∆X

?

core

?
∆Z

post-enc

?
π(Y ,Y ′)

�κ

�

� K

SV 2025 Cryptanalysis (Conventional) EPFL 349 / 529

Step 4: Implementation

Precomputation:
1: initialize SubCandidateu to

empty set for all u
2: for all u and all κ such

that R(κ, u), insert κ in
SubCandidateu

Collection phase:
3: collect n pairs ((x , y), (x⊕a, y ′))

of plaintext-ciphertext pairs

Analysis phase:
1: initialize counters mκ to 0
2: for each pair do
3: compute u = π(y , y ′)
4: for all κ ∈ SubCandidateu

increment mκ

5: end for
6: sort all possible κ in decreasing

order of mκ

Search phase:
7: for each sorted κ, exhaustively

look for K

SV 2025 Cryptanalysis (Conventional) EPFL 350 / 529

Differential Probability

Definition
Given a function f from {0, 1}p to {0, 1}q and given a ∈ {0, 1}p
and b ∈ {0, 1}q, we define

DPf (a, b) = Pr
X
[f (X ⊕ a) = f (X)⊕ b]

where X ∈U {0, 1}p.

• Property: DPf (0, b) =
{

1 if b = 0
0 otherwise

• Property: for all a,
∑

b∈{0,1}q

DPf (a, b) = 1

• Property: 2p.DPf (a, b) is even

SV 2025 Cryptanalysis (Conventional) EPFL 351 / 529

Differential Circuit — i: Duplicate Gate

computation circuit

X

?
Y

?
Z

X = Y = Z

differential circuit

∆X = a

?
∆Y = a

?
∆Z = a

∆X = a =⇒ ∆Y = ∆Z = a

SV 2025 Cryptanalysis (Conventional) EPFL 352 / 529

Differential Circuit — ii: XOR Gate

computation circuit

X

-

Y

�⊕

?
Z

Z = X ⊕ Y

differential circuit

∆X = a

-

∆Y = b

�⊕

?
∆Z = a⊕ b

(∆X = a,∆Y = b) =⇒ ∆Z = a⊕b

SV 2025 Cryptanalysis (Conventional) EPFL 353 / 529

Differential Circuit — iii: Linear Circuit

computation circuit

X
?

M

?
Y

Y = M × X

differential circuit

∆X = a
?

M

?
∆Y = M × a

∆X = a =⇒ ∆Y = M × a

SV 2025 Cryptanalysis (Conventional) EPFL 354 / 529

Addition and Duplicate Gates

XOR Gate

X

-

Y

�⊕

?
Z(

Z
)
=

(
1 1

)
×
(

X
Y

)

Duplicate Gate

X

?
Y

?
Z(

Y
Z

)
=

(
1
1

)
×
(

X
)

SV 2025 Cryptanalysis (Conventional) EPFL 355 / 529

Differential Circuit — iv: XOR to Constant Gate

computation circuit

X

?⊕� K

?
Y

Y = X ⊕ K

differential circuit

∆X = a

?⊕� ∆K = 0

?
∆Y = a

∆X = a =⇒ ∆Y = a

SV 2025 Cryptanalysis (Conventional) EPFL 356 / 529

Differential Circuit — v: Non-Linear Circuit

computation circuit

X
?

S

?
Y

Y = S(X)

differential circuit

∆X = a
?

p

?
∆Y = b

Pr[∆Y = b|∆X = a] = p

SV 2025 Cryptanalysis (Conventional) EPFL 357 / 529

Differential Characteristic

computation circuit

X
?

C′K1

?
Z

Z = C′K1
(X)

differential circuit

∆X = a
?

?
∆Z = b

Pr[∆Z = b|∆X = a] = DPC′K1 (a, b)

SV 2025 Cryptanalysis (Conventional) EPFL 358 / 529

DES (Reminder) — i

⊕
??

��

⊕
??

��

⊕
?

?

?
��

?

F

K1

F

K2

F

K3

32 bits 32 bits
48 bits

SV 2025 Cryptanalysis (Conventional) EPFL 359 / 529

DES (Reminder) — ii

output input

round key

� P � S � ⊕� E �?32 bits 32 bits

48 bits

• E : expansion (duplicate one bit out of two)
• ⊕: bitwise XOR with a round key
• S: substitution boxes (eight 6-to-4 bits mappings)
• P: permutation of bits

SV 2025 Cryptanalysis (Conventional) EPFL 360 / 529

DES (Reminder) — iii

P S ⊕ E

ou
tp

ut
32

bi
ts input

32
bits

round key 48 bits

S1

S2

S3

S4

S5

S6

S7

S8

⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕

SV 2025 Cryptanalysis (Conventional) EPFL 361 / 529

Differential Cryptanalysis of 8R-DES

red sub-characteristic:
DPF (0x04000000, 0x40080000) = 1

4

DPS2 (010, 0xA) = 1
4

p = 1 · 1
4 · 1 · · · 1

0
x
4
0
0
8
0
0
0
0

0
x
0
4
0
0
0
0
0
0

00 10 00 00 00 00 00 00(octal)0x0A000000

S1

S2

S3

S4

S5

S6

S7

S8

⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕

SV 2025 Cryptanalysis (Conventional) EPFL 362 / 529

Other Sub-Characteristic

blue sub-characteristic:
DPF (0x00540000, 0x04000000) =

5
128 DPS3 (012, 0x1) = 10

64

DPS4 (050, 0x0) = 16
64

p = 1 · 1 · 10
64 ·

16
64 · 1 · · · 1

0
x
0
4
0
0
0
0
0
0

0
x
0
0
5
4
0
0
0
0

00 00 12 50 00 00 00 00(octal)0x00100000

S1

S2

S3

S4

S5

S6

S7

S8

⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕

SV 2025 Cryptanalysis (Conventional) EPFL 363 / 529

Differential Characteristic

� P� S� E
⊕
�

� P� S� E
⊕
�

� P� S� E
⊕
�

� P� S� E
⊕
�

?⊕

?⊕

?⊕

?⊕
0x040000000x405c0000

p = 1
4Round #1

0x005400000x04000000

p = 5
128Round #2

00x00540000
0000 p = 1Round #3

0x005400000

p = 5
128Round #4

0x040000000x00540000

� P� S� E
⊕
�

� P� S� E
⊕
�

� P� S� E
⊕
�

� P� S� E
⊕
�

?⊕

?⊕

?⊕

?⊕

? ?

0x040000000x00540000

p = 1
4Round #5

0x405c00000x04000000
1
4
0
0
1
3
7
0
0
0
0
0
0
0
0
0

?
0
??
0
0
0
0

p = 1Round #6

?

p = 1Round #7

........
?

........

?
.??

....

? p = 1Round #8

................

a = 0x405c0000 0x04000000 b = 0x04000000 0x405c0000

DPcore(a, b) ≈ 2−13.4

SV 2025 Cryptanalysis (Conventional) EPFL 364 / 529

Ciphertext Pair Analysis (Predicate R)

Theorem
It the characteristic is satisfied (i.e., ∆Z = b), then(

P−1(∆yL ⊕ 04000000)
)

i
= Si(ki ⊕ E(yR)i)⊕ Si(ki ⊕ E(y ′R)i)

for i = 2, 5, 6, 7, 8

so, we can let
κ = (k2, k5, k6, k7, k8)

SV 2025 Cryptanalysis (Conventional) EPFL 365 / 529

Proof — i

� P� S� E
⊕
�?⊕

� P� S� E
⊕
�?⊕

� P� S� E�⊕? �?⊕

? ?

0x405c00000x04000000

?
0
?
?
0
0
0
0

β
Round #6

k?
.
?
?
.
.
.
.

α u
Round #8

yRyL

• ∆yL = 04000000⊕P(∆β ⊕∆α), ∆βi = 0 for i = 2, 5, 6, 7, 8
• so,

(
P−1(∆yL ⊕ 04000000)

)
i = ∆αi for i = 2, 5, 6, 7, 8

SV 2025 Cryptanalysis (Conventional) EPFL 366 / 529

Proof — ii

Let u = E(yR), u′ = E(y ′R), v = P−1(∆yL ⊕ 04000000),
∆α = S(k ⊕ u)⊕ S(k ⊕ u′)

∆α� ⊕
6

?

S

S

⊕

⊕

�

�

�

�

u′ = E(y ′R)

u = E(yR)

?

6

k

If (x , y) and (x ′, y ′) satisfy the characteristic, then vi = ∆αi for
i = 2, 5, 6, 7, 8.

SV 2025 Cryptanalysis (Conventional) EPFL 367 / 529

Listing Key Candidates
• If (x , y) and (x ′, y ′) satisfy the characteristic, then

v = P−1(yL ⊕ y ′L ⊕ 04000000)

tells the output XOR of Si in the last round for
i = 2, 5, 6, 7, 8.
• List of 6-bit key values given u, u′, and v

Define

SubCandidatei,µ,µ′,ν = {r ∈ {0, 1}6; ν = Si(µ⊕r)⊕Si(µ
′⊕r)}

• If u = E(yR) and u′ = E(y ′R), then∏
i∈{2,5,6,7,8}

SubCandidatei,ui ,u′i ,vi

tells the list of all potential κ = (k2, k5, k6, k7, k8) possible
candidates.
SV 2025 Cryptanalysis (Conventional) EPFL 368 / 529

Implementation
Precomputation:
1: initialize SubCandidatei,µ,µ′,ν to empty set for i = 2, 5, 6, 7, 8,

µ, µ′ ∈ {0, 1}6 and ν ∈ {0, 1}4

2: for i = 2, 5, 6, 7, 8, for all µ, µ′, r ∈ {0, 1}6, insert r in
SubCandidatei,µ,µ′,Si (µ⊕r)⊕Si (µ′⊕r)

Collection phase:
3: collect n pairs ((x , y), (x ⊕ a, y ′)) of plaintext-ciphertext pairs

Analysis phase:
4: initialize 230 counters mκ to 0
5: for each pair do
6: compute u = E(yR) and u′ = E(y ′

R) and
v = P−1(yL ⊕ y ′

L ⊕ 04000000)
7: for all κ = k2k5k6k7k8 such that ki ∈ SubCandidatei,ui ,u′

i ,vi for
i = 2, 5, 6, 7, 8, increment mκ

8: end for
9: sort all possible 30-bit subkeys κ in decreasing order of mκ

Search phase:
10: for each sorted k2k5k6k7k8, look for the remaining 26 bits

SV 2025 Cryptanalysis (Conventional) EPFL 369 / 529

Reminder

• E(X1 + · · ·+ Xn) = E(X1) + · · ·+ E(Xn)

• V (X1 + · · ·+ Xn) = V (X1) + · · ·+ V (Xn) when X1, . . . ,Xn
are independent
• V (X) = E(X)(1− E(X)) when X is Boolean (support in
{0, 1})
• informally, for X1, . . . ,Xn iid Boolean of exp. value µ we

have
X1 + · · ·+ Xn ≈ nµ±

√
nµ(1− µ)

SV 2025 Cryptanalysis (Conventional) EPFL 370 / 529

Complexity Analysis (Heuristic)

• The right 30-bit subkey candidate is suggested once per
iteration with probability p1 = DP = 2−13.4

Signal = np1 ±
√

np1

• Each iteration suggests 45 key candidates randomly, so
every candidate is suggested once per iteration with
probability p2 = 2−20

Noise = np2 ±
√

np2

• We need n such that
√

np1 � n(p1 − p2) ≈ np1

n� 1
DP

SV 2025 Cryptanalysis (Conventional) EPFL 371 / 529

Probability Density of Good and Bad Counters

y =
d
dx

Pr[counter ≤ x]

0

0.5

1

1.5

2

np2 np1 −
√

np1 np1

n = 3/p1

good κ
bad κ

SV 2025 Cryptanalysis (Conventional) EPFL 372 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)
Block Ciphers
Differential Cryptanalysis
Linear Cryptanalysis
Hypothesis Testing in Cryptography
Decorrelation

6 Proving Security

SV 2025 Cryptanalysis (Conventional) EPFL 373 / 529

History

• 1977 DES: an unpopular standard with secret rationales
• 1987 FEAL: a Japanese version
• 1990 Biham-Shamir: differential cryptanalysis
• 1990 Gilbert et al.
• 1993 Matsui: linear cryptanalysis
• 1994 Matsui: application to DES (requires 243 known

plaintexts)

SV 2025 Cryptanalysis (Conventional) EPFL 374 / 529

From Chosen to Known Plaintext Key Recovery

source

?

?

� KEnc

?Plaintext Ciphertext

attacker

?
K

SV 2025 Cryptanalysis (Conventional) EPFL 375 / 529

Step 1: Cipher Decomposition

find an appropriate decomposition of following form

X

?

core

?
Z

post-enc

?
Y

�K2

� K1

� K

(could use pre-encryption as well)

SV 2025 Cryptanalysis (Conventional) EPFL 376 / 529

Step 2: Deviant Property

∣∣∣∣Pr [Xi1 ⊕ · · · ⊕ Xir = Zj1 ⊕ · · · ⊕ Zjs
]
− 1

2

∣∣∣∣ large

Xi1 ⊕ · · · ⊕ Xir can be written a1X1 ⊕ · · · ⊕ apXp = a · X
Zj1 ⊕ · · · ⊕ Zjs can be written b1Z1 ⊕ · · · ⊕ bqZq = b · Z

SV 2025 Cryptanalysis (Conventional) EPFL 377 / 529

Step 3: Projection

(a · X)⊕ (b · Z) = P(κ, π(X ,Y))
a · X

?

?
b · Z

post-enc

?
Y

�κ

�h(K1)

� K

(could use pre-encryption as well)

SV 2025 Cryptanalysis (Conventional) EPFL 378 / 529

Step 4: Implementation

Collection phase:
1: for all possible u = π(X ,Y) do
2: initialize a counter nu to zero
3: end for
4: collect n Plaintext-Ciphertext

pairs (X ,Y)
5: for each (X ,Y) do
6: compute u = π(X ,Y)
7: increment nu
8: end for

Analysis phase:
1: for all possible κ do
2: compute

mκ =
∑

u s.t. P(κ,u)=0

nu

3: end for
4: sort all κ in decreasing order of
|mκ − n

2 |

Search phase:
5: for each sorted κ exhaustively

look for K
6: note: h(K2) is likely to be

1mκ<n/2

SV 2025 Cryptanalysis (Conventional) EPFL 379 / 529

Making Linear Characteristics
[Biham,Eurocrypt 94]

Goal: compute b · Z = (a · X)⊕ something biased
• Put a mask (b) at the end and perform the computation in

a reverse way.
• Go through substitution boxes as for the differential

cryptanalysis.
• Compute the product of all biases.

SV 2025 Cryptanalysis (Conventional) EPFL 380 / 529

Dual Circuit — i: XOR Gate

computation circuit

X

-

Y

�⊕

?
Z

Z = X ⊕ Y

mask circuit

mask = a

-

mask = a

�⊕

?
mask = a

a · Z = (a · X)⊕ (a · Y)

SV 2025 Cryptanalysis (Conventional) EPFL 381 / 529

Dual Circuit — ii: Duplicate Gate

computation circuit

X

?
Y

?
Z

X = Y = Z

mask circuit

mask = a⊕ b

?
mask = a

?
mask = b

(a · Y)⊕ (b · Z) = (a⊕ b) · X

SV 2025 Cryptanalysis (Conventional) EPFL 382 / 529

Dual Circuit — iii: Linear Circuit

computation circuit

X
?

M

?
Y

Y = M × X

mask circuit

mask = tM × a
?

M

?
mask = a

a · Y = (tM × a) · X

SV 2025 Cryptanalysis (Conventional) EPFL 383 / 529

Addition and Duplicate Gates

XOR Gate

X

-

Y

�⊕

?
Z(

Z
)
=

(
1 1

)
×
(

X
Y

)

Duplicate Gate

X

?
Y

?
Z(

Y
Z

)
=

(
1
1

)
×
(

X
)

SV 2025 Cryptanalysis (Conventional) EPFL 384 / 529

Dual Circuit — iv: XOR to Constant Gate

computation circuit

X

?⊕� K

?
Y

Y = X ⊕ K

mask circuit

mask = a

?⊕� mask = a

?
mask = a

a · Y = (a · X)⊕ (a · K)︸ ︷︷ ︸
constant

SV 2025 Cryptanalysis (Conventional) EPFL 385 / 529

Dual Circuit — v: Non-Linear Circuit

computation circuit

X
?

S

?
Y

Y = S(X)

mask circuit

mask = a
?

B

?
mask = b

b · Y = a · X ⊕ B︸︷︷︸
biased

SV 2025 Cryptanalysis (Conventional) EPFL 386 / 529

Linear Characteristic

computation circuit

X
?

C′K1

?
Z

Z = C′K1
(X)

mask circuit

mask = a
?

?
mask = b

(a ·X)⊕ (b ·Z) = bit(K1)⊕
n⊕

i=1

Bi

SV 2025 Cryptanalysis (Conventional) EPFL 387 / 529

Piling-up Lemma

Lemma (Piling up Lemma)
For any Boolean variable B we define
LP(B) = (2Pr[B = 0]− 1)2. Let B1, . . . ,Bn be n independent
random variables. We have

LP(B1 ⊕ . . .⊕ Bn) = LP(B1)× . . .× LP(Bn).

Proof. Note that
• LP(B) =

(
E
(
(−1)B))2,

• (−1)A⊕B = (−1)A × (−1)B,
• E(X × Y) = E(X)× E(Y) when X and Y are independent.

SV 2025 Cryptanalysis (Conventional) EPFL 388 / 529

Linear Probability

Definition
Given a function f from {0, 1}p to {0, 1}q and given a ∈ {0, 1}p
and b ∈ {0, 1}q, we define

LPf (a, b) =
(

2.Pr
X
[a · X = b · f (X)]− 1

)2

where X ∈U {0, 1}p.

a · X = a1X1 ⊕ · · · ⊕ apXp

b · Y = b1Y1 ⊕ · · · ⊕ bqYq

note: LPf (a, b) = LP((a · X)⊕ (b · f (X)))

SV 2025 Cryptanalysis (Conventional) EPFL 389 / 529

Link Between DPs and LPs
Theorem
Given a function f from {0, 1}p to {0, 1}q we have

LPf (α, β) = (2Pr [α · X = β · f (X)]− 1)2

DPf (a, b) = Pr [f (X ⊕ a)⊕ f (X) = b]

= 2−q
∑
α,β

(−1)a·α⊕b·βLPf (α, β)

Proof. First observe that LPf (α, β) =
(
E
(
(−1)(α·X)⊕(β·f (X))

))2
=

E
(
(−1)(α·(X⊕Y))⊕(β·(f (X)⊕f (Y)))

)
then

∑
α,β

(−1)a·α⊕b·βLPf (α, β) = E

∑
α,β

(−1)(α·(a⊕X⊕Y))⊕(β·(b⊕f (X)⊕f (Y)))


= 2p+qE

(
1X⊕Y=a,f (X)⊕f (Y)=b

)
= 2qDPf (a, b)

SV 2025 Cryptanalysis (Conventional) EPFL 390 / 529

Link Between DPs and LPs
Theorem
Given a function f from {0, 1}p to {0, 1}q we have

DPf (a, b) = Pr [f (X ⊕ a)⊕ f (X) = b]

LPf (α, β) = (2Pr [α · X = β · f (X)]− 1)2

= 2−p
∑
a,b

(−1)a·α⊕b·βDPf (a, b)

Proof.∑
a,b

(−1)a·α⊕b·βDPf (a, b) = 2−q
∑
a,b

∑
α′,β′

(−1)a·α⊕b·β(−1)a·α′⊕b·β′
LPf (α′, β′)

= 2−q
∑
α′,β′

∑
a,b

(−1)a·(α⊕α′)⊕b·(β⊕β′)LPf (α′, β′)

= 2p
∑
α′,β′

1α′=α,β′=βLPf (α′, β′)

= 2pLPf (α, β)

SV 2025 Cryptanalysis (Conventional) EPFL 391 / 529

Application to DES8

0x00008000
P←−−−−−−−−−−−−−−−−−−−−−−−− 0x40000000

S
(

LPS1 (020,4)=(2
32)

2
)

←−−−−−−−−−−−−−−−−−−−−−−−− 20 00 00 00 00 00 00 00
E←−−−−−−−−−−−−−−−−−−−−−−−− 0x20000000

0x01040080
P←−−−−−−−−−−−−−−−−−−−−−−−− 0x0000e000

S
(

LPS5 (042,e)=(16
32)

2
)

←−−−−−−−−−−−−−−−−−−−−−−−− 00 00 00 00 42 00 00 00
E←−−−−−−−−−−−−−−−−−−−−−−−− 0x00011000

SV 2025 Cryptanalysis (Conventional) EPFL 392 / 529

Other Sub-Characteristics

0x01040080
P←−−−−−−−−−−−−−−−−−−−−−−−− 0x0000e000

S
(

LPS5 (020,e)=(10
32)

2
)

←−−−−−−−−−−−−−−−−−−−−−−−− 00 00 00 00 20 00 00 00
E←−−−−−−−−−−−−−−−−−−−−−−−− 0x00008000

0x21040080
P←−−−−−−−−−−−−−−−−−−−−−−−− 0x0000f000

S
(

LPS5 (020,f)=(20
32)

2
)

←−−−−−−−−−−−−−−−−−−−−−−−− 00 00 00 00 20 00 00 00
E←−−−−−−−−−−−−−−−−−−−−−−−− 0x00008000

SV 2025 Cryptanalysis (Conventional) EPFL 393 / 529

Linear Characteristic

?⊕

?⊕

?⊕

?⊕

� P� S� E
⊕
�

� P� S� E
⊕
�

� P� S� E
⊕
�

� P� S� E
⊕
�

0x000110000x01040080

LP = (16/32)2Round #1

0x010400800

Round #2

00x01040080

LP = (10/32)2Round #3

0x010400800x00008000

LP = (2/32)2Round #4
?⊕

?⊕

?⊕

?⊕

� P� S� E
⊕
�

� P� S� E
⊕
�

� P� S� E
⊕
�

� P� S� E
⊕
�

? ?

0x000080000x21040080

LP = (20/32)2Round #5

0x210400800

Round #6

00x21040080

LP = (20/32)2Round #7

0x210400800x00008000

??
..

..
..

..
..

..
..

0
0
0
0
8
0
0
0

Round #8

........0x00008000

SV 2025 Cryptanalysis (Conventional) EPFL 394 / 529

Projection

? ?

� P� S� E�⊕
6

�?⊕

LPcore(a, b) ≈ 2−16

? ?

0x01040080 0x00011000

0x21040080 = bL bR = 0x00008000

K3
.
?
?
?
?
?
?
?

yRyL

(a·X)⊕(bL·ZL)⊕(bR ·ZR)

• a = 0x01040080 00011000, b = 0x21040080 00008000, κ = (K3)1

• π(x , y) =
(

u = (E(yR))1
v = (a · x)⊕ (bL · yR)⊕ (bR · yL)

)
• Project(κ, (u, v)) = v ⊕ (bR · P(S1(κ⊕ u)‖0x0000000))

SV 2025 Cryptanalysis (Conventional) EPFL 395 / 529

Attack

Collection phase:
1: initialize 27 counters nu,v to zero

for all possible 6-bit values u
and all possible bits v .

2: collect n plaintext-ciphertext
(x , y) pairs,

3: for each (x , y) pair do
4: set u to the 6 leading bits of

the expansion E(yR) of yR in the
round function

5: v ← (a·x)⊕(bL·yR)⊕(bR ·yL)
6: increment nu,v
7: end for

Analysis phase:
1: for all possible κ do
2: mκ ←∑

u

nu,bR ·(P(S1(u⊕κ)∥0...0))

3: end for
4: sort all κ in decreasing order of
|mκ − n

2 |,

Search phase:
5: do an exhaustive search by us-

ing the sorted list for κ.

SV 2025 Cryptanalysis (Conventional) EPFL 396 / 529

Analysis

Theorem

For n ≈ 1
LP , the correct value κ is first in the sorted list with high

probability.

Example: for 8-round DES, LP = 2−16

SV 2025 Cryptanalysis (Conventional) EPFL 397 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)
Block Ciphers
Differential Cryptanalysis
Linear Cryptanalysis
Hypothesis Testing in Cryptography
Decorrelation

6 Proving Security

SV 2025 Cryptanalysis (Conventional) EPFL 398 / 529

Indistinguishability

adversary - bit

	
samples

Generator

Problem: say whether all samples follow distribution P0 or they
all follow distribution P1

SV 2025 Cryptanalysis (Conventional) EPFL 399 / 529

Advantage

Definition
Two samplable distributions P0 and P1 are
(q, ε)-indistinguishable if for any algorithm A taking q iid
random variables x1, . . . , xq following P we have

|AdvA(P0,P1)| ≤ ε

where

AdvA(P0,P1) = Pr[A → 1|P = P1]− Pr[A → 1|P = P0]

A notion of distance between P0 and P1:

distanceq(P0,P1) = max
distinguisher
limited to q

|Pr[A → 1|P = P1]− Pr[A → 1|P = P0]|

SV 2025 Cryptanalysis (Conventional) EPFL 400 / 529

Applications

• pseudorandom number generator
break a PRNG =⇒ distinguish from an ideal RNG
• block cipher and stream cipher cryptanalysis

distinguish biased bits in known plaintext-ciphertexts
• semantic security of public-key cryptography

distinguish between the encryption of two known plaintexts
• commitment, zero-knowledge, etc

SV 2025 Cryptanalysis (Conventional) EPFL 401 / 529

Hypothesis Testing

Problem
Given a source producing random variables, decide upon
several hypotheses.

Example:
• iid random variables following either

Hypothesis H0: variables follow distribution P0
Hypothesis H1: variables follow distribution P1

• iid random variables following either
Hypothesis H0: variables follow distribution P0
Hypothesis H1: variables follow distribution in

{P1, . . . ,Pn}

SV 2025 Cryptanalysis (Conventional) EPFL 402 / 529

Two Approaches
• Frequentist approach

Consider two types of errors
type I error: α = Pr[A → 1|P0]
type II error: β = Pr[A → 0|P1]

• Bayesian approach
Assign cost to error type (or prior probability to hypotheses)

Pe = Pr[A → 1|P0]π0 + Pr[A → 0|P1]π1

typical case for crypto: π0 = π1 = 1
2

AdvA = Pr[A → 1|P1]− Pr[A → 1|P0]

AdvA = (1− β)− α = 1− 2Pe

1− AdvA = α+ β = 2Pe

SV 2025 Cryptanalysis (Conventional) EPFL 403 / 529

Problems for this Lecture

• What is the best way to distinguish two distributions?
• How many samples do we need to distinguish two

distributions with significant advantage?

SV 2025 Cryptanalysis (Conventional) EPFL 404 / 529

Best Advantage
Case q = 1

• let A be an arbitrary distinguisher
• w.l.o.g. we can assume it is deterministic (we assume no

computational bound)
→ let A−1(1) be the set of values x such that A → 1 when
X = x
• we have

AdvA =
∑

x∈A−1(1)

(P1(x)− P0(x))

• clearly
AdvA ≤

∑
x ;P0(x)≤P1(x)

(P1(x)− P0(x))

• we have∑
x ;P0(x)≤P1(x)

(P1(x)− P0(x)) =
1
2

∑
x

|P1(x)− P0(x)|

SV 2025 Cryptanalysis (Conventional) EPFL 405 / 529

Statistical Distance

Definition (= L1 distance)
Given two real functions f0 and f1 over a discrete set Z we
define the statistical distance d(f0, f1) by

d(f0, f1) =
1
2

∑
x∈Z
|f1(x)− f0(x)|

Theorem
Given two distributions P0 and P1, all distinguishers using a
single sample verify

AdvA ≤ d(P0,P1)

SV 2025 Cryptanalysis (Conventional) EPFL 406 / 529

Best Distinguisher (Single Sample)

input: x
1: R = P0(x)

P1(x)
2: if R ≤ 1 then
3: b ← 1
4: else
5: b ← 0
6: end if

output: b

• R is the likelihood ratio
AdvA = d(P0,P1)

• caveat: p
0 = +∞

• remark: 0
0 never occurs

SV 2025 Cryptanalysis (Conventional) EPFL 407 / 529

General Case

trick: consider X = (X1, . . . ,Xq) as a random variable with
distribution either P⊗q

0 or P⊗q
1

distinguisher - 0 or 1

	

(x1, . . . , xq)

P0 or P1

The best possible advantage is obtained by the likelihood ratio
test:

output 1⇐⇒
PrP⊗q

0
[x1, . . . , xq]

PrP⊗q
1

[x1, . . . , xq]
≤ 1

SV 2025 Cryptanalysis (Conventional) EPFL 408 / 529

Best Distinguisher (Multiple Samples)

input: x1, . . . , xq

1: R =
P0(x1)×···×P0(xq)
P1(x1)×···×P1(xq)

=
∏

x
P0(x)qx

P1(x)qx

with qx = #{i ; xi = x}
2: if R ≤ 1 then
3: b ← 1
4: else
5: b ← 0
6: end if

output: b

SV 2025 Cryptanalysis (Conventional) EPFL 409 / 529

Example i: Biased Coin

P0 = uniform P1 =


head tail

1 2
↓ ↓

1
2(1 + ε) 1

2(1− ε)


x1 x2 R outcome
1 1 1

(1+ε)2 1
2 2 1

(1−ε)2 0
1 2 1

(1+ε)(1−ε) 0

output 1 ⇐⇒ 1
(1 + ε)q1(1− ε)q2

≤ 1

⇐⇒ q1 log(1 + ε) + q2 log(1− ε) ≥ 0 ∼⇐⇒ q2 < q1

SV 2025 Cryptanalysis (Conventional) EPFL 410 / 529

Example ii: Biased Dice

P0 = uniform P1 =

 1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

1
6 + ε 1

6
1
6 + ε 1

6 − ε 1
6 − ε 1

6



x1 x2 R outcome

1 2
1
6×

1
6

(1
6+ε)× 1

6
1

1 3
1
6×

1
6

(1
6+ε)×(1

6+ε)
1

2 5
1
6×

1
6

(1
6−ε)×

1
6

0

output 1⇐⇒ 1
(1+6ε)q1+q3 (1−6ε)q4+q5 ≤ 1 ∼⇐⇒ q4 + q5 ≤ q1 + q3

SV 2025 Cryptanalysis (Conventional) EPFL 411 / 529

Example iii: Uniform over Different Supports

P0 = uniform P1 =

 1 2 3 4 5
↓ ↓ ↓ ↓ ↓
1
4

1
4

1
4

1
4 0


x1 x2 R outcome

1 2
1
5×

1
5

1
4×

1
4

1

1 3
1
5×

1
5

1
4×

1
4

1

2 5
1
5×

1
5

1
4×0

0

output 1⇐⇒ q5 = 0

SV 2025 Cryptanalysis (Conventional) EPFL 412 / 529

Example iv: Normal of Same Standard Deviation

P0 = N (µ, σ) P1 = N (µ′, σ) µ < µ′

We have

φµ,σ(x) =
1√
2π

e−
(x−µ)2

2σ2

and
R =

φµ,σ(x)
φµ′,σ(x)

so

R ≤ 1⇐⇒ x ≥ µ+ µ′

2

SV 2025 Cryptanalysis (Conventional) EPFL 413 / 529

Example v: Sum of i.i.d. Bernoulli Variables

Pb : sum of n instances of Ber(pb)

with p0 ≈ p1 and p0 < p1
we approximate Pb to N (µb, σb) with

µb = npb σb =
√

npb(1− pb)

and σ0 ≈ σ1
so

R ≤ 1⇐⇒ x
n
≥ p0 + p1

2

SV 2025 Cryptanalysis (Conventional) EPFL 414 / 529

Problem

AdvA = d(P⊗q
0 ,P⊗q

1)

=
1
2

∑
x1,...,xq∈Z

∣∣∣∣PrP1
[x1] · · ·Pr

P1
[xq]− Pr

P0
[x1] · · ·Pr

P0
[xq]

∣∣∣∣

not very informative about the dependence in terms of q

SV 2025 Cryptanalysis (Conventional) EPFL 415 / 529

Easy Bound
“for q � 1/d(P0,P1) the advantage must be� 1”

Theorem
For any q:

d(P⊗q
0 ,P⊗q

1) ≤ q × d(P0,P1)

Proof.

aa′ − bb′ = (a− b)
a′ + b′

2
+ (a′ − b′)

a + b
2

so |aa′ − bb′| ≤ |a− b|a′+b′
2 + |a′ − b′|a+b

2 thus (next slide)

1
2

∑
x1,x2

|P1(x1)Q1(x2)− P0(x1)Q0(x2)| ≤ d(P0,P1) + d(Q0,Q1)

and we get d(P0 ⊗Q0,P1 ⊗Q1) ≤ d(P0,P1) + d(Q0,Q1)

apply with Qb = P⊗(q−1)
b and iterate

SV 2025 Cryptanalysis (Conventional) EPFL 416 / 529

Detail

|aa′ − bb′| ≤ |a− b|a
′ + b′

2
+ |a′ − b′|a + b

2
so

1
2

∑
x1,x2

|P1(x1)Q1(x2)− P0(x1)Q0(x2)|

≤ 1
2

∑
x1

|P1(x1)− P0(x1)|
∑
x2

Q1(x2) + Q0(x2)

2
+

1
2

∑
x2

|Q1(x2)−Q0(x2)|
∑
x1

P1(x1) + P0(x1)

2

=
1
2

∑
x1,x2

|P1(x1)− P0(x1)|+
1
2

∑
x1,x2

|Q1(x2)−Q0(x2)|

= d(P0,P1) + d(Q0,Q1)

SV 2025 Cryptanalysis (Conventional) EPFL 417 / 529

Definitions

• Kullback-Leibler divergence

DKL(P0‖P1) =
∑

x∈Supp(P0)

P0(x) log
P0(x)
P1(x)

always non-negative, 0 iff P0 = P1
infinite iff Supp(P0) 6⊆ Supp(P1)

WARNING: log are in basis 2!
• Neyman divergence

DN(P0‖P1) =
∑

x∈Supp(P0)∪Supp(P1)

(P0(x)− P1(x))2

P1(x)

always non-negative, 0 iff P0 = P1
infinite iff Supp(P0) 6⊆ Supp(P1)

SV 2025 Cryptanalysis (Conventional) EPFL 418 / 529

Better Bound

“for q � 1/DN(P0‖P1) the advantage must be� 1”

Theorem
For any q:

d(P⊗q
0 ,P⊗q

1) ≤
√

q
2

DN(P0‖P1)

Proof.
• d(P⊗q

0 ,P⊗q
1) ≤

√
1
2DKL(P

⊗q
0 ‖P

⊗q
1) (Pinsker Inequality)

• DKL(P
⊗q
0 ‖P

⊗q
1) = qDKL(P0‖P1) (additivity of KL)

• DKL(P0‖P1) ≤ DN(P0‖P1) [Dai-Hoang-Tessaro
Crypto 2017]

SV 2025 Cryptanalysis (Conventional) EPFL 419 / 529

Uniform Case

“for q � 1
N·d(P,U)2 the advantage must be� 1”

Theorem
If U is uniform over a support of cardinality N, for any q:

d(P⊗q,U⊗q) ≤
√

2qN · d(P,U)

Proof.
• d(P⊗q,U⊗q) ≤

√
q
2 DN(P‖U) (previous result)

• DN(P‖U) = N‖P − U‖22 (definition of DN)
• ‖P − U‖2 ≤ 2d(P,U)

(for xi positive,
∑

x2
i ≤ (

∑
xi)

2)

SV 2025 Cryptanalysis (Conventional) EPFL 420 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)
Block Ciphers
Differential Cryptanalysis
Linear Cryptanalysis
Hypothesis Testing in Cryptography
Decorrelation

6 Proving Security

SV 2025 Cryptanalysis (Conventional) EPFL 421 / 529

Uniform Distribution

x - C - Y

6

random K

For any x , the random variables Y is uniformly distributed.

SV 2025 Cryptanalysis (Conventional) EPFL 422 / 529

Pairwise Independence

x2 - C - Y2

x1 - C - Y1

?

6

random K

If x1 6= x2, Y1 and Y2 are “nearly” independent.
Pr[Y1 = y1 and Y2 = y2] =

1
2ℓ(2ℓ−1) for y1 6= y2

SV 2025 Cryptanalysis (Conventional) EPFL 423 / 529

n-wise Independence

Definition
For any pairwise different x1, . . . , xn, the random variables
Yi = CK (xi), i = 1, . . . , n, defined by a random K are uniform
and nearly independent if for any y1, . . . , yn of pairwise different
values we have

Pr[Y1 = y1, . . . ,Yn = yn] =
1

2ℓ(2ℓ − 1) · · · (2ℓ − n + 1)

• The perfect cipher is nearly n-wise independent
• The view from the adversary is ((x1, y1), . . . , (xn, yn))

• Real ciphers should look like n-wise independent so that
adversaries limited to n samples get no information

SV 2025 Cryptanalysis (Conventional) EPFL 424 / 529

Goal of Block Cipher Designs

Goal
A block cipher which is used n times should have a behavior
which is hard to distinguish from the behavior of the perfect
cipher

→ uniform distribution and almost n-wise independence

SV 2025 Cryptanalysis (Conventional) EPFL 425 / 529

Distinguisher for Random Functions

adversary - bit

xi
�	

yi

F

• the adversary can send chosen queries xi

• function F was selected either from one distribution (null
hypothesis) or another (alternate hypothesis)
• adversary must guess which distribution was used

SV 2025 Cryptanalysis (Conventional) EPFL 426 / 529

Examples of Distinguishing problem

• F : A→ A is a block cipher C or the perfect cipher C∗

Hypothesis H0: F = C∗ (uniformly distributes
permutation)

Hypothesis H1: F = CK with K uniformly distributed
• F : A→ B is a PRF or a truly random function F ∗

Hypothesis H0: F = F ∗ (uniformly distributes function)
Hypothesis H1: F = FK with K uniformly distributed
• F : A→ A is a random function F ∗ or a random

permutation C∗

Hypothesis H0: F = F ∗ (uniformly distributes function)
Hypothesis H1: F = C∗ (uniformly distributes

permutation)

SV 2025 Cryptanalysis (Conventional) EPFL 427 / 529

Decorrelation

A simple example for F : A→ B defined by K :
• A = {0, 1, 2} and B = {0, 1}
• F (x) = (K .x2 + K .bK+x

2 c+ x + 1) mod 2 for K uniformly
distributed in {1, 2, 3, 4}

K F (0) F (1) F (2)
1 1 0 0
2 1 0 1
3 0 1 1
4 1 0 1

SV 2025 Cryptanalysis (Conventional) EPFL 428 / 529

First Order of Decorrelation

y = 0 y = 1
x = 0 1/4 3/4
x = 1 3/4 1/4
x = 2 1/4 3/4

[F]1 =

 1/4 3/4
3/4 1/4
1/4 3/4

 , [F ∗]1 =

 1/2 1/2
1/2 1/2
1/2 1/2


1st order of decorrelation of F = distance between [F]1 and
[F ∗]1

SV 2025 Cryptanalysis (Conventional) EPFL 429 / 529

Second Order of Decorrelation

(y1, y2) = (0, 0) (y1, y2) = (0, 1) (y1, y2) = (1, 0) (y1, y2) = (1, 1)
(x1, x2) = (0, 0) 1/4 0 0 3/4
(x1, x2) = (1, 0) 0 3/4 1/4 0
(x1, x2) = (2, 0) 0 1/4 1/4 1/2
(x1, x2) = (0, 1) 0 1/4 3/4 0
(x1, x2) = (1, 1) 3/4 0 0 1/4
(x1, x2) = (2, 1) 1/4 0 1/2 1/4
(x1, x2) = (0, 2) 0 1/4 1/4 1/2
(x1, x2) = (1, 2) 1/4 1/2 0 1/4
(x1, x2) = (2, 2) 1/4 0 0 3/4

SV 2025 Cryptanalysis (Conventional) EPFL 430 / 529

Matrices

[F]2 =



1/4 0 0 3/4
0 3/4 1/4 0
0 1/4 1/4 1/2
0 1/4 3/4 0

3/4 0 0 1/4
1/4 0 1/2 1/4
0 1/4 1/4 1/2

1/4 1/2 0 1/4
1/4 0 0 3/4


, [F∗]2 =



1/2 0 0 1/2
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/2 0 0 1/2
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/2 0 0 1/2


2nd order of decorrelation of F = distance between [F]2 and
[F ∗]2

SV 2025 Cryptanalysis (Conventional) EPFL 431 / 529

Definition
Definition
Given a random function F from a set A to a set B and an
integer q, we define the real matrix [F]q as a Aq × Bq-type
matrix for which the ((x1, . . . , xq), (y1, . . . , yq))-entry is

[F]q(x1,...,xq),(y1,...,yq)
= Pr[F (x1) = y1, . . . ,F (xq) = yq].

• A random function F aimed at being compared to a
canonical ideal random function F ∗.
• E.g. F is a block cipher, and F ∗ is a uniformly distributed

random permutation.
• Given a distance D on the vector space of Aq × Bq-type

real matrices, we define the q-wise decorrelation bias of F
by

Decq(F) = D([F]q, [F ∗]q).

note: various distances will define different decorrelation
notions
SV 2025 Cryptanalysis (Conventional) EPFL 432 / 529

Reminder on Matrix Norms

Definition
Over a vector space V , a norm is a mapping from V to R+

such that
1 ‖x‖ = 0 if and only if x = 0
2 ‖λx‖ = |λ| × ‖x‖ for any λ ∈ R
3 ‖x + y‖ ≤ ‖x‖+ ‖y‖

If V is a matrix space, a matrix norm is a norm such that
4 ‖xy‖ ≤ ‖x‖ × ‖y‖

SV 2025 Cryptanalysis (Conventional) EPFL 433 / 529

From a Vector Norm to a Matrix Norm

Assume that we have norms over Rp and Rq. Given a
p × q-matrix M, we define

|||M||| = max
x∈Rq
∥x∥≤1

‖Mx‖ = max
x∈Rq
∥x∥=1

‖Mx‖ = max
x∈Rq
x ̸=0

‖Mx‖
‖x‖

Theorem
||| · ||| is a matrix norm satisfying ‖Mx‖ ≤ |||M||| × ‖x‖.

SV 2025 Cryptanalysis (Conventional) EPFL 434 / 529

Infinity Norm

Definition
Given a vector V and a matrix M, we define

‖V‖∞ = max
row
|Vrow|

|||M|||∞ = max
V ̸=0

‖M × V‖∞
‖V‖∞

= max
row

∑
column

|Mrow,column|.

SV 2025 Cryptanalysis (Conventional) EPFL 435 / 529

Example

For

[F]2 − [F∗]2 =



-0.25 0 0 0.25
-0.25 0.5 0 -0.25
-0.25 0 0 0.25
-0.25 0 0.5 -0.25
0.25 0 0 -0.25
0 -0.25 0.25 0

-0.25 0 0 0.25
0 0.25 -0.25 0

-0.25 0 0 0.25


we have

Dec2(F) = |||[F]2 − [F ∗]2|||∞
= max(0.5, 1, 0.5, 1, 0.5, 0.5, 0.5, 0.5, 0.5)
= 1

SV 2025 Cryptanalysis (Conventional) EPFL 436 / 529

Non-Adaptive Distinguisher

Theorem
Given two random functions F and G, the best non adaptive
distinguisher between F and G which is limited to q queries is
such that

Adv(F ,G) =
1
2
|||[F]q − [G]q|||∞.

Proof. W.l.o.g. the best non-adaptive distinguisher is
deterministic and asks the same question x = (x1, . . . , xq).
• the response Y = (Y1, . . . ,Yq) defines a random variable
• the problem reduces to solving a simple hypothesis testing

problem
• best advantage is the statistical distance (half the L1 norm)
• we maximize over x

SV 2025 Cryptanalysis (Conventional) EPFL 437 / 529

Non-Adaptive Distinguisher and Decorrelation

Corollary

BestAdvn.a.
q (F ,F ∗) =

1
2
|||[F]q − [F ∗]q|||∞ =

1
2

Decq
|||·|||∞(F)

SV 2025 Cryptanalysis (Conventional) EPFL 438 / 529

A-Norm
Definition
Given a matrix M, we define

‖M‖a = max
x1

∑
y1

· · ·max
xq

∑
yq

|M(x1,...,xq),(y1,...,yq)|.

Theorem
Given two random functions F and G, the best adaptive
distinguisher between F and G which is limited to q queries is
such that

Adv(F ,G) =
1
2
‖[F]q − [G]q‖a.

Corollary

BestAdvq(F ,F ∗) =
1
2
|||[F]q − [F ∗]q|||a =

1
2

Decq
∥·∥a

(F)

SV 2025 Cryptanalysis (Conventional) EPFL 439 / 529

Multiplicativity of Decorrelation
Theorem
If C1 and C2 are two independent random permutations over a
set A,

Decq(C2 ◦ C1) ≤ Decq(C1)Decq(C2)

when Dec is defined from a matrix norm.

so,

2BestAdvq(C2◦C1,C∗) ≤ (2BestAdvq(C1,C∗))×(2BestAdvq(C2,C∗))

Corollary
If C1, . . . ,Cr are iid random permutations,

BestAdvq(Cr ◦ · · · ◦ C1,C∗) ≤
1
2
(2BestAdvq(C1,C∗))

r

SV 2025 Cryptanalysis (Conventional) EPFL 440 / 529

Proof
• Because of the independence between C1 and C2, we

have
[C2 ◦ C1]

q = [C1]
q × [C2]

q

• C∗ ◦C1, C2 ◦C∗ and C∗ have exactly the same distribution,
so

[C1]
q × [C∗]q = [C∗ ◦ C1]

q = [C∗]q

[C∗]q × [C2]
q = [C2 ◦ C∗]q = [C∗]q

• We obtain
([C1]

q − [C∗]q)× ([C2]
q − [C∗]q) = [C2 ◦ C1]

q − [C∗]q thus

‖[C2 ◦ C1]
q − [C∗]q‖ ≤ ‖[C1]

q − [C∗]q‖ × ‖[C2]
q − [C∗]q‖

SV 2025 Cryptanalysis (Conventional) EPFL 441 / 529

1-Round Feistel Scheme is no Good (BestAdv > 1
2)

Ψ(F K1)

⊕
?

?

?
��

?

xl xr

yl yr

F

K1

xr = yr

so, we can make a distinguisher
with advantage 1− 2−

ℓ
2 :

1: pick x random
2: get y = C(x)
3: output 1xr=yr

SV 2025 Cryptanalysis (Conventional) EPFL 442 / 529

2-Round Feistel Scheme is no Good (BestAdv > 1
2)

Ψ(F K1 ,F K2)

⊕
??

��

⊕
?

?

?
��

?

xl xr

yl yr

F

K1

F

K2

xr = x ′r =⇒ xl ⊕ yr = x ′l ⊕ y ′r

so, we can make a distinguisher
with advantage 1− 2−

ℓ
2 :

1: pick x , x ′ random s.t. xr = x ′r
2: get y = C(x) and y ′ = C(x ′)
3: output 1xl⊕yr=x ′l ⊕y ′r

SV 2025 Cryptanalysis (Conventional) EPFL 443 / 529

Feistel Scheme

Ψ(F K1 ,F K2 ,F K3)

⊕
??

��

⊕
??

��

⊕
?

?

?
��

?

F

K1

F

K2

F

K3

goal:

F K1 ,F K2 ,F K3 uniformly
distributed
⇓

Ψ(F K1 ,F K2 ,F K3) “almost
perfect”

note: not good if the adversary can
make chosen plaintext and cipher-
text queries
(see midterm exam 2016–17 ex4)

SV 2025 Cryptanalysis (Conventional) EPFL 444 / 529

Luby-Rackoff Theorem

Theorem (Luby-Rackoff 1986)
Let F ∗1 ,F

∗
2 ,F

∗
3 be three independent random functions on

{0, 1}
ℓ
2 with uniform distribution. We have

BestAdvq(Ψ(F ∗1 ,F
∗
2 ,F

∗
3),F

∗) ≤ q2.2−
ℓ
2

BestAdvq(Ψ(F ∗1 ,F
∗
2 ,F

∗
3),C

∗) ≤ q2.2−
ℓ
2

where F ∗ (resp. C∗) is a uniformly distributed random function
(resp. permutation).

for the class of distinguishers limited to q queries to the oracle

SV 2025 Cryptanalysis (Conventional) EPFL 445 / 529

A Convenient Combinatorial Lemma

Lemma
Let q be an integer. Let F :M1 →M2 be a random function.
We let X be the subset ofMq

1 of all (x1, . . . , xq) with pairwise
different entries. We let F ∗ :M1 →M2 be a uniformly
distributed random function. We assume there exists a subset
Y ⊆Mq

2 and two positive numbers ϵ1 and ϵ2 such that
• #Y

#Mq
2
≥ 1− ϵ1

• ∀x ∈ X ∀y ∈ Y [F]qx ,y ≥ 1
#Mq

2
(1− ϵ2).

Then we have BestAdvq(F ,F ∗) ≤ ϵ1 + ϵ2.

this is [F ∗]qx ,y

“if [F]qx ,y ≈ [F ∗]qx ,y for almost all y ’s, then BestAdvq(F ,F ∗) is
small”

SV 2025 Cryptanalysis (Conventional) EPFL 446 / 529

Proof of the Luby-Rackoff Theorem — i
Following the Feistel scheme, we let

xi = (z0
i , z

1
i) z2

i = z0
i ⊕ F ∗1 (z

1
i) yi = (z4

i , z
3
i)

• Event E : z3
i = z1

i ⊕F ∗2 (z
2
i)

and z4
i = z2

i ⊕ F ∗3 (z
3
i) for

i = 1, . . . , q.
• Event E2: all z2

i s are
pairwise different
(depends on F ∗1 only).
• Y ={

(y1, . . . , yq); ∀i < j z3
i 6= z3

j

}
.

We have [F]qx ,y = Pr[E]

⊕? ��

⊕? ��

⊕
?

? ��

?

z0
i z1

i

z4
i z3

i

z2
i

F ∗1

F ∗2

F ∗3

SV 2025 Cryptanalysis (Conventional) EPFL 447 / 529

Proof of the Luby-Rackoff Theorem — ii
• We have

|Y| ≥
(

1− q(q − 1)
2

2−
ℓ
2

)
2ℓq

thus we can let ϵ1 = q(q−1)
2 2−

ℓ
2 .

• For y ∈ Y and any x (with pairwise different entries), we
need to consider [F]qx ,y . We have

[F]qx ,y = Pr[E] ≥ Pr[E ∧ E2] = Pr[E |E2] Pr[E2].

For computing Pr[E |E2] we know that z3
i s are pairwise

different, as for the z2
i s. Hence Pr[E |E2] = 2−ℓq. It is then

straightforward that Pr[E2] ≥ 1− q(q−1)
2 2−

ℓ
2 which is set to

1− ϵ2.
• We thus obtain from the Lemma that

BestAdvq(F ,F ∗) ≤ q(q − 1)2−
ℓ
2 .

It remains to show BestAdvq(F ∗,C∗) ≤ q2−
ℓ
2 (next

slide).
SV 2025 Cryptanalysis (Conventional) EPFL 448 / 529

Random Permutation vs Random Function

Theorem
Let F (resp. C) be a uniformly distributed random function (resp.
permutation) over {0, 1}ℓ. We have BestAdvq(F ,C) ≤ q(q−1)

2 2−ℓ.

So, BestAdvq(F ,C) ≤ min(q22−ℓ, 1) ≤ min(q2− ℓ
2 , 1).

Proof. Let A be a distinguisher limited to q queries.
We assume w.l.o.g. that A never repeats a query.
Let xi be the i th query.
Conditioned to the event E : no F (xi) collide, the distribution of
(F (x1), . . . ,F (xq))|E and (C(x1), . . . ,C(xq)) are identical. So,

Pr[AF = 1]−Pr[AC = 1] ≤ Pr[AF = 1|E]−Pr[AC = 1]+Pr[¬E] = Pr[¬E]

Then, Pr[¬E] ≤
∑q

1≤i<j≤q Pr[F (xi) = F (xj)] =
q(q−1)

2 2−ℓ.

Pr[A]=Pr[A,E]+Pr[A,¬E]≤Pr[A|E] Pr[E]+Pr[¬E]≤Pr[A|E]+Pr[¬E]

SV 2025 Cryptanalysis (Conventional) EPFL 449 / 529

Proof of Lemma — i
• We use the characterization of Decq

∥·∥a
in term of best

adaptive distinguisher. We let A be a distinguisher
between F and F ∗ limited to q oracle calls with maximum
advantage.
• W.l.o.g. the behavior of A is deterministically defined by the

oracle responses y = (y1, . . . , yq). We let xi denotes the i th
query defined by y and x = (x1, . . . , xq) be defined by y .
We let A be the set of all y for which A accepts. We have

AdvA(F ,F ∗) = Pr[A(F ∗)]−Pr[A(F)] =
∑
y∈A

(
[F ∗]qx ,y − [F]qx ,y

)
.

Since [F ∗]qx ,y − [F]qx ,y ≤ ϵ2[F ∗]
q
x ,y in Y, we have

AdvA(F ,F ∗) ≤
∑
y∈A
y∈Y

ϵ2[F ∗]
q
x ,y +

∑
y∈A
y ̸∈Y

[F ∗]qx ,y .

SV 2025 Cryptanalysis (Conventional) EPFL 450 / 529

Proof of Lemma — ii

AdvA(F ,F ∗) ≤
∑
y∈A
y∈Y

ϵ2[F ∗]
q
x ,y +

∑
y∈A
y ̸∈Y

[F ∗]qx ,y .

• The first sum is upper bounded by ϵ2:∑
y∈A
y∈Y

[F ∗]qx ,y ≤
∑

y

[F ∗]qx ,y = 1

• For the second sum, we recall that all xis are pairwise
different, so

∑
y∈A
y ̸∈Y

[F ∗]qx ,y =
∑
y∈A
y ̸∈Y

1
#Mq

2
≤

∑
y ̸∈Y

1
#Mq

2
=

#Mq
2 − |Y|

#Mq
2

≤ ε1

so AdvA(F ,F ∗) ≤ ε1 + ϵ2.

SV 2025 Cryptanalysis (Conventional) EPFL 451 / 529

Extension to Feistel Schemes

Theorem

Let F1,F2,F3 be 3 independent random functions on {0, 1} ℓ
2 such that

BestAdvq(Fi ,F ∗) ≤ ε. We have

BestAdvq(Ψ(F1,F2,F3),C∗) ≤ q2.2− ℓ
2 + 3ε

where C∗ is a uniformly distributed random permutation.

Proof.

BestAdvq(Ψ(F1,F2,F3),C∗)

≤ BestAdvq(Ψ(F1,F2,F3),Ψ(F1,F2,F∗
3))+BestAdvq(Ψ(F1,F2,F∗

3),Ψ(F1,F∗
2 ,F∗

3))+

BestAdvq(Ψ(F1,F∗
2 ,F∗

3),Ψ(F∗
1 ,F∗

2 ,F∗
3))+BestAdvq(Ψ(F∗

1 ,F∗
2 ,F∗

3),C∗)

≤ BestAdvq(F3,F∗
3)︸ ︷︷ ︸

≤ε

+ BestAdvq(F2,F∗
2)︸ ︷︷ ︸

≤ε

+ BestAdvq(F1,F∗
1)︸ ︷︷ ︸

≤ε

+ BestAdvq(Ψ(F∗
1 ,F∗

2 ,F∗
3),C∗)︸ ︷︷ ︸

≤q2.2
− ℓ

2 [LR]

SV 2025 Cryptanalysis (Conventional) EPFL 452 / 529

Iterating

Theorem

Let F1, . . . ,F3r be 3r independent random functions on {0, 1}
ℓ
2

such that BestAdvq(Fi ,F ∗) ≤ ε. We have

BestAdvq(Ψ(F1, . . . ,F3r),C∗) ≤
1
2

(
2q2.2−

ℓ
2 + 6ε

)r

where C∗ is a uniformly distributed random permutation.

SV 2025 Cryptanalysis (Conventional) EPFL 453 / 529

Provable Security on Feistel Schemes

BestAdvq(Ψ(F1, . . . ,F3r),C∗) ≤
1
2

(
2q2.2−

ℓ
2 + 6ε

)r

• so, if q � 2
ℓ
4 the best advantage is negligible

• problem: this bound is not so good
example for ℓ = 64 and r = 5 (≈DES):

q 20 24 28 212 216

1
2

(
2q2.2−

ℓ
2

)r
2−156 2−116 2−76 2−36 24

• This theory may not be so useful when considering attacks
with a large number q of queries.

SV 2025 Cryptanalysis (Conventional) EPFL 454 / 529

Link with Differential and Linear Probabilities

Theorem
E
(

DPC∗(a, b)
)advantage of the differential distinguisher with q = 2

Given a random C on {0, 1}ℓ and a, b 6= 0 we have

E
(

DPC(a, b)
)
≤ 1

2ℓ − 1
+

1
2
|||[C]2 − [C∗]2|||∞

E
(

LPC(a, b)
)
≤ 1

2ℓ − 1
+ 4|||[C]2 − [C∗]2|||∞

Consequence: making a good decorrelation of order 2 protects
against differential and linear cryptanalysis.

SV 2025 Cryptanalysis (Conventional) EPFL 455 / 529

Example: DFCv2

• Team design from ENS, published in 2001
• Patented by CNRS
• family of block ciphers with flexible parameters (nominal

choice below)

• block cipher with 128-bit blocks
• dedicated to 64-bit microprocessors
• key length from 0 to 256
• Feistel scheme with 8 rounds with round functions

decorrelated to the order 2
• |||[C]2 − [C∗]2|||∞ ≤ 2−115 (assuming independent round

keys)

SV 2025 Cryptanalysis (Conventional) EPFL 456 / 529

Conclusion

• differential and linear cryptanalysis
• theory on best distinguishers
• decorrelation as a tool to prove security

SV 2025 Cryptanalysis (Conventional) EPFL 457 / 529

References
• Biham-Shamir.

Differential Cryptanalysis of the Data Encryption Standard.
Springer 1993
• Matsui.

The First Experimental Cryptanalysis of the Data
Encryption Standard.
In CRYPTO 1994, LNCS 839.
• Baignères.

Quantitative Security of Block Ciphers: Designs and
Cryptanalysis Tools.
EPFL PhD Thesis
http://library.epfl.ch/theses/?nr=4208

• Vaudenay.
Decorrelation: A Theory for Block Cipher Security.
Journal of Cryptology vol. 16, 2003.

SV 2025 Cryptanalysis (Conventional) EPFL 458 / 529

http://library.epfl.ch/theses/?nr=4208

Train Yourself
• DP and LP:

midterm exam 2008–09 ex2
final exam 2021–22 ex2 (optimal LP)
final exam 2022–23 ex2 (finding heavy differentials)

• distinguishers:
midterm exam 2008–09 ex4
final exam 2008–09 ex1
midterm exam 2013–14 ex3
midterm exam 2014–15 ex2 (L1 norm and KL divergence)
midterm exam 2015–16 ex3 (using Hellinger distance)
midterm exam 2016–17 ex4 (distinguishing 3-round Feistel)
midterm exam 2017–18 ex3 (number of samples)
final exam 2018–19 ex1 (number of samples)
final exam 2019–20 ex2 (advantage amplification)
final exam 2021–22 ex2 (Lai-Massey)
final exam 2021–22 ex3 (mod p PRNG)

SV 2025 Cryptanalysis (Conventional) EPFL 459 / 529

Train Yourself

• non-linearity of functions: midterm exam 2010–11 ex3

• two-time pad: midterm exam 2010–11 ex4

• SQUASH0: final exam 2010–11 ex3

• biases in RC4:
midterm exam 2009-10 ex1
midterm exam 2012–13 ex1

• multiple encryption: midterm exam 2012–13 ex2

• AES on 4 rounds: final exam 2016–17 ex1

• Even-Mansour cipher: final exam 2022–23 ex1

• a simple PRF: final exam 2023–24 ex2

SV 2025 Cryptanalysis (Conventional) EPFL 460 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security

SV 2025 Proving Security EPFL 465 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security
The Random Oracle Model
Hybrid ElGamal
The Fujisaki-Okamoto Transform
The Generic Group Model

SV 2025 Proving Security EPFL 466 / 529

The Random Oracle Model

• participants can query a public oracle which, upon a fresh
query x will answer with a (long enough) bitstring whose
bits are i.i.d. and uniformly distributed
if x is queried again, the answer will be the same
→ random oracles implement a random function H
• “long enough” means: enough for the use of a

polynomial-time Turing machines
if algorithms only use the first ℓ bits we can assume that H
yields ℓ-bit results
• adversary does not see queries by honest participants
• simulators/extractors may simulate the random oracle, or

just look at queries and answers
for the simulation to work, they should simulate so that the
distribution of outputs are indistinguishable form the
correct one

SV 2025 Proving Security EPFL 467 / 529

Full-Domain Hash (FDH) Signature

• consider the RSA homomorphic trapdoor permutation over
Z∗N
• let H be a random oracle hashing onto Z∗N
• Signd ,N(m) = (H(m))d mod N
• Verifye,N(m, σ)⇐⇒ σe mod N = H(m)

Theorem
In the random oracle model, an EF-CMA adversary with time
complexity t, qS chosen messages, qH hash queries, and
probability of success ε can be transformed into an RSA
decryption algorithm with complexity t + (qS + qH)O(Te) and
probability of success εexp(−1)

qS+1 , where Te is the complexity of an
RSA encryption.

(exp(x) = 2.71 . . .x)

SV 2025 Proving Security EPFL 468 / 529

Full-Domain Hash (FDH) Signature

Generator

?
6

N = pq
φ(N) = (p − 1)(q − 1)

1 = gcd(e, φ(N))
d = e−1 mod φ(N)

6Secret key d ,N Public key e,N6AUTHENTICATION
INTEGRITY

-Message
Sign - - Verify

-
ok?

-Message
�

�
Adversary

m

x = H(m)d mod N

m, σ m, σ

H(m)
?
= σe mod N

m

SV 2025 Proving Security EPFL 469 / 529

Proof — i

Let ε = Pr[A wins].
• the EF-CMA game selects pk and sk and gives pk to A,

then OSign answers to any signature request
• example: if m is a signature query, OSign queries m to H,

gets h, and answers hd mod N to A

A OSign

H

m

�

H(m)

�

m

K

H(m)

U
m -

�
σ

d

SV 2025 Proving Security EPFL 470 / 529

Proof — ii

• define A1 as follows
simulate A until A yields its final (m, σ) forgery
if m was queried to OSign, abort
→ m not queried to H by OSign
if m was not queried to H by A, query it
in any case, set h = H(m)
if σe mod N 6= h, abort
yield (m, σ)

• we obtain: a new EF-CMA adversary A1 with similar
complexity and same success probability ε, who either
aborts or yields a final result (m, σ) to win, and who always
queries m (by A) to H

SV 2025 Proving Security EPFL 471 / 529

Proof — iii B
-�

e,N, y

x
A1 O

H
�

�
K
U-�• define B as follows

get e,N and the challenge y to invert
set an optimal probability p
run A1 and simulate H and OSign
upon a query m to H, if m was queried before, give the
same answer; otherwise, pick r ∈U Z∗

N , flip a biased coin b
and gives ybre mod N where Pr[b = 1] = p
→ perfect simulation since ybre mod N is uniform
upon a signature query m, query m to H. If the answer is of
type re mod N, answer by r , otherwise, abort
when A1 finished and output (m, σ), if query m to H
produced the answer of type yre mod N, yield σ/r mod N;
otherwise, abort
→ if H(m) = yre mod N, we have (σ/r)e mod N = y

• we obtain: an inverter B with similar complexity as A who
succeeds when the m query to H is of type yre mod N and
sign queries are of type re mod N
SV 2025 Proving Security EPFL 472 / 529

Proof — iv

• the probability of success is p(1− p)qSε

• the optimal value for p is p = 1
qS+1

• the probability of success is thus

1
qS + 1

(
1− 1

qS + 1

)qS

ε ≥ exp(−1)
qS + 1

ε

SV 2025 Proving Security EPFL 473 / 529

Fiat-Shamir Signature Paradigm
Signature from a Σ-Protocol

• Σ-protocol: R,P,V , E ,S, set of challenges E
• public key: x
• secret key: w such that R(x ,w)

• signature: pick r , set a = P(x ,w ; r),
e = H(message‖x‖a) ∈ E , z = P(x ,w , e; r)
signature is (a, z)
• verification: V (x , a,H(message‖x‖a), z)

note: the x missing in e = H(message‖x‖a) is an original
mistake!

SV 2025 Proving Security EPFL 474 / 529

Fiat-Shamir Signature Paradigm

Generator

?
6

R(x ,w)

6Secret key w Public key x6AUTHENTICATION
INTEGRITY

-Message
Sign - - Verify

-
ok?

-Message
�

�
Adversary

m

a = P(x ,w ; r)
e = H(m, x , a)
z = P(x ,w , e; r)

m, a, z m, a, z

e = H(m, x , a)
V (x , a, e, z)?

m

a = P(x, w ; r) a−−−−−−→
e←−−−−−− e ∈U E

z = P(x, w, e; r) z−−−−−−→ V (x, a, e, z)?

SV 2025 Proving Security EPFL 475 / 529

Fiat-Shamir Signature Paradigm in ROM

Theorem
Given a relation R s.t. it is hard to find witnesses and a
Σ-protocol for its language s.t. 1/#E = negl, the signature
scheme obtained by the Fiat-Shamir construction using a
random oracle is EF-CMA-secure (existentially unforgeable
under chosen message attacks).

SV 2025 Proving Security EPFL 476 / 529

Removing Chosen Messages

Lemma
Given a relation R s.t. it is hard to find witnesses and a
Σ-protocol for its language s.t. 1/#E = negl, we consider the
signature scheme obtained by the Fiat-Shamir construction
using a random oracle.
There is a compiler which can transform an adversary A
succeeding the EF-CMA game into an adversary A′ playing the
EF-0MA game (no message attack) such that the complexity of
A′ is the one by A multiplied by some polynomial and

Pr[A′ wins] = Pr[A wins]− negl

SV 2025 Proving Security EPFL 477 / 529

Proof of Lemma — i
Let ε = Pr[A wins].
• modify: OSign and A output e in signatures
• the EF-CMA game selects x and w and gives x to A, then

OSign answers to any signature query
• example: if m is a signature query, the challenger picks r ,

computes a = P(x ,w ; r), queries m‖x‖a to H, gets e,
computes z = P(x ,w , e; r), and sends (a, e, z) to A

A OSign

H

q

�

H(q)

�

m‖x‖a
K

e

U
m -

�
(a, e, z)

w

SV 2025 Proving Security EPFL 478 / 529

Proof of Lemma — ii

• define A1 as follows
simulate A until A yields its final (m, a, e, z) forgery
if m was queried to OSign, abort
→ no query of form m‖x‖a′ from OSign to H
if m‖x‖a was not queried to H by A, query it
if ¬V (x , a, e, z) or e 6= H(m‖x‖a), abort
yield (m, a, e, z)

• we obtain: a new EF-CMA adversary A1 with similar
complexity and success probability ε, who either aborts or
yields a final result (m, a, e, z) and wins, and who always
queries (m‖x‖a) to H

SV 2025 Proving Security EPFL 479 / 529

Proof of Lemma — iii
• define A2 as follows

simulate A1 and make a list of all (q,H(q)) queries
(queries m‖x‖a 7→ e by OSign are deduced from x , m, and
(a, e, z))
if adversary tries to repeat a query which was done before,
just take its answer from the list and avoid the query
if OSign does a query which was done before (let ε′ be the
probability this happens), abort

• we obtain: a new EF-CMA adversary A2 with similar
complexity and success probability ε− ε′ such that the
EF-CMA game never repeats any query
• ε′ is negligible:
#queries is polynomial so ε′ ≤ poly×maxa pa with
pa = Pr[P(x ,w ; r) = a]
the algorithm running S(x , e; r) and S(x , e′; r ′) with random
e, e′, r , r ′ yields commit a twice with probability p2

a so
makes E extract w with probability p2

a(1− 1/#E)
so, pa is negligible
SV 2025 Proving Security EPFL 480 / 529

Proof of Lemma — iv

• define A′ as follows
simulate A2 until a query m to OSign is made
upon query m, A′ picks r , e, and computes
(a, e, z) = S(x , e; r)
if m‖a has been queried before, the simulation fails
otherwise, the H table is augmented with m‖x‖a 7→ e

• we obtain: an EF-0MA adversary A′ with similar complexity
and success probability ε− ε′

SV 2025 Proving Security EPFL 481 / 529

Proof of Theorem — i

A

H

q

�

H(q)

�

define B as follows
• simulate A with initial x , simulate H to A
• if A does not output any (m, a, e, z), abort; otherwise, run A

again with same random coins until m‖x‖a is queried to H
• pick a fresh e′ to be answered to A and continue the simulation
• if A does not output any (m, a, e′, z ′), abort; otherwise, get two

forgeries (a, e, z) and (a, e′, z ′) with same a so extract
w = E(x , a, e, z, e′, z ′)

SV 2025 Proving Security EPFL 482 / 529

Proof of Theorem — ii

A - m, a, e, zλ

succ(λ)

6
?

H
6
?

H
6
?

H

m∥x∥a e or e′ 6
?

H

dist(λ)

j m, a, e′, z ′

?
6

H

SV 2025 Proving Security EPFL 483 / 529

Proof of Theorem — iii
we build the tree of A executions with same random tape based
on answers from H (each node ν corresponds to a query, each
leaf λ corresponds to a termination)
• we consider the random descent following the H simulation

which leads to a random leaf X
• let succ(λ) be true if λ yields (m, a, e, z) and false

otherwise
• if λ→ (m, a, e, z), let dist(λ) be the ancestor of λ who

made to the m‖x‖a query, otherwise, let dist(λ) = λ
• we have Pr[succ(X)] = ε and E(depth(X)) = poly
• let visit(ν) the event that X has ν as an ancestor

let f (ν) = Pr[succ(X), dist(X) = ν|visit(ν)]
we obtain: a witness extractor B with similar complexity who
succeeds if succ(X), e 6= e′, and the second run succeeds on
X ′ such that dist(X ′) = dist(X).
since Pr[e = e′] = negl, the success probability is greater than
E(f (dist(X)))− negl

SV 2025 Proving Security EPFL 484 / 529

Proof of Theorem — iv

recap:
• we have a tree with a predicate succ on leaves and

dist : λ 7→
{

one ancestor if succ(λ)
λ otherwise

• we have a distribution on leaves such that the depth of a
random leaf X is polynomial and Pr[succ] = ε′

• we define f (ν) = Pr[succ(X), dist(X) = ν|visit(ν)] where
visit(ν) is the event that ν is an ancestor of X
• if E(f (dist(X))) is negligible, so is ε′

we conclude using the Forking Lemma

SV 2025 Proving Security EPFL 485 / 529

Forking Lemma

Lemma (Forking Lemma)
• We consider a finite tree and a mapping dist which maps

any leaf λ to one of its ancestors dist(λ). We call it a
distinguished ancestor.
• We assume we are given a distribution which defines a

random leaf X . We let visit(ν) be the event that the
descent goes through ν, i.e. that ν is an ancestor of λ.
• We let succ(λ) be true iff dist(λ) 6= λ. When it occurs we

say that λ is successful.
• We let p = Pr[succ(X)], d̄ = E(depth(X)), and

f (ν) = Pr[succ(X) and dist(X) = ν|visit(ν)].
We have

Pr

[
f (dist(X)) >

p
2d̄

∣∣∣∣ succ(X)

]
≥ 1

2

SV 2025 Proving Security EPFL 486 / 529

Consequence

E(f (dist(X))) =

∫ 1

0
Pr[f (dist(X)) ≥ t] dt

≥
∫ 1

0
Pr[f (dist(X)) ≥ t , succ(X)] dt

= p
∫ 1

0
Pr[f (dist(X)) ≥ t |succ(X)] dt

≥ p
∫ 1

0

1
2
· 1t≤ p

d̄
dt

=
p2

4d̄

so, p ≤
√

4d̄E(f (dist(X)))

If E(f (dist(X))) is negligible, p is negligible as well, which
completes the proof of the Theorem.

SV 2025 Proving Security EPFL 487 / 529

Proof of Forking Lemma

• we have Pr[dist(X) = ν|succ(X)] = f (ν)Pr[visit(ν)]
p

• let Bad be the set of ν’s s.t. f (ν) ≤ p
2d̄

we have

Pr[dist(X) ∈ Bad|succ(X)] =
∑

ν∈Bad

f (ν)
Pr[visit(ν)]

p

≤
∑

ν Pr[visit(ν)]
2d̄

≤ 1
2

• so, Pr[dist(X) 6∈ Bad|succ(X)] ≥ 1
2

SV 2025 Proving Security EPFL 488 / 529

Controversy about the Random Oracle Model

• random oracle are idealizations of practical functions
• in practice, no hash function is a random oracle
• we may have scheme secure in the random oracle model

but insecure for any practical instanciation of the random
oracle

• security in this model is still better than nothing
• one should interpret these security results with great care

SV 2025 Proving Security EPFL 489 / 529

Insecure ROM-Secure Signature Scheme
Canetti–Goldreich-Halevi 1998

• consider the FDH ROM-secure digital signature scheme

Sign0
d ,N(m) = (H(m))d mod N

• construct another ROM-secure digital signature scheme:
message semantics: interpret m as an algorithm
implementing a partial function hm within a bounded time τ
Signd,N(m): pick r ; if H(r) = hm(r) then output d ; otherwise
output Sign0

d,N(m)
Verifye,N(m, σ)⇐⇒ meσ mod N = m or σe mod N = H(m)

• this is ROM-secure as well
• if we replace H by a function which can be implemented by

a code m, the chosen message m will leak the secret key!

SV 2025 Proving Security EPFL 490 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security
The Random Oracle Model
Hybrid ElGamal
The Fujisaki-Okamoto Transform
The Generic Group Model

SV 2025 Proving Security EPFL 491 / 529

Hybrid ElGamal Cryptosystem using the Leftover
Hash Lemma

take a group with a generator g of order q
key generation: pick x ∈U Zq, set y = gx

message space: M ∈ {0, 1}m

encryption: Ency (M; r , n) = (gr ,M ⊕ hn(y r), n)
decryption: Decx(u, v , n) = v ⊕ hn(ux)

where (hn)n is a family of universal hash functions from G ⊇ 〈g〉
to {0, 1}m

leftover hash Lemma: if ε ≥ 2
m
2 /
√

q then (hn(gs), n) is
ε-indistinguishable from (u, n) where u ∈U {0, 1}m

Theorem

If 2
m
2 /
√

q = negl and under the DDH assumption, the above is
IND-CPA-secure.

SV 2025 Proving Security EPFL 492 / 529

Hybrid ElGamal Cryptosystem

Generator

6Secret key xPublic key y 6 AUTHENTICATION
INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

y = gx

6
?

domain parameter:
group spanned by g

M (u, v , n) (u, v , n) v ⊕ hn(ux)

r , n random
u = gr

v = M ⊕ hn(y r)

SV 2025 Proving Security EPFL 493 / 529

Leftover Hash Lemma
example: H∞(gs) = log2 q

• min-entropy:

H∞(X) = − log2 max
x

Pr[X = x]

• universal hash function:

∀x 6= x ′ Pr
N
[hN(x) = hN(x ′)] =

1
#range

where #range = 2m is the size of the output domain of h
and N is uniformly distributed

Lemma (Impagliazzo-Levin-Luby 1989)

If m ≤ H∞(X)− 2 log2
1
ε and h is a universal hash function with

a range of size 2m then (hN(X),N) and (U,N) have
distributions which are ε

2 -indistinguishable.

X , N, U are independent.
N and U are uniformly distributed.

SV 2025 Proving Security EPFL 494 / 529

Proof
let P0 = (hN(X),N), P1 = (U,N), compute the Euclidean distance:

‖P1 − P0‖2
2 =

∑
k,n

(
Pr
X ,N

[hn(X) = k ,N = n]− 1
2m#N

)2

=

∑
k,n

Pr
X ,N

[hn(X) = k ,N = n]2

− 1
2m#N

= Pr
X ,X ′,N,N′

[hN(X) = hN′(X ′),N = N ′]− 1
2m#N

=
1

#N
∑
x,x′

Pr[X = x ,X ′ = x ′, hN(x) = hN(x ′)]− 1
2m#N

=
1− 2−m

#N
∑

x

Pr[X = x]2 (split x = x ′ and x 6= x ′)

≤ 1− 2−m

#N
max

x
Pr[x] ≤ 1− 2−m

#N
2−H∞(X) ≤ 1

2m#N
ε2

we then use
d(P0,P1) =

1
2‖P0 − P1‖1 ≤ 1

2‖P0 − P1‖2
√

#domain ≤ ε
2

SV 2025 Proving Security EPFL 495 / 529

Transitions — i
game Γb

0 :
1: run key generation and get y
2: pick ρ and set view = (y ; ρ)
3: run A(view) = (m0,m1)
4: pick r , u ← gr

5: pick n, v ← mb ⊕ hn(y r)
6: set view = (y , u, v , n; ρ)
7: run A(view) = b′
8: return b′

DDH assumption in the group

↕ bridge

game Γb
1 :

1: pick x , y ← gx

2: pick r , u ← gr

3: X ← gxr ▷ erase x , r
4: pick ρ and set view = (y ; ρ)
5: run A(view) = (m0,m1)
6: pick n, v ← mb ⊕ hn(X)
7: set view = (y , u, v , n; ρ)
8: run A(view) = b′
9: return b′

DDH
≈

game Γb
2 :

1: pick x , y ← gx

2: pick r , u ← gr

3: pick s, X ← gs ▷ erase
x , r , s

4: pick ρ and set view = (y ; ρ)
5: run A(view) = (m0,m1)
6: pick n, v ← mb ⊕ hn(X)
7: set view = (y , u, v , n; ρ)
8: run A(view) = b′
9: return b′

SV 2025 Proving Security EPFL 496 / 529

Transitions — ii
game Γb

2 :
1: pick x , y ← gx

2: pick r , u ← gr

3: pick s, X ← gs

4: pick ρ and set view = (y ; ρ)
5: run A(view) = (m0,m1)
6: pick n, v ← mb ⊕ hn(X)
7: set view = (y , u, v , n; ρ)
8: run A(view) = b′
9: return b′

leftover hash Lemma

↕ bridge

game Γb
3 :

1: pick x , y ← gx

2: pick r , u ← gr

3: pick ρ and set view = (y ; ρ)
4: run A(view) = (m0,m1)
5: pick s, X ← gs

6: pick n, v0 ← hn(X) ▷ erase
s,X

7: v ← mb ⊕ v0
8: set view = (y , u, v , n; ρ)
9: run A(view) = b′
10: return b′

lemma
=

game Γb
4 :

1: pick x , y ← gx

2: pick r , u ← gr

3: pick ρ and set view = (y ; ρ)
4: run A(view) = (m0,m1)
5: pick U
6: pick n, v0 ← U ▷ erase U
7: v ← mb ⊕ v0
8: set view = (y , u, v , n; ρ)
9: run A(view) = b′
10: return b′

SV 2025 Proving Security EPFL 497 / 529

Transitions — iii
game Γb

4 :
1: pick x , y ← gx

2: pick r , u ← gr

3: pick ρ and set view = (y ; ρ)
4: run A(view) = (m0,m1)
5: pick U
6: pick n, v0 ← U
7: v ← mb ⊕ v0
8: set view = (y , u, v , n; ρ)
9: run A(view) = b′
10: return b′

v0 and v uniform

↕ bridge

game Γb
5 :

1: pick x , y ← gx

2: pick r , u ← gr

3: pick ρ and set view = (y ; ρ)
4: run A(view) = (m0,m1)
5: pick n
6: pick v0
7: v ← mb ⊕ v0 ▷ erase v0
8: set view = (y , u, v , n; ρ)
9: run A(view) = b′
10: return b′

ind
=

game Γb
6 :

1: pick x , y ← gx

2: pick r , u ← gr

3: pick ρ and set view = (y ; ρ)
4: run A(view) = (m0,m1)
5: pick n
6: pick v
7: set view = (y , u, v , n; ρ)
8: run A(view) = b′
9: return b′

SV 2025 Proving Security EPFL 498 / 529

Transitions — iv

final step: Γ0
6 and Γ1

6 are identical!

Γ0
0

bridge
⌢ Γ0

1
DDH
≈ Γ0

2
bridge
⌢ Γ0

3
lemma
≈ Γ0

4
bridge
⌢ Γ0

5
domain
= Γ0

6

=

Γ1
0

bridge
⌢ Γ1

1
DDH
≈ Γ1

2
bridge
⌢ Γ1

3
lemma
≈ Γ1

4
bridge
⌢ Γ1

5
domain
= Γ1

6

so, Pr[Γ0
0 = 0]− Pr[Γ1

0 = 0] ≤ 2AdvDDH + 2ε = negl

SV 2025 Proving Security EPFL 499 / 529

Hybrid ElGamal Cryptosystem using Random
Oracles

take a group with a generator g of order q
key generation: pick x ∈ Zq, set y = gx

message space: M ∈ {0, 1}m

encryption: Ency (M; r) = (gr ,M ⊕ H(y r))

decryption: Decx(u, v) = v ⊕ H(ux)

where H is a random oracle onto {0, 1}m

Theorem
Under the DDH assumption, the above is INDCPA-secure in the
random oracle model.

SV 2025 Proving Security EPFL 500 / 529

Hybrid ElGamal Cryptosystem

Generator

6Secret key xPublic key y 6 AUTHENTICATION
INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

y = gx

6
?

domain parameter:
group spanned by g

M (u, v) (u, v) v ⊕ H(ux)

r random
u = gr

v = M ⊕ H(y r)

SV 2025 Proving Security EPFL 501 / 529

Transitions — i
game Γb

0 :
1: pick H
2: run key generation and get y
3: pick ρ and set view = (y ; ρ)
4: run AH(view) = (m0,m1)
5: pick r , u ← gr

6: v ← mb ⊕ H(y r)
7: set view = (y , u, v ; ρ)
8: run AH(view) = b′
9: return b′

DDH assumption in the group

↕ bridge

game Γb
1 :

1: pick x , y ← gx

2: pick r , u ← gr

3: X ← gxr

▷ erase x , r
4: pick H, ρ, set view = (y ; ρ)
5: run AH(view) = (m0,m1)
6: v ← mb ⊕ H(X)
7: set view = (y , u, v ; ρ)
8: run AH(view) = b′
9: return b′

DDH
≈

game Γb
2 :

1: pick x , y ← gx

2: pick r , u ← gr

3: pick s, X ← gs

▷ erase x , r , s
4: pick H, ρ, set view = (y ; ρ)
5: run AH(view) = (m0,m1)
6: v ← mb ⊕ H(X)
7: set view = (y , u, v ; ρ)
8: run AH(view) = b′
9: return b′

SV 2025 Proving Security EPFL 502 / 529

Transitions — ii
game Γb

2 :
1: pick x , y ← gx

2: pick r , u ← gr

3: pick s, X ← gs

4: pick H, ρ, set view = (y ; ρ)
5: run AH(view) = (m0,m1)
6: v ← mb ⊕ H(X)
7: set view = (y , u, v ; ρ)
8: run AH(view) = b′
9: return b′

difference lemma
F : A queried H(X)

Pr[F] ≤ #queries
q

↕ bridge

game Γb
3 :

1: pick x , y ← gx

2: pick r , u ← gr

3: pick H, ρ, set view = (y ; ρ)
4: run AH(view) = (m0,m1)
5: pick s, X ← gs

6: v0 ← H(X)
7: v ← mb ⊕ v0
8: set view = (y , u, v ; ρ)
9: run AH(view) = b′
10: return b′

Pr[F]
≈

game Γb
4 :

1: pick x , y ← gx

2: pick r , u ← gr

3: pick H, ρ, set view = (y ; ρ)
4: run AH(view) = (m0,m1)
5: pick s, X ← gs

6: pick v0
7: v ← mb ⊕ v0
8: set view = (y , u, v ; ρ)
9: run AH(view) = b′
10: return 0 if A queried H(X)
11: return b′

SV 2025 Proving Security EPFL 503 / 529

Transitions — iii
game Γb

4 :
1: pick x , y ← gx

2: pick r , u ← gr

3: pick H, ρ, set view = (y ; ρ)
4: run AH(view) = (m0,m1)
5: pick s, X ← gs

6: pick v0, v ← mb ⊕ v0
7: set view = (y , u, v ; ρ)
8: run AH(view) = b′
9: return 0 if A queried H(X)
10: return b′

v0 and v uniform

↕ bridge

game Γb
5 :

1: pick v0, v ← mb ⊕ v0
2: pick x , y ← gx

3: pick r , u ← gr

4: pick H, ρ, set view = (y ; ρ)
5: run AH(view) = (m0,m1)
6: pick s, X ← gs

7: set view = (y , u, v ; ρ)
8: run AH(view) = b′
9: return 0 if A queried H(X)
10: return b′

ind
=

game Γb
6 :

1: pick v
2: pick x , y ← gx

3: pick r , u ← gr

4: pick H, ρ, set view = (y ; ρ)
5: run AH(view) = (m0,m1)
6: pick s, X ← gs

7: set view = (y , u, v ; ρ)
8: run AH(view) = b′
9: return 0 if A queried H(X)
10: return b′

SV 2025 Proving Security EPFL 504 / 529

Transitions — iv

final step: Γ0
6 and Γ1

6 are identical!

Γ0
0

bridge
⌢ Γ0

1
DDH
≈ Γ0

2
bridge
⌢ Γ0

3
difference
≈ Γ0

4
bridge
⌢ Γ0

5
domain
= Γ0

6

=

Γ1
0

bridge
⌢ Γ1

1
DDH
≈ Γ1

2
bridge
⌢ Γ1

3
difference
≈ Γ1

4
bridge
⌢ Γ1

5
domain
= Γ1

6

so, Pr[Γ0
0 = 1]− Pr[Γ1

0 = 1] ≤ 2AdvDDH + 2Pr[F] = negl
since Pr[F] ≤ #queries

q

SV 2025 Proving Security EPFL 505 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security
The Random Oracle Model
Hybrid ElGamal
The Fujisaki-Okamoto Transform
The Generic Group Model

SV 2025 Proving Security EPFL 506 / 529

Fujisaki-Okamoto
Secure Integration of Asymmetric and Symmetric Encryption Schemes,
CRYPTO 1999, JoC 2013

• γ-spread and OWCPA-secure PKC (Gen0,Enc0,Dec0)

• one-time secure cipher (e.g. one-time pad)
• random oracles G and H
→ construct a PKC which is INDCCA-secure

(many variants possible)

Gen → (pk = pk0, sk = (sk0, pk0))

Encpk(pt; coins) →

Enc0,pk0
(coins;H(coins, ct2)︸ ︷︷ ︸

new coins

),

ct2︷ ︸︸ ︷
pt⊕G(coins)


Decsk(ct1, ct2):

1: Dec0,sk0(ct1)→ coins
2: if ct1 6= Enc0,pk0

(coins;H(coins, ct2)) then return ⊥
3: return ct2 ⊕G(coins)

SV 2025 Proving Security EPFL 507 / 529

Security Notions

• γ-spread:

∀pk, pt, ct Pr[Encpk(pt) = ct] ≤ 2−γ

• OWCPA-secure:
secure against decryption under chosen plaintext attacks

SV 2025 Proving Security EPFL 508 / 529

Proof Sketch

OWCPA FO−−→ INDCCA

(need PKC0 to be γ-spread as well)

Encpk(pt):
1: pick σ
2: ct2 ← pt⊕G(σ)
3: ct1 ← Enc0,pk(σ;H(σ, ct2))
4: return (ct1, ct2)

Decsk(ct1, ct2):
1: σ ← Dec0,sk(ct1)
2: if σ = ⊥ then return ⊥
3: if ct1 6= Enc0,pk(σ;H(σ, ct2))

then return ⊥
4: pt← ct2 ⊕G(σ)
5: return pt

• modify the decryption oracle so that it does not use sk but
only the oracle tables:
if there is no (σ, ct2, h) ∈ H such that ct1 = Enc0,pk(σ; h),
then return ⊥, otherwise, decrypt by using G
• modify F and G on the challenge σ point

SV 2025 Proving Security EPFL 509 / 529

Transform Adapted to Quantum Random Oracles...
Targhi–Unruh, Quantum Security of the Fujisaki-Okamoto and OAEP Transforms,
TCC 2016

OWCPA TU−−→ INDCCA

(need PKC0 to be γ-spread as well)

Encpk(pt):
1: pick σ
2: ct2 ← pt⊕G(σ)
3: ct1 ← Enc0,pk(σ;H(σ, ct2))
4: ct3 ← H ′(σ)
5: return (ct1, ct2, ct3)

Decsk(ct1, ct2, ct3):
1: σ ← Dec0,sk(ct1)
2: if σ = ⊥ then return ⊥
3: if ct1 6= Enc0,pk(σ;H(σ, ct2))

then return ⊥
4: if ct3 6= H ′(σ) then return ⊥
5: pt← ct2 ⊕G(σ)
6: return pt

secure, even with quantum access to the random oracle...

SV 2025 Proving Security EPFL 510 / 529

A Modular Analysis of the FO Transformation
Hofheinz-Hövelmanns-Kiltz TCC 2017

INDCPA (PKC)

OWPCVA (PKC)

OWCPA (PKC)

INDCCA (KEM)

adversary has access to:
Pco(ct, pt):
1: return 1pt=Decsk(ct)

Cvo(ct):
1: return 1Decsk(ct) ̸=⊥

Sℓ

T

T

(non tight)

U

Sℓ :

Encpk(pt):
1: pick x1, . . . , xℓ
2: ct0 ← pt⊕ F (x1, . . . , xℓ)

3: cti
$←− Enc0,pk(xi), i = 1, . . . , ℓ

4: return (ct0, . . . , ctℓ)
Decsk(ct0, . . . , ctℓ):

5: xi ← Dec0,sk(cti), i = 1, . . . , ℓ
6: pt← ct0 ⊕ F (x1, . . . , xℓ)
7: return pt

T :

Encpk(pt):
1: ct← Enc0,pk(pt;G(pt))
2: return ct

Decsk(ct):
3: pt← Dec0,sk(ct)
4: if pt = ⊥ then return ⊥
5: if ct 6= Enc0,pk(pt;G(pt))

then return ⊥
6: return pt

U :

Encpk:
1: pick pt at random
2: ct $←− Enc0,pk(pt)
3: K ← H(pt, ct)
4: return (K , ct)

Decsk(ct):
5: pt← Dec0,sk(ct)
6: if pt = ⊥ then return ⊥
7: K ← H(pt, ct)
8: return K

SV 2025 Proving Security EPFL 511 / 529

S Transform

OWCPA Sℓ

−→ INDCPA

Encpk(pt):
1: pick x1, . . . , xℓ
2: ct0 ← pt⊕ F (x1, . . . , xℓ)
3: cti

$←− Enc0,pk(xi), i = 1, . . . , ℓ
4: return (ct0, . . . , ctℓ)

Decsk(ct0, . . . , ctℓ):
1: xi ← Dec0,sk(cti), i = 1, . . . , ℓ
2: pt← ct0 ⊕ F (x1, . . . , xℓ)
3: return pt

The OWCPA→ INDCPA reduction is loosing a factor q1/ℓ in the
advantage, where q is the number of random oracle queries the
adversary can make.
This factor can be huge.
Increase ℓ to make it smaller (but make encryption more costly).

SV 2025 Proving Security EPFL 512 / 529

S Transform (Proof Sketch)

OWCPA Sℓ

−→ INDCPA

Encpk(pt):
1: pick x1, . . . , xℓ
2: ct0 ← pt⊕ F (x1, . . . , xℓ)
3: cti

$←− Enc0,pk(xi), i = 1, . . . , ℓ
4: return (ct0, . . . , ctℓ)

Decsk(ct0, . . . , ctℓ):
1: xi ← Dec0,sk(cti), i = 1, . . . , ℓ
2: pt← ct0 ⊕ F (x1, . . . , xℓ)
3: return pt

• add a failure event that the adversary queries F (x1, . . . , xℓ)
• construct an OWCPA game in which the challenge ct is put

at a random place and completed
• define pi as the pobability that one F query out of the q

ones (taken at random) finds the right xi given that
(x1, . . . , xi−1) are found and the failure event occurs

• use 1
ℓ

∑
pi ≥ (

∏
pi)

1
ℓ and

∏
pi =

1
q

SV 2025 Proving Security EPFL 513 / 529

T Transform (Proof Sketch)

INDCPA T−→ OWPCVA

(need PKC0 to be γ-spread as well)

Encpk(pt):
1: ct← Enc0,pk(pt;G(pt))
2: return ct

Decsk(ct):
1: pt← Dec0,sk(ct)
2: if pt = ⊥ then return ⊥
3: if ct 6= Enc0,pk(pt;G(pt))

then return ⊥
4: return pt

• remove the Pco oracles which can be simulated (use
correctness)
• get rid of Cvo oracles queries which can be simulated from

the G table
• other queries answer 0, but with probability 2−γ

SV 2025 Proving Security EPFL 514 / 529

U Transform (Proof Sketch)

OWPCVA U−→ INDCCA(KEM)

Encpk:
1: pick pt at random
2: ct $←− Enc0,pk(pt)
3: K ← H(pt, ct)
4: return (K , ct)

Decsk(ct):
1: pt← Dec0,sk(ct)
2: if pt = ⊥ then return ⊥
3: K ← H(pt, ct)
4: return K

• define a failure event that the right (pt, ct) is queried to H
• simulate the decryption query by

Dec(ct):
1: if Cvo(ct) = 0 then return ⊥
2: for all (pt, ct,K) ∈ H do
3: if Pco(pt, ct) = 1 then return K
4: end for
5: return a random K and get ready to update H

(in H, check if pt would decrypt...)
SV 2025 Proving Security EPFL 515 / 529

1 The Cryptographic Zoo

2 Cryptographic Security Models

3 Cryptanalysis (Public-Key)

4 The Power of Interaction

5 Cryptanalysis (Conventional)

6 Proving Security
The Random Oracle Model
Hybrid ElGamal
The Fujisaki-Okamoto Transform
The Generic Group Model

SV 2025 Proving Security EPFL 516 / 529

Generic Group Algorithms

• Baby-step giant step slide 193

make group operations, store in tables, and expect a
matching
• Pollard Rho algorithm slide 194

make group operations and expect a matching
• why don’t we assume that only group operations can be

done?

we can prove the hardness of DL, CDH, DDH in generic groups

SV 2025 Proving Security EPFL 517 / 529

Shoup Generic Model
• in a group G of order q
• set up a random bijection φ : G→ Zq (privately)
• “represent” a group element x ∈ G by φ(x)
• show only q and representation of group elements
• give access to an oracle

OAdd(u, v):
1: return φ(φ−1(u) + φ−1(y))

• can implement scalar multiplication (double-and-add)
• can implement inversion (multiplication by q − 1)
• can compare group elements (compare representations)
• can pick a random group element (pick its representation)
• can apply random oracles to group elements
• can implement generic algorithms

SV 2025 Proving Security EPFL 518 / 529

Results [Shoup 1997]

In a group of order q, in the Shoup generic model...

Theorem (DL)
Let p be the largest prime factor of q. A generic DL algorithm
making m > 0 oracle calls has advantage O(m2/p).

Theorem (CDH)
Let p be the largest prime factor of q. A generic CDH algorithm
making m > 0 oracle calls has advantage O(m2/p).

Theorem (DDH)
Let p be the smallest prime factor of q. A generic DDH
algorithm making m > 0 oracle calls has advantage O(m2/p).

SV 2025 Proving Security EPFL 519 / 529

Maurer Generic Model
• in a group G of order q
• set up an array R to public group elements
• show only q
• give access to oracles

OAdd(i , j , k):
1: R[k]← R[i] + R[j]
2: return

OIsZero(i):
3: return 1R[i]=0

• can implement scalar multiplication (double-and-add)
• can implement inversion (multiplication by q − 1)
• can compare group elements (IsZero of the difference)
• tricky to pick a random group element
• tricky to implement Baby-step giant-step (dictionary...)
• tricky to implement Pollard ρ (hash...)

SV 2025 Proving Security EPFL 520 / 529

Example: DL is Hard in (Maurer) GGM

Theorem (DL)
In a cyclic group of prime order q, a generic (Maurer model) DL
algorithm making m OIsZero calls has advantage at most m+1

q .

Proof. Induction: trivial for m = 0 + show how to transform A
into B who simulates the first OIsZero (one less call):
• DL setup: R[1] = g and R[2] = X (DL: slide 141)
• set v1 = (1, 0), v2 = (0, 1), and other vi = (0, 0)
• follow A and extend OAdd by vk ← (vi + vj) mod q
• simulate the first OIsZero by returning 1vi=0

• failure case: vi = (α, β) 6= 0 but α+ xβ = 0 (mod q)
• AdvA ≤ AdvB + 1

q by difference lemma slide 110

• from induction: AdvB ≤ m
q

SV 2025 Proving Security EPFL 521 / 529

Better Comparison Oracle

ONew(i):
1: if R[i] is not in List then
2: add R[i] at the end of List
3: end if
4: return position of R[i] in List

• emulatable with OIsZero (m calls become m(m−1)
2 calls)

• can implement baby-step giant-step
• can implement Pollard ρ

Theorem (DL)
In a cyclic group of prime order q, a generic (Maurer model) DL
algorithm making m ONew calls has advantage at most 1+m2/2

q .

SV 2025 Proving Security EPFL 522 / 529

Final Step towards Equivalence

• make sure no R value is overwritten
(use a fresh memory location for every OAdd)
• run ONew after every OAdd

(keep indices of pairwise different values)
• define φ values by lazy sampling

(for every new index)

Shoup model Maurer model
m calls to OAdd −→ m(m−1)

2 calls to OIsZero

! inputs representing nothing known (random generation)
define φ−1 values by lazy sampling
(multiply a generator by a random value until it is new)
→ blow up in number of queries

SV 2025 Proving Security EPFL 523 / 529

Algebraic Group Model

• in a group G of order q
• let A1, . . . ,An be all group elements provided to A as input
• require A to release any output X as a vector
(x1, . . . , xn) ∈ Zn

q such that X = x1A1 + · · ·+ xnAn

• can do group scalar multiplication, inversion, comparison
• can pick a random group element (pick a representation)
• no problem with random oracles
• can implement generic algorithms
• can simulate a Shoup generic algorithm
• can simulate a Maurer generic algorithm

SV 2025 Proving Security EPFL 524 / 529

Results [Fuchsbauer-Kiltz-Loss 2018]

Theorem (DL=CDH in AGM)
For a group of prime order q, in the algebraic group model, DL
and CDH are equivalent.

CDH in AGM: A(G, xG, yG)→ (u, v ,w) wins iff
uG + v(xG) + w(yG) = xyG, i.e. iff u + vx + wy = xy
Proof. Given a DL instance (G,Z), pick α, β ∈ Zq and set
X = αZ , Y = βZ , run A(G,X ,Y)→ (u, v ,w), then solve
u + (αv + βw)z = αβz2 in z ∈ Zq.

SV 2025 Proving Security EPFL 525 / 529

Conclusion

• a battery of formal security definitions
• the random oracle model: a tool to idealize hash functions
• the generic group model: a tool to idealize groups

SV 2025 Proving Security EPFL 526 / 529

References

• Coron.
On the Exact Security of Full Domain Hash.
In CRYPTO 2000, LNCS 1880.
• Fiat-Shamir.

How to Prove Yourself: Practical Solutions to Identification
and Signature Problems.
In CRYPTO 1986, LNCS 263.
• Bellare-Rogaway.

Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols.
In CCS 1993, ACM.

SV 2025 Proving Security EPFL 527 / 529

References

• Pointcheval-Stern.
Security Proofs for Signature Schemes.
In EUROCRYPT 1996, LNCS 1070.
• Shoup.

Sequences of Games: a Tool for Taming Complexity in
Security Proofs.
Cryptology ePrint Archive 2004/332, IACR.
• Boneh.

The Decision Diffie-Hellman Problem
In ANTS 1998, LNCS 1423.

SV 2025 Proving Security EPFL 528 / 529

Train Yourself

• BLS signature: final exam 2012–13 ex2

• PRF: final exam 2012–13 ex3 (PRF programming)

• distance bounding: final exam 2013–14 ex2

• forking Lemma and Fiat-Shamir: final exam 2013–14 ex3

• blind signatures: final exam 2022–23 ex3

• IND-CCA ElGamal: final exam 2018–19 ex2

• twin DH problem: final exam 2018–19 ex3

SV 2025 Proving Security EPFL 529 / 529

	The Cryptographic Zoo
	The Menagery
	Meta-Definition of a Cryptographic Primitive
	Correctness vs Security

	Easy vs Hard
	Negligible and Secure
	Notation: Security Parameter

	Notation: Probabilistic Algorithms
	Big Picture
	Symmetric Encryption
	Using Encryption

	Using MAC for Authentication
	Public-Key Cryptography
	Using Public-Key Encryption
	Non-Deterministic Encryption
	Using Signature

	Key Agreement Protocol
	Commitment Scheme
	Using Commitment

	Other Conventional Primitives
	Security of PRNG: Indistinguishability
	Swiss Army Hash Function
	A Few Adversarial Models for Hash Functions

	The Math Toolbox
	Finite Abelian Group
	Commutative Ring
	Irreducibility and Primality in Rings
	Finite Field
	Facts About the Zn Ring
	Facts About the Zp Field
	Chinese Remainder Theorem

	Random Variables
	Expected Value and Variance
	Other Properties

	The Algorithmic Toolbox
	Arithmetics with Big Numbers
	Modular Arithmetic
	Other Algorithms

	Birthday Effect
	Generic Attacks

	The Complexity Theory Toolbox
	Membership Problem
	Easy Problems
	Hard Problems
	Non-Polynomial Algorithms

	Turing Reduction
	Turing Reduction

	Conclusion
	References
	Train Yourself

	Cryptographic Security Models
	Security Definitions
	Block Cipher
	Symmetric Encryption
	Security against Key Recovery
	Adaptive Security against Key Recovery
	Chosen Ciphertext Security: Motivation
	CPCA Security is Stronger than CPA Security
	Not Good Enough Security
	Not Good Enough Security — Proof
	Security against Decryption
	Decryption Security is Stronger than Key Recovery Security
	Detail
	Note: No Decryption Security over Small Domains
	Not Good Enough Security
	The Ideal Cipher
	Security against Distinguisher (Real or Ideal)
	Distinguisher Security is Stronger than Decryption Security
	Detail in the Ideal Cipher Case
	Security Notions

	Note: Another Distinguisher Style
	MAC
	Using MAC for Authentication
	Security against Key Recovery
	Security against Forgery
	Existential vs Universal
	Security against Distinguisher (PRF)
	Security Relations

	Key Agreement Protocol
	Security of Key Agreement Protocol
	Security against Passive Attacks

	PKC
	Threat Models

	Hard Core Bit
	Security against Distinguisher (Left or Right)
	Remark: Two Styles of Interactive Adversaries
	Problem with Deterministic Cryptosystems
	Comments on Semantic Security

	Chosen Ciphertext Security
	Adaptive Security against Distinguisher
	Non-Malleability
	Plaintext Awareness
	Security Notions

	Signature Scheme
	Threat Models
	EF-CMA Security
	(Strong) EF-CMA Security
	Security Models

	Exercise

	The Game Proof Methodology
	Methodology
	Proof Methodology

	Transition Tool 1: Indistinguishability
	Transition Tool 2: Difference Lemma
	Transition Tool 3: Bridging Step
	Transition Tool 3: Bridging Step Examples
	Double Bridge

	IND$-CPA: Real-or-Random IND-CPA Game
	Equivalence with IND-CPA Game — i
	Equivalence with IND-CPA Game — i (bis)
	Equivalence with IND-CPA Game — i (ter)
	Equivalence with IND-CPA Game — ii
	Equivalence with IND-CPA Game — ii (bis)
	Equivalence with IND-CPA Game — ii (ter)

	RSA Security
	Plain RSA Encryption
	Plain RSA Signature
	RSA Problems

	Bit Security of Plain RSA
	Reducing Decryption to lsbdec
	Not All Bits are Hard in Plain RSA

	RSA Security
	Strong RSA Problem
	RSA-OAEP
	Security of RSA-OAEP

	Rabin Cryptosystem
	Plain Rabin Encryption
	Ensuring Non-Ambiguity in the Decryption

	Rabin Security
	Factoring Hard => OW-CPA Security
	A KR-CCA Attack against Rabin

	Paradoxical Security Result

	Diffie-Hellman Security
	The Diffie-Hellman Key Agreement Protocol
	CDH vs DL Problems
	CDH is the Key Recovery Problem in DH
	CDH Hard => DL Hard

	Decisional DH Problem
	DDH is the Key Distinguisher Problem in DH
	DDH Hard => CDH Hard
	DDH Hard => Large Group

	ElGamal Security
	Plain ElGamal Encryption
	ElGamal Security: ElGamal Problems
	ElGamal KR-CPA Secure <=> DL Hard
	ElGamal OW-CPA Secure => CDH Hard
	CDH Hard => ElGamal OW-CPA Secure
	ElGamal Encryption Security
	Plain ElGamal Encryption is not OW-CCA Secure

	Semantic Security of ElGamal Encryption
	IND$-CPA Security of ElGamal Encryption

	IND-CPA Proof with Game Methodology
	Transitions — i
	Transitions — ii
	Transitions — iii
	Observation

	Practical Problems with ElGamal Encryption

	Conclusion
	References
	Train Yourself
	Train Yourself
	Train Yourself

	Cryptanalysis (Public-Key)
	RSA
	Plain RSA Encryption
	Plain RSA Signature

	RSA Engineering
	Broadcast Encryption with Low Exponent
	Example with e=3

	Attack on Low Exponents
	Simple Power Analysis (SPA)
	Square-and-Multiply Algorithm (Left to Right)
	SPA
	Countermeasures

	Differential Fault Attack (DFA)
	DFA
	Countermeasures

	PKCS#1v1.5 Encryption (Reminder) (OBSOLETE)
	Yet Another Side Channel Attack (PKCS#1v1.5)
	Countermeasures

	Other Side Channel Attacks

	Diffie-Hellman
	CDH vs DL Problems (Reminder)
	Easy Discrete Logarithm Cases
	Pohlig-Hellman Algorithm
	Pohlig-Hellman Algorithm

	Baby Step - Giant Step Algorithm
	Pollard Rho Discrete Logarithm Algorithm
	Decisional DH Problem (Reminder)
	Easy Case: Zp*
	Reminder on the Legendre Symbol
	Easy Case: Group of Order with Smooth Factor
	Hard Cases
	Some Failure Cases

	ElGamal
	ElGamal Signature
	ElGamal Signature Security
	Security if we Miss the Second Inequality Check
	Bleichenbacher Attack (Setup Assumptions)
	Attack (Universal Forgery)

	Conclusion
	References — i
	References — ii
	Train Yourself

	The Power of Interaction
	Interactive Proofs
	Motivation
	Definitions
	NP Class
	co-NP Class
	P Class
	P vs NP Problem
	NP vs co-NP Problem
	Karp-Reduction
	NP-Hardness
	NP-Hardness
	Consequence

	Interactive Machines
	Interactive System
	Interactive System
	Example: Coin Flipping Game
	Example: Coin Flipping Game

	Interactive Proof
	Notes
	Example: Proof of some P Language
	Example: Proof of some NP Language
	Example: Goldwasser-Micali-Rackoff 1985
	Example: GMR85 Completeness
	Example: GMR85 Soundness

	Sequential Composition
	Soundness Result for Sequential Composition
	Technical Lemma
	Proof of Lemma
	Tricky Things with Parallel Composition
	Example: DD Protocol
	Parallel Composition of DD
	Example: DD Protocol

	IP Class
	Example: a Proof System for any NP Language
	PSPACE Class
	Complexity Classes

	Zero-Knowledge
	Zero-Knowledge Interactive Proof
	Zero-Knowledge Levels
	Example: Goldwasser-Micali-Rackoff 1989
	GMR89 - Completeness
	GMR89 - Soundness
	GMR89 - Zero-Knowledge

	Black-Box Zero-Knowledge
	Example

	Example: Goldreich-Micali-Wigderson 1986
	Graph Coloring
	GMW86 - Completeness
	GMW86 - Soundness (sketch)
	GMW86 - Zero-Knowledge (sketch)
	Some Further Technicalities
	Consequence: NP has Zero-Knowledge Proofs

	Proof of Knowledge
	Typical Prover

	Zero-Knowledge Construction from Sigma Protocol
	Motivation
	Sigma Protocol
	Sigma Protocol
	Specifying a Sigma Protocol

	Example: Goldreich-Micali-Wigderson 1986
	Graph Isomorphism
	Check List

	ZK Trick
	A Malicious Prover
	Sigma Protocols are Proof of Knowledge — i
	Sigma Protocols are Proof of Knowledge — ii
	Sigma Protocols are Proof of Knowledge — iii

	Parallel Composition
	Honest Verifier Zero-Knowledge
	Sigma Protocols are HVZK
	Zero-Knowledge on Small Challenge Set
	Sigma Protocols are Not Always ZK

	Summary about Composition
	Example: Fiat-Shamir 1986 Simplified
	Example: Fiat-Shamir 1986
	Check List

	Example: Schnorr 1989 Simplified
	Example: Schnorr 1989
	Example: Schnorr 1989 Generalized
	Check List

	Problem with a Malicious Verifier
	Strengthening by Commitment
	Proving the ZK Property
	Strengthening by Commitment — Caveat
	Pedersen Commitment 1991
	Pedersen Commitment — i
	Pedersen Commitment — ii
	Pedersen Commitment — iii
	Strengthened Protocol
	Proving Soundness

	Setup Models
	ZK from -Protocol Again
	Common Reference String Model
	ZK from Sigma-Protocol Again
	Random Oracle H (Lazy Sampling)
	Random Oracle Model
	Example

	Other Setup Models

	A Building Block for Making Cryptographic Primitives
	Constructions
	The Fiat-Shamir Paradigm 1986
	Fiat-Shamir Signature
	Fiat-Shamir Signature
	Full Fiat-Shamir Signature
	Schnorr Signature
	Schnorr Signature
	The Security of a Fiat-Shamir Signature in ROM

	Trapdoor Commitment

	Conclusion
	References — i
	References — ii
	Train Yourself

	Cryptanalysis (Conventional)
	Block Ciphers
	Block Cipher
	Example: DES
	DES — Feistel Scheme

	Distinguishing Attack on Ciphers
	Perfect Cipher

	Differential Cryptanalysis
	History
	Chosen Plaintext Key Recovery Attack
	Step 1: Cipher Decomposition
	Step 2: Deviant Property
	Step 3: Differential Computation
	Step 4: Implementation

	Differential Probability
	Differential Circuit — i: Duplicate Gate
	Differential Circuit — ii: XOR Gate
	Differential Circuit — iii: Linear Circuit
	Addition and Duplicate Gates
	Differential Circuit — iv: XOR to Constant Gate
	Differential Circuit — v: Non-Linear Circuit

	Differential Characteristic
	DES (Reminder) — i
	DES (Reminder) — ii
	DES (Reminder) — iii

	Differential Cryptanalysis of 8R-DES
	Other Sub-Characteristic
	Differential Characteristic
	Ciphertext Pair Analysis (Predicate R)
	Proof — i
	Proof — ii
	Listing Key Candidates
	Implementation

	Reminder
	Complexity Analysis (Heuristic)
	Probability Density of Good and Bad Counters

	Linear Cryptanalysis
	History
	From Chosen to Known Plaintext Key Recovery
	Step 1: Cipher Decomposition
	Step 2: Deviant Property
	Step 3: Projection
	Step 4: Implementation

	Making Linear Characteristics [Biham,Eurocrypt 94]
	Dual Circuit — i: XOR Gate
	Dual Circuit — ii: Duplicate Gate
	Dual Circuit — iii: Linear Circuit
	Addition and Duplicate Gates
	Dual Circuit — iv: XOR to Constant Gate
	Dual Circuit — v: Non-Linear Circuit
	Linear Characteristic

	Piling-up Lemma
	Linear Probability
	Link Between DPs and LPs
	Link Between DPs and LPs

	Application to DES8
	Other Sub-Characteristics
	Linear Characteristic
	Projection
	Attack
	Analysis

	Hypothesis Testing in Cryptography
	Indistinguishability
	Advantage
	Applications

	Hypothesis Testing
	Two Approaches
	Problems for this Lecture

	Best Advantage
	Statistical Distance
	Best Distinguisher (Single Sample)
	General Case
	Best Distinguisher (Multiple Samples)
	Example i: Biased Coin
	Example ii: Biased Dice
	Example iii: Uniform over Different Supports
	Example iv: Normal of Same Standard Deviation
	Example v: Sum of i.i.d. Bernoulli Variables
	Problem
	Easy Bound
	Detail

	Definitions
	Better Bound
	Uniform Case

	Decorrelation
	Uniform Distribution
	Pairwise Independence
	n-wise Independence
	Goal of Block Cipher Designs

	Distinguisher for Random Functions
	Examples of Distinguishing problem

	Decorrelation
	First Order of Decorrelation
	Second Order of Decorrelation
	Matrices
	Definition

	Reminder on Matrix Norms
	From a Vector Norm to a Matrix Norm

	Infinity Norm
	Example
	Non-Adaptive Distinguisher
	Non-Adaptive Distinguisher and Decorrelation

	A-Norm
	Multiplicativity of Decorrelation
	Proof

	1-Round Feistel Scheme is no Good (BestAdv>12)
	2-Round Feistel Scheme is no Good (BestAdv>12)
	Feistel Scheme
	Luby-Rackoff Theorem

	A Convenient Combinatorial Lemma
	Proof of the Luby-Rackoff Theorem — i
	Proof of the Luby-Rackoff Theorem — ii

	Random Permutation vs Random Function
	Proof of Lemma — i
	Proof of Lemma — ii
	Extension to Feistel Schemes
	Iterating
	Provable Security on Feistel Schemes

	Link with Differential and Linear Probabilities
	Example: DFCv2

	Conclusion
	References
	Train Yourself
	Train Yourself

	Proving Security
	The Random Oracle Model
	The Random Oracle Model
	Full-Domain Hash (FDH) Signature
	Full-Domain Hash (FDH) Signature
	Proof — i
	Proof — ii
	Proof — iii
	Proof — iv

	Fiat-Shamir Signature Paradigm
	Fiat-Shamir Signature Paradigm
	Fiat-Shamir Signature Paradigm in ROM
	Removing Chosen Messages
	Proof of Lemma — i
	Proof of Lemma — ii
	Proof of Lemma — iii
	Proof of Lemma — iv
	Proof of Theorem — i
	Proof of Theorem — ii
	Proof of Theorem — iii
	Proof of Theorem — iv

	Forking Lemma
	Consequence
	Proof of Forking Lemma

	Controversy about the Random Oracle Model
	Insecure ROM-Secure Signature Scheme

	Hybrid ElGamal
	Hybrid ElGamal Cryptosystem using the Leftover Hash Lemma
	Hybrid ElGamal Cryptosystem
	Leftover Hash Lemma
	Proof
	Transitions — i
	Transitions — ii
	Transitions — iii
	Transitions — iv

	Hybrid ElGamal Cryptosystem using Random Oracles
	Hybrid ElGamal Cryptosystem
	Transitions — i
	Transitions — ii
	Transitions — iii
	Transitions — iv

	The Fujisaki-Okamoto Transform
	Fujisaki-Okamoto
	Security Notions
	Proof Sketch

	Transform Adapted to Quantum Random Oracles...
	A Modular Analysis of the FO Transformation
	S Transform
	S Transform (Proof Sketch)
	T Transform (Proof Sketch)
	U Transform (Proof Sketch)

	The Generic Group Model
	Generic Group Algorithms
	Shoup Generic Model
	Results [Shoup 1997]
	Maurer Generic Model
	Example: DL is Hard in (Maurer) GGM
	Better Comparison Oracle
	Final Step towards Equivalence
	Algebraic Group Model
	Results [Fuchsbauer-Kiltz-Loss 2018]

	Conclusion
	References
	References
	Train Yourself

